Magmatic Contribution to Low Sulfidation Epithermal Deposits Simmons1995

October 3, 2017 | Author: Mahija_Handarbeni | Category: Chemistry, Physical Sciences, Science, Nature, Gases
Share Embed Donate


Short Description

Descripción: Magmatic Contribution to Low Sulfidation Epithermal Deposits Simmons1995...

Description

Chapter 20

MAGMATIC CONTRIBUTIONS TO LOW.SULFIDATION EPITHERMAL DEPOSITS Stuart F. Simmons Geothermal Institute, The University of Auckland, Private Bag 92019,Auckland, I,{ewZealand

INrRonucrron Low-sulfidation epithermaldepositsform at 100 m depth) at Fresnillo and Antamok-Acupan (Table 4). Inclusion fluids hosted by quartz, calcite, and sulfides were releasedunder vacuum by thermal decrepitation or crushing10- to 20-g monomineralicsamples; their isotope compositionswere measuredon a Nier-type double focussing mass spectrometer. '7 at AntamokThe R/Ra values, between 6 to Acupan and between I and 2 at Fresnillo (Fig. 12), indicate a component of mantle He, presumablytransportedto shallow crustal levels by ascendingmagmas(Simmons1986;Simmons et al. 1988). The Fresnilloresultsseemlow for arc-related fluids, and they may result from three different lHe processes:1) preferentialoutwarddiffusionof "He; over 2) in-.situradiogenicaccumulationof -He *H"; or 3) radiogenic accumulation of associatedwith long magma residencetimes and crustal contamination.Of these, the last seems most likely, given the relativelythick continental crust through which Fresnillo magmasmigrated (see Simmonset al. 1988). The helium-isotope

O a

A Fresnillo O Baguio

(g

E CE

tAtA a t m o . p h " r ihc " l i u r l

6 He concentration (x 10 ) cc STP/g Figure 12. Helium-isotopecompositions(R/Ra) versus heliumamountfor inclusion fluidscontained in quartz,calcite,andsulfidesfrom Fresnillo,andquartz (Simmons1986;Simmonset from Antamok-Acupan a/.1988).

ratios of geothermalemanationsassociatedwith arc volcanismand similarly thick crustrangefrom 1.30to 2.16 R/Ra in the SouthernVolcanicZone. andl.44to 6.47 R/Ra in CentralVolcanic Zone of the Andes, thus supporting this interpretation (Hilton et al. 1993). For Fresnillo, the results further indicate relatively uniform compositious throughtime irrespectiveof mineral host or fluidinclusion salinities, confirming that processes governinghelium input are decoupledfrom those affecting other fluid components (including metals), consistent with observationsof TVZ geothermal fluids and data from other (Simmonset al. 1987). hydrothermaldeposits Note that investigatorswishing to pursueHeisotope analysesof epithermal materials should ensurethat their samplesare shielded from the effects of cosmic radiation,especiallyat higher elevations of about 1500 m asl or more, as 'H" "un be produced by nuclear cosmogenic reactions involving spallation or neutron by'Li (e.g ,Kurz 1986). Sucheffects absorption are interpretedfor surfacevein-quartz samplesat 2200 m asl from the Fresnillodistrict,which have anomalousvaluesexceeding100 R/Ra (Simmons 1986; Simmons et al. 1986). The observed exponential decreasein R/Ra with depth (from

r S.F.Simmons

I l6 R/Ra at the surfaceto 65 R/Ra at l.l m depth) along with calculations of the cosmic-ray attenuationlength in rocks,however,indicatethat these radiation effects are unlikely to penetrate depths greater than about l0 m at Fresnillo (Simmons1986;Simmonsel al. 1986).

Fresnillo

2000 N, /He

N2-Ar-He Ratios Problemsassociatedwith the analysisof gas speciesin f'luid inclusionsare relatedto lossof H2 and H2S (through diffusion and post-extraction reaction;see Graney & Kesler this volume) and these artefactsalter the redox state calculatedfor er publisheddata(e.g.,Roedder1984;Hedenquist al. 1992). However, such problems should not of N, Ar and He, thoughthere affect measurement are few available measurementson epithermal materials.Norman & Musgrave (1994) reported data from three epithermaldeposits,includingthe SantoNiflo vein, Fresnillo(Fig. l3). Gaseswere for measuredby a quadrupolemass spectrometer decrepithermal vacuum by under fluids released tation or by crushingof 0.1 to 5 g of inclusionbearing material.The two smaller depositsfrom New Mexico (not\shown) both have gas trends "basaltic" signature.The indicating a possible Fresnillo data (Benton 1991)form a broad linear pattern that roughly overlaps with the mixing envelope having andesitic and meteoric endmembers. These results are consistent with salinity, and stable- and helium-isotope data, which support the existence of magmatic contributions in the Fresnillo fluids. Unfortunately,data from coexistingfluid inclusionsand stable isotopes are unavailable to assess covariationsor furtherconstrainthis interpretation'

