M_2Y_Straight Line_Class Test - 6.docx
Short Description
Download M_2Y_Straight Line_Class Test - 6.docx...
Description
Vidyamandir Classes
Agawam Corporate Heights, 3rd Floor, Plot No. A - 7, Netaji S!hash Pla"e, Pitam Pra, #elhi - $$%%3& Phone' %$$-&())$$*%-*3. %$$-&())$$*%-*3. Fa+ ' )()))*(3
#ate '
0est 4 Straight /ines
A0HS
Name '
5at"h
MCQ with One Correct Option
1.
2.
If two vertice verticess of of an equila equilatera terall trian triangle gle have have integ integral ral coordi coordinat nates es then then the third third vert vertex ex will have have (a)
integral coordinates
(b)
coordinates which are rational
(c)
at least one coordinate irrational
(d)
coordinates which are irrational
If the line line segm segment ent joinin joining g (2,3) (2,3) and ( 1, 2) is divide divided d inte interna rnall! ll! in the ratio ratio 3 " # b! b! the line line x $ 2! % & then then & is #1
(
3)
31
'
'
'
'
(a) 3.
.
(c)
(d)
*he *he +ol +olar ar coor coordi dina nate tess of of the the vert vertic ices es of a tri trian angl glee are are ( , ) (3, (3, π-2) and (3 ,π-). *hen the triangle is (a)
#.
(b)
right angled
(b)
isosceles
(c )
equilateral
collinear
(d)
none of these
*he +oints ints (a, b $ c) , (b, c $ a) , (c, a$ b) are (a)
vertices of an equilateral triangle
(b)
(c)
conc!clic
(d)
none of these x ! + =1 a b *he *he inc incen entr tree of of the the tria triang ngle le form formed ed b! the the axe axess and and the the lin linee is
ab a + b +
a , b 2 2 (a)
ab
,
a + b + ab ab
(b)
ab a + b + a 2 + b 2
a , b 3 3 (c)
,
2 2 a + b + a + b ab
(d)
π .
In the
the coordinate coordinatess of / are ∆/0, the
( , ) / / % 2 ,
∠/0 %
3 and the middle +oint of /0 has the
coordinates (2 .) *he centroid of the triangle
1 , 2
3 2
(a) '.
( , 3
# + 3
3
1
(b)
3 1 , 3
(c)
(d)
none of these
*he coordi coordinat nates es of three three consec consecuti utive ve vertice verticess of of a +aralle +arallelog logram ram are (1 , 3), 3), (1,2) (1,2) and (2 , ) ) *he coordi coordinat nates es of the fourth vertex are (a)
( , #)
(b)
)Straight /ine 0est 0est 11 02
(# , )
(c )
( 2 , )
(d)
$
none of these
Vidyamandir Classes .
*he area of the +entagon whose vertices are (# , 1) (3 , ), ( , 1), (3 , 3) and (3 ,) is (a)
3 unit 2
(b)
)Straight /ine 0est 11 02
unit 2 (c)
12 unit2
(d)
none of these
)
Vidyamandir Classes .
+oint moves in the x! +lane such that the sum of the distances from two mutuall! +er+endicular liens is alwa!s equal to 3. *he area enclosed b! the locus of the +oint is. unit 2 unit 2 2 (a) 1 unit 2 (b) (c)
1.
(d)
none of these
4et % (1,