1000

100 Air

looo He

2oo Ar

of nitrogen,argon Figure13.Relativeconcentrations and heliumin gasesfrom Fresnilloinclusionfluids 1994). (Benton1991,Norman & Musgrave

one component's origin can be checked for internal consistenciesby comparing it to other componentsthat behavein a similar manner(e.g., oxygen and hydrogenisotopescan be comparedto chloride,and helium isotopescan be comparedto COz, N2, and Ar). ln epithermal deposits, temporal constraints are relative as determined from the mineralogicrecord, with millimeter to centimeter-scale parageneses restricted to distancesof a few hundredmetersor less;hence, interpretation of spatial variations in the compositionsof paleo-fluidsat a fixed point in time acrossa depositis extremelydifficult. Data quality is also restrictedby the errors inherent to analyses and interpretationsof minerals and inclusionfluids. Thus, active geothermalsystems provide a scale of comparison for spatial and DISCUSSION temporal relations and a framework for interpretation not available from study of lowIn this paperI haveattemptedto documentthe deposits. sulfidation main geochemical evidence which indicates With these caveats,helium isotopesand N2magmatic contributions to low-sulfidation epiAr-He ratios can provide the most diagnostic thermal environments. The strength of this evidenceof magmaticcontributionsto epithermal evidenceis bolsteredby studiesof activesystems' deposits;the few availabledata indicatethat these where fluid compositions from geothermal componentsare promisingtracersof fluid origins systems in different stagesof evolution can be and deserve much further investigation. In comparedon a regionaland global scale.Besides contrast,enrichmentin both oxygen and hydrogen this temporal constraint,the capacityto analyze isotopes relative to meteoric water, and high of of chloride,can providepermissive concentrations all fluid componentsmeansthat interpretations

410

Low-suffidationEpithermalDeposits evidence of magmatic contributions(Table 1). Currently,Fresnillo is the only depositfor which all of thesetechniqueshave been applied,though there is a gap in the continuity of samples investigatedfrom this deposit, and the isotope studiesare reconnaissance in scale. Although there is evidence of magmatic contributions,it shouldbe clearthat the dominant source of water entering most low-sulfidation epithermalenvironmentsis meteoric,but this is not the issue here. Instead, a number of researchers have summarily discounted the possibility of magmatic contributionsin magmarelated ore-forming hl,drothermal systems, arguingthat water-rock interactionis sufficientto explain enrichmentsboth for oxygen and hydrogen isotopes,and the origins of othercomponents, includingmetals(e.g.,Taylor 1973 Campbeller al. 1984; Seal & Rye 1992),notwithstandingthe fact that a few percentmagmatic water could also accountfor the same isotopic enrichments(e.g., O'Neil & Silberman 1974 Sawkinset al. 1979). The problem then relates to the framework of interpretation, and I believe this involves appreciation: I ) of the nature of magmatic components, 2) that magmatic components potentiallycontributeto ore formation,and 3) that magmatic contributionscan reach shallow epithermalenvironments. The nature of magmatic componentsis best understood from examination of degassing volcanoes and study of porphyry ore deposits (".9., Hedenquist & Lowenstern 1994). These componentsare mostly volatile and includewater, carbondioxide, chlorine (as HCI), sulfur (as SO2 and H2S), and base and preciousmetals, all of which are observedin low-sulfidationepithermal environments,with chlorine and sulfur being important for metal transport. The signatures which record the appearance of magmatic componentsin the epithermal environment are mostly restricted to those in Table l. Other potential tracers, such as the isotopic compositionsof carbon,sulfur, and lead,are commonly ambiguousdue to effectsrelatingto redox stateor crustalcontamination,and are difficult to interpret (seeHedenquist& Lowenstern1994). That magmaticfluids can reachand influence low-sulfidation epithermal environments is

probably better documented than mosr geo_ scientists realize, with a much clearer magmatic connection existing for high-sulfidation epithermal environments(Arribas this volume). At one extremeare the eruptionsof magma through geothermal systems, which in recent history includethe 1886eruptionof Mt. Tarawerain New Zealand (Simmons el a/. 1993), the 19?6-1977 eruption at Krafla in Iceland (with the first recordeddischargeof magma from a geothermal well: Larsenet al. 1979),andthe l99l eruptionof Mt. Pinatubo,Philippines,formerly a geothermal prospectof the PhilipineNationalOil Company (with two pre-eruptionexplorationwells: Delfin et al. 1992). At the other extreme is the evidencefor steady influx of magmatic components(helium, nitrogen, chlorine, and water) into geothermal systemsand epithermaldeposits.Theseextremes also representend-memberson a time-scaleof influence,one nearly instantaneous, from hoursto days, and the other continuous,over hundredsto tens of thousandsof years. At time-scales in betweenare the pulses of fluid that reflect the magmaticinputs inferredfor Fresnillo,Hishikari, and Comstock. These sharp changes in fluid compositionshave not been recognizedin active systems,though wells have only been monitored for a maximum of about35 years(e.g.,Wairakei). Fluid pulsesare also known from the mineralogic record of some active geothermalsystems; for example,618O.ut.it" valuesat Kawerauindicatethe former field-wide presenceof a carbon dioxide and 6r8o-enrichedthermal fluid (up to 5 "/un comparedto currentvaluesof -3.75 ''ln,,)of likely magmaticorigin (Christenson1989). Thus both transient and persistent influxes of maglnatic contributionsare possible. Only at Fresnillo, for which high-salinity brines of rnagmaticorigin are interpreted,can a causeand effect relationshipbetween magmatic inputsand mineralizationbe considered.For other deposits,such as Hishikari and Comstock. the availability of metal-transporting ligands in mineralizingfluids cannotbe assessed by current analyticaltechniquesand, therefore,any genetic link betweenmagmaticinputs and mineralization is inferred only by spatial associationbetween precious-metaloccurrenceand isotopicallv(6180

S.F. Simmons

and 6D) enriched gangue minerals. Even in the 'lVZ. where relatively high concentrations of "gassy" precious metals are being fluxed in magmatic containing lluids geothermal contributions, the cause and effect relation is ambiguous as the source of aqueous sulfur, assuming it accounts for the aqueous Au and Ag, cannot be traced. The ultimate source of metals in low-sulfidation epithermal deposits thus remains poorly understood. ACKNOWLEDGMENTS I thank J. W. Hedenquist, J. Margolis, R. Sherlock, and J. F. H. Thompson fbr their perceptive comments and criticisms of an earlier version of this paper, and thank Louise Cotterall, who drafted some of the Figures. REFERENCES AHMAD, M., SOLOMON, M. & WALSHE, J. L. (1987): Mineralogicaland geochemicalstudiesof the Emperor gold telluride deposit, Fiji' Econ Geol.82.345-370. A N D E R S O N .W . B . & E A T O N , P . C ' ( 1 9 9 0 ) : G o l d mineralizationat the Emperor mine, Vatukoula, Fiji. .t. Geochem.Explor. 36, 267-296. BENTON, L.B. (199l): Compositionand Source of the Hydrothermal Fluids of the Santo Nino Vein, Fresnillo, Mexico, as DetLrminedfrom'-S'loS', Stable Isotope and Gas Analysis M.S' thesis, New Mexico Tech. Soccoro,New Mexico, USA' "Andesiticwater":a phantom BLATTNER, P. (1993): of isotopic evolution of water-silicatesystems' E a r t h P l a n e t .S c i .L e t t . 1 2 05 l l - 5 1 8 . BLATTNER, P. & LASSEY, K. R' (1989): Stable isotopeexchangefronts,Damk6hlernumbers,and fluid to rock ratios.Chem.Geol. 78 381-392' B R O W N , K . L . ( 1 9 8 6 ) :G o l d d e p o s i t i o nf r o m g e o t h e r mal dischargesin New Zealand.Econ. Geol Sl 9'79-983. B R O W N E , P . R . L .( 1 9 6 9 ) : S u l f i d em i n e r a l i s a t i oinn a Broadlandsgeothermaldrill hole' Taupo Volcanic Zone, New Zealand. Econ. Geol- 64 156-159'

4'/2

BROWNE, P.R.L. (1979): Minimum age of the Kawerau geothermal field, North Island, New Zealand.Volcanol.Geotherm.Res.6 213-215. B R O W N E ,P . R . L .& E L L I S , A . J . ( 1 9 7 0 ) :T h e O h a a k i Broadlands geothermal area, New Zealand. mineralogyand relatedgeochemistry.Am. .1. Sci. 26997-131. B R O W N E ,P . R . L . ,G R A H A M , I . J . ,P A R K E R , R . J .& WOOD, C.P. (1992): Subsurfaceandesitelavas and plutonic rocks in the Rotokawa and Ngatamarikigeothermalsystems,Taupo Volcanic Zone, New Zealand. Volcanol. Geolherm. Research51 199-217. B R O W N E , P . R . L . & L O V E R I N G ,J . F . ( 1 9 7 3 ) :C o m position of sphalerites from the Broadlands geothermalfield and their significanceto sphalerite geothermometryand geobarometry. Econ. Geol. 68381-387. , . (1984): C A M P B E L L , A . , R Y E , D . & P E T E R S E NU of the San study isotope A hydrogenand oxygen for the role of Implications CristobalMine, Peru: genesis of for the the water to rock ratio 7 9 , l 8 l 8 1 8 3 2 . G e o l . . con. w o l f r a m i t ed e p o s i t sE C H I B A , H . ( 1 9 9 1 ) : A t t a i n m e n to f s o l u t i o na n d g a s equilibrium in Japanese geothermal systems. G e o c h e mJ.. 2 5 3 3 5 - 3 5 5 . C H R I S T E N S O N ,B . W . ( 1 9 S 9 ) : F l u i d i n c l u s i o na n d stable isotope studies in the Kawerau hydrothermalsystem,New Zealand: Evidencefor past magma-fluid interactionin the active system. /n Water-Rock InteractionWRI-6 (D.L Miles, ed.). Balkema,Rotterdam,155-158. CHURCHILL, R. K. (1980): Meteoric WaterLeaching and Ore Genesis ut the Tuyoltita Silver-Gold Mine, Durango, Mexico. Ph.D' thesis, Univ. Minnesota,Minneapolis,Minnesota. C L A R K , K . F . , F O S T E R ,C . T . & D A M O N , P . E . ,1982): Cenozoic mineral deposits and subduction-relatedmagmatic arcs in Mexico' Geol. Soc.Am. Bull. 93,533-544. C L A R K E . M . & T I T L E Y , S . R . ( 1 9 8 8 ) :H y d r o t h e r m a l evolution in the formation of silver-gold veins, Tayoltitamine, San Dimas district,Mexico. Econ. Geol. 83, 1830-I 840.

Low-sulf dation Epi therma l Depos its

C L A R K E , W . 8 . , B E G , M . A . & C R A I G ,H . ( 1 9 6 9 ) : tH. Excess in the sea: evidence fbr terrestrial primordialhelium. Eurth Planet. Sci.Lett.6,213220.

ELLIS, A.J. & MAHON, W.A.J. (1964):Natural hydrothermal systems and experimental hotrvater/rock interactions. Geochim. Cosmochim. Acta 28, 1323-1357.

C O L E , J . W . ( 1 9 9 0 ) : S t r u c t u r acl o n t r o la n d o r i g i n o f volcanismin the Taupo Volcanic Zone, New Zealand.Vol can ol o,st,52 445-455.

ELLIS. A.J. & MAHON, W. A. J. (1967):Natural hydrothermal systems and erperirncntal hotwater/rockinteractions(ll\. Geoch i m. (-ot ntoch rm. A c t a3 1 . 5| 9 - 5 3 8 .

C O M S ' I I ,M . E . C . , V I L L O N E S ,R . I . J R . .D E J E S U S . C . V . , N A I ' I V I D A D , A . R . , R O L I , A N ,L . A . & D I . J R O Y ,A . C . ( 1 9 9 0 ) : M i n e r a l i z a t i o ni n t h e , h i l i p p i n e sf l:u i d K e l l y g o l d m i n e ,B a g u i od i s t r i c t P i n c l u s i o n a n d w a l l r o c k a l t e r a t i o ns t u d i e s . . , / . Geochem.Explor. 35 341-362. C O N R A D , M . E , , P E T E R S E N ,U . & O ' N E I L , J . R . (1992): Evolutionof an Au-Ag-producinghydrothermal system: The Tayoltita mine, Durango, M e x i c o . E c o n .G e o l .8 7 . 1 4 5 1 - 1 4 1 4 . C O O K E , D . R . & B L O O M , M . S . ( 1 9 9 0 ) :E p i t h e r m a l and subjaccntporphyry mineralization,Acupan, B a g u i od i s t r i c t ,P h i l i p p i n e sa: f l u i d i n c l u s i o na n d parageneticstudy. ./. Ger.tchent. Explor. 35, 297340. C R A I G , F l . ( 1 9 6 3 ) :T h e i s o t o p eg e o c h e m i s t royf r v a t e r and carbon in geothermal areas. /n Nuclear Geologyon GeothermalAreas(E. Toneiorgi,ed.). S p o l e t ol.t a l y , l 7 - 5 3 . 'He a n dm a n t l e C R A I G , I I . & L U P T O N ,J . E .( 1 9 8 1 ) : volatilesin the oceanand the oceancrust.In The S e a( C . E m i l i a n i ,e d . ) ;7 , 3 9 1 - 4 2 8 . '|AYLOR, H . P . ( 1 9 8 6 ) :M e t e o r i c C R I S S ,R . E . & lrydrothermalsystems.Reviewslllineral. l6 373424. D E L F I N , F . J . ,J I T . S , U S S M A N ,D . , R U A Y A , R . G . & of the REYES, A. G. (1992): Hazardassessment system:clues prior Pinatubovolcanic-geothermal to the June 15, 199I eruption. Geotherm.Res. CottncilTruns.16,519-521. , . N. (1993): The EATON, P. C. & SE'f'fERFIELDT relationship between epithermal and potphyry hydrothermalsystemswithin the Tavua Caldera, F i j i . E c o n .G e o l .8 8 , 1 0 5 - l - 1 0 8 3 . E L L I S , A . J . ( 1 9 7 9 ) :E x p l o r e dg e o t h e r m asl y s t e m s..I n Geochemistryof HydrothermalOre Deposits,2nd e d .( H . L . B a r n e se, d . ) ,6 3 2 - 6 8 3 .

IrlELD, C. W. & FIFAREK,R. H. (1985):Lrght stable-isotopesystematics in the eptthermal environment.ReviewsEcon.Geol. 2.99-l)8. : o n c e p t u anl r o d e l so f b r i n e F O U R N I E R ,R . O . q 1 9 8 7 )C evolutionin magmatichydrothermalsysten;:;. I-,1S Geol.Sun. Prof Paper 1350. 1487-1506 F R I E D M A N , I . & O ' N E I I - ,J . R . ( 1 9 7 7 ) :C o m p i l a t i o n of stable isotope fractionation lactors of geochemical interest. U.S. Geol. Surv. Pro/. [)aper 440-KK. G E M M E L L , J . B . , S I M M O N S ,S . F . & Z A N I ' O P , H . ( 1 9 8 8 ) : l ' h e S a n t o N i f l o s i l v e r - l e a d - z i nrcei n , Fresnillo district, Zacalecas,Mexico: l)afl l. Structure,vein stratigraphyand mineralogy.Ecor. Geol.83,Ls97-l6l8. GERLING, E. K.. MAMYRIN. B. A. & TOLSTIKHIN,L N. (1971): Helium isotope compositionin some rocks. Geochem.Inlernat. 8, 755-761. G I G G E N B A C F I ,W . F . ( 1 9 8 1 ) : G e o t h e r m a lm i n e r a i equilibria. Geochim. Cosmochim.Acta 15, 3934t0. G I G G E N B A C H ,W . F . ( 1 9 8 4 ) :M a s st r a n s l e ri n h i d r o thermal alteration systems - A conccptual approach.Geochim. Cosmochim..lcta 48, 2693-

27n. GIGGENBACH, W.F. (1986): The use of gas chemistry in delineating the origin of fluids dischargedover the Taupo Volcanic Zone.. [n ProceedingsSymposium V., Internat. VolcanofogicalCongress,Auckland,New Zealand, 47 -50. GIGGENBACH, W.F. (1987): Redox processes governing the chemistry of fumarolic gas dischargesfrom White Island, New Z.ealand. AppliedGeochem.2, 143-161.

S.F. Simmons

G I G G E N B A C H , W . F . ( 1 9 8 8 ) : G e o t h e r m a lsolute equilibria: Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim.Acta 52, 2',7492 76 5 .

HEDENQUIST, J. W. (1986): Geothermalsystemsin the TaupoVolcanicZone:their characteristics and refation to volcanism and mineralisation. Bull. RoyalSoc.New Zealand23,134-168.

G I G G E N B A C H , W . F . ( 1 9 8 9 ) : P r o c e s s ecso n t r o l l i n g CO, and Cl contents of thermal dischargesfrom the Taupo-Rotorua volcanic-magmatic hydrothermal system, New Zealand. In \Nater-Rock Interaction WRI-6 (D.L Miles, ed.). Balkema, Rotterdam,259-262.

H E D E N Q U T S T J, . W . & B R O W N E , P . R . L . ( 1 9 8 9 ) : The evolutionof the Waiotapugeothermalsystem, New Zealand,basedon the chemicaland isotopic composition of its fluids, minerals and rocks. Geochim. Cosmochim. Acta 53. 2235-2251

cIGGENBACH, W.F. (1992a): The compositionof gases in geothermaland volcanic systemsas a function of tectonic setting. In Water-Rock InteractionWRI-7. Balkema.Rotterdam.873-878. GIGGENBACH, W.F. (1992b): Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their o r i g i n .E a r t h P l a n e t .S c i .L e t t . l l 3 , 4 9 5 - 5 1 0 . G I G G E N B A C H , W . F . ( 1 9 9 3 ) :R e p l y t o c o m m e n tb y "Andesitic water": a phantom of P. Blattner: isotopic evolution of water-silicate systems.Earth Planet.Sci.Lett. 120,519-522. GIGGENBACH, W.F. (1995): Variations in the chemical and isotopic composition of fluids dischargedfrom the Taupo Volcanic Zone, New Zealand, J. Volcanol. Geotherm. Research (accepted). GTGGENBACH,W.F. & POREDA, R.J. (1993): Helium isotopic and chemical composition of systemsin the gasesfrom volcanic-hydrothermal Philippines.Geothermics22, 369-380. GIGGENBACH, W.F., SANO, Y. & WAKITA, H. (1994): Isotopiccompositionof helium and COt and CHo contents in gases producedalong the New Zealandpart of a convergentplateboundary. Geochim.Cosmochim.Acta 57,3427 -3455.

H E D E N Q U I S T ,J . W . , G O F F , F . , P H T L L T P SF, . M . , ELMORE, D. & STEWART, M.K. (1990): Groundwaterdilution and residencetimes, and constraintson chloride source in the Mokai geothermalsystem,New Zealand,from chemical, '"Cl data. Geophys. stable isotope, tritium and Research95, 19365-1937 5. HEDENQUIST,J.w. & HENLEY, R.w. (1985a): Hydrothermal eruptions in the Waiotapu geothermalsystem,New Zealand: Their origin, brecciasand relationto preciousmetal associated deposition.Econ.Geol.80, 1640-I 668. : he H E D E N Q U I S T J, . w . & H E N L E Y , R . W . ( 1 9 8 5 b ) T effect of CO, on freezing point depression measurements of fluid inclusions:Evidencefrom active systems and application to epithermal studies.Econ.Geol.80, 1379-1406. H E D E N Q U I S T J, . W . ,R E Y E S ,A . , S I M M O N S ,S . F .& TAGUCHI, S. (1992): The thermal and geochemicalstructureof the epithermalenvironment: A frameworkfor interpretingfluid inclusiondata. Eur. .1.Mineral. 4, 989-1015. H E D E N Q U T S TJ,. W . & L O W E N S T E R N ,J . B . ( 1 9 9 a ) : The role of magmas in the formation of hydrothermalore deposits.Nature 370, 519-527. HENLEY, R. W. (1985): The geothermalframework for epithermalsystems.ReviewsEcon. Geol. 2, l1 A

GTGGENBACH, W.F. & STEWART, M.K. (1982): controllingthe isotopiccompositionof Processes steam and water dischargesfrom steamvents and steam-heated pools in geothermal areas. G e o t h e r m i clsl , 7 l - 8 0 .

H E N L E Y , R . W . & E L L I S , A . J . ( 1 9 8 3 ) :G e o t h e r m a l systems,ancient and modem. Earth Sci. Reviews

HEALD, P., FOLEY, N.K. & HAYBA, D.O. (1987): Comparative anatomy of volcanic hosted epithermaldeposits:acid-sulfateand adularia-sericite tvoes.Econ. Geol. 82 l-26.

HENLEY, R.W., TRUESDELL, A,H., BARTON, P.B., JR. & WHITNEY, J.A. (198a): Fluid* Mineral Equilibria in Hydrothermal Systems. ReviewsEcon.Geol. 1.267 o.

r 9 ,t - 5 0 .

Low-sulJidati on Ep i t herm a I Deposi ts

HILTON, D.R., HAMMERSCHMIDT, K., TEUFEL, S . & F R I E D R I C H S E NH , . ( 1 9 9 3 ) :H e l i u mi s o t o p e characteristicsof Andean geothermal fluids and lavas. Earth Planet. Sci.Lett. 120.265-282. HTLTON, D.R & HEDENQUTST,J.W. (1936): Introductionto the geochemistryof active and fossil geothermalsystems.1r Monograph Series on Mineral Deposits26, GebriiderBorntraeger. ]ZAWA, E., URASHIMA, Y., IBARAKI, K., SUZUKI, R., YOKOYAMA, T., KAWASAKI, K., KOGA, A. & TAGUCHI, S. (1991): The Hishikari gold deposit: high grade epithermal veins in Quaternaryvolcanicsof southernKyushu, Japan..l.Geochem.Explor. 36, l-56. KRUPP, R. E. & SEWARD, T. M. (1987): The Rotokawa geothermalsystem,New Zealand: an active epithermal gold-depositingenvironment. Econ. Geol. 82, 1 109-1129. K U R Z , M . D . ( 1 9 8 6 ) : C o s m o g e n i ch e l i u m i n a terrestrialrock. Ilature 320, 435-439. KWAK, T. A. P. (1990):Geochemicaland temperature controlson ore mineralizationat the Emperorgold mine, Vatukoula, Fiji. .J. Geochem. Explor. 36, 297-338. LARSEN, G., GRONVOLD, K. & THORARINSSON, S. (1979): Volcaniceruptionthrougha geothermal bore hole at Ndmalall, Iceland.Nature 278,701710. LANG, 8., STEINITZ, G., SAWKINS, F. J. & S I M M O N S , S . F . ( 1 9 8 8 ) :K - A r a g e s t u d i e si n t h e Fresnillo silver district. Zacatecas.Mexico. Econ. Geol.83,1642-1646. LUPTON, J. E. (1983): Terrestrialinert gases:isorope tracerstudiesand cluesto primordialcomponents in the mantle.Ann. ReviewsEarth Sci. ll. 3714t4. M A C D O N A L D , A . J . ,K R E C Z M E R ,M . J . & K E S L E R . S.E. ( 1986): Vein, manto and chimney mineralization at the Fresnillo silver-lead-zinc m i n e ,M e x i c o .C a n .J , E a r t h S c i .2 3 , 1 6 0 3 - 1 6 1 4 . M A M Y R I N , B . A . , A N U F R I E V , G . S . ,K A M E N S K I I , I . L . & T O L S T I K H I N , I . N . ( 1 9 6 9 ) :D e t e r m i n a r i o n of the isotopic composition of atmospheric

helium. Geochem.Internat. 7 , 4gg-505. M A T S U H I S A , Y . & A O K I , M . ( 1 9 9 4 ) :T e m p e r a r u r e and oxygen isotopevariationsduring formation of the Hishikari epithermal gold-silver veins, southern Kyushu, Japan.Econ. Geol. 89, l60g1613. M A T S U H I S A ,Y . , G O L D S M I T H ,J . R .& C L A Y T O N . R.N. (1979): Oxygen isotopefractionationin the system quartz- albite - anorthite-water.Geochim. Cosmochim. Acta 43, 1131-l 140. M I T C H E L L , A . H . c . & L E A C H , T . M . ( 1 9 9 1 ) :E p t thermal Gold in the Philippines; lsland Arc Metallogenesis,Geothermal Systemsand Geology. AcademicPress,London,457p. M O R R I S O N ,P . & P I N E ,J . ( 1 9 5 5 ) :R a d i o g e n i o c rigin of the helium isotopes in rock. New york Acad. Sci.Annals 62,11-92. N O R M A N , D . l . & M U S G R A V E ,J . A . ( 1 9 9 4 ) :N , - A r He compositionsin fluid inclusions:Indicatorsof fluid source. Geochim. Cosmochim. Acta 58. lll9-ll3l. O H M O T O , H . & R Y E , R . O . ( 1 9 7 4 ) : H y d r o g e na n d oxygen isotopiccompositionsof fluid inclusions in the Kuroko deposits, Japan.Econ. Geol. 69, 947-953. O'NEIL, J.R. & SILBERMAN, M.L. (1974):Stable isotope relations in epithermalAu-Ag deposits. Econ. Geol. 69, 902-909. ROEDDER, E., editor (1984): FIuid Inctusions. ReviewsMineral. 12,644 p. R U V A L C A B A - R U I Z ,D . & T H O M P S O N ,T . ( I 9 8 8 ) : Ore deposits at the Fresnillo mine, Zacatecas, Mexico.Econ.Geol.83, 1583-1596. RYE, R. O. (1966):The carbon,hydrogenand oxygen isotope compositionof the hydrothermalfluids responsible for the lead-zinc deposits at Providencia,Zacatecas,Mexico. Econ. Geol. 61, 1399-1427. S A N O ,y . , N A K A M U R A , y . & W A K I T A , H . ( t 9 8 5 ) : Areal distributionof tH"/oH. ratios in the Tohoku District,northeastern Japan.Chem.Geol.52, l-8. SANO, Y., WAKITA, H. & GIGGENBACH. W.

r S.F. Simmons

( 1987): Island arc tectonics of New Zealand manifested in helium isotope ratios. Geochim Actu. 51, I 855-l 860' Cosmctchim. SAWKINS, F. J. (1964): Lead-zincore depositionin light of fluid inclusion studies, Providencia' Zacatecas.Econ. C eol. 59, 883-9I 9. S A W K I N S , F . J , O ' N E I L , J . R . & T H O M P S O N 'J . M . (1979):Fluid inclusionand geochemicalstudiesof v e i n g o l d d e p o s i t s ,B a g u i o d i s t r i c t ,P h i l i p p i n e s . Econ.Geol. 74. | 420-1434. S E A L . R . R . t l & R Y E , R . O . ( 1 9 9 2 ) : S t a b l ei s o t o p e study of water-rock interactionand ore formation, Bayhorsebaseand preciousmetal district,Idaho' E c o n G e o l .8 7. 2 1 1 - 2 8 1. & MUSSET, A.E. SETTERFIELD, T.N., and (1992): Magmatism R.D.J. OGLETHORPE, associated hydrothermal activity during the aoAr-3eAr dating evolution of the Tavua Caldera: events' hydrothermal and intrusive of volcanic, E c o n .G e o l . 8 7 .I 1 3 0 - l1 4 0 ' S E W A R D , T . M . ( 1 9 7 3 ) :T h i o c o m p l e x e so f g o l d a n d the transporlof gold in hydrothermalore solutions' (leochirn.Cosmctchim. Acta 31,319-399' S T I E P P A R DS, . M . ,N I E L S E N ,R . L . & T A Y L O R ' H . P . (1969): Hydrogen and oxygen isotope ratios in minerals fiom porphyry copper deposits.Ecor' G , ' t t l .6 4 . 5 l 5 - 5 4 2 . S I L L I T O E . R . H . & G A P P E , I . M . ( 1 9 8 4 ) :P h i l i p p i n e porphyry copper deposits:geologic setting and characteristics.Committeefor Co-ordination ctl ,loint Prospectingfor Mineral Restturcesin Asian Olfshore Arects(CCOP) Tech Pub. 14, Bangkok, 89 p. Naturc of SIMMONS, S.F. (1986): Physico-Chemical lVifio Santo lhe Minerulizing Solutions Jbr the Hydrogen, l/ein; Resultsfrom Fluid Inclusion, Oxygen and Helium Studies in the Fresnillo District.Zrtctttecas,Mexico. Ph.D. thesis Univ' Minnesota,Minneapolis,Minnesota. S I M M O N S , S . F . ( 1 9 9 1 ) : H y d r o l o g i ci m p l i c a t i o n so f alteration and fluid inclusion studies in the Fresnillo district, Mexico: Evidencefor a brine reservoirand a descendingwater table during the fbrmation of hydrothermalAg-Pb-Zn orebodies'

416

E c o n .G e o l .8 6 , 1 5 7 9 - 1 6 10 . P.R.L.B. &. S.F., BROWNE, SIMMONS, (1992): Active and extinct R.L. BRATHWAITE, New North lsland, the of systems hydrothermal l2l Series, Field Guide Geol. Econ. Zealand.Soc. p. s t M M o N S , S . F & C H R I S T E N S O N ,B . W . ( 1 9 9 4 ) : Origins of calcitein a boiling geothermalsystem. Am. J. Sci.294. 361-400. S I M M O N S ,S . F ,G E M M E L L , J . B . & S A W K I N S , F . J . ( - l 9 3 8 ) : T h e S a n t o N i n o s i l v e r - l e a d - z i n vc e i n , Fresnillo,Mexico: Part ll. Physicaland chemical natureof ore-formingsolutions.Ecttn. Geol. 83, 1619-1641. SIMMONS, S.F, KEYWOOD, M., SCOTT, I].J. & K E A M , R . F . ( 1 9 9 3 ) : l r r e v e r s i b l ec h a n g eo f t h e Rotomahana-Waimangu hydrothermal system (New Zealand) as a consequenceof a volcanic eruption.Geolog,,2l , 643-646. S I M M O N S ,S . F ,S A W K I N S , F . J .& S H L T J I ' T E RD, . J . (1987): Mantle-derivedhelium in two hydrothermal ore deposits,Peru.Nuture 329, 429-432. S I M M O N S , S . F . , S C H L U T T E R ,D . J . & N I E R , A . O . ( 1 9 8 6 ) :C o s m o g e n i a c n d m a n t l eh e l i u m i n t h e S t . Niflo vein, a silver-bearingquartz vein in the Fresnillo District, Zacatecas,Mexico. EOS, T'rans. Am. Geophys.Union 67, 1268. S M I T H , D . M . , J R . ,A L B I N S O N , I . . A . & S A W K I N S , F . j . ( 1 9 8 2 ) :G e o l o g i ca n d f l u i d i n c l u s i o t sr t u d i e s of the Tayoltitasilver-goldvein deposit,Durango, Mexico.Econ.Geol.71, 1120-1145T A Y L O R , B . E . ( 1 9 3 6 ) : M a g m a t i cv o l a t i l e s :i s o t o p i c variationsof C, H. and S. ReviewsMineral. 16, t85-225. TAYLOR, B.E (1992): Degassing of tlrO fiom rhyolite magma during eruption and shallow intrusion, and the isotopic composition of magmaticwater in hydrothermalsystems.Geol' Surv. .lapan RePort279, 190-194. '*O/'uO e v i d e n c ef o r n t e t e o r i c T A Y L O R , H . P .( 1 9 7 3 ) : hydrothermalalterationand ore depositionin the Tonopah,Comstock Lode and Goldfield mining districts,Nevada.Econ.Geol. 68,747-164.

Low-sulfidationEpithermal Deposits

T O R G E R S E N ,T . & J E N K I N S , W . J . ( 1 9 8 2 ) :H e l i u m isotopes in geothermal systems: Iceland, the Geysers, Raft River, and Steamboat Springs. Geochim. Cosmochim. Acta 46. 7 39-748. T O R G E R S E N ,T . , L U P T O N , J . E . ,S H E P P A R D D , .S. & G I G G E N B A C H , W . F . ( 1 9 8 2 ) :H e l i u m i s o t o p e variations in the thermal areas of New Zealand. Volcanol.Geotherm.Research12 283-298. T R U E S D E L L ,A . H . , N A T H E N S O N ,M . & R Y E , R . O . (1977): The effects of subsurfaceboiling and dilution on the isotopic compositions of Yellowstone thermal waters..J. Geoohvs.Research 82.3694-3704. UEDA, A., KUBOTA, Y., KATOH, H., HATAKEYAMA, K. & MATUSBAYA, O. ( l99l ): Geochemical characteristics of the Sumikawa geothermal system, northeastJapan. Geochem. J. 25, 223-244. V I K R E , P . G . ( 1 9 8 9 ) : F l u i d - m i n e r a lr e l a t i o n si n r h e ComstockLode. Econ.Geol. 84. 1574-1613.

VIKRE, P.G , McKEE, E.H. & SILBERMAN, M.L. (1988):Chronologyof Miocenehydrothermaland igneous events in the western Virginia Range, Washoe, Storey, and Lyon counties, Nevada. Econ. Geol. 83. 864-874. VITYK, M.O., KROUSE, H.R. & SKAKUN. H.R. (1994): Fluid evolution and mineral formation in the Beregovogold - basemetal deposit,Transcarpathia,Ukraine.Econ.Geol.89, S4'l-565. WEISSBERG, B.G. (1969): Gold-silver ore-grade precipitatesfrom New Zealand thermal waters. E c o n .G e o l . 6 4 , 9 5 - 1 0 8 . W H I T E , N . C . & H E D E N Q U I S T ,J . W . ( 1 9 9 0 ) :E p i t h e r mal environmentsand styles of mineralization: variations and their causes,and guidelines for exploration.J. Geochem.Explor. 36,445-474. YOSHIDA, Y. ( I 99 I ): Geochemistry of rhe Nigorikawa geothermal system, southwest Hokkaido, Japan.Geochem.J. 25,203-222.

417

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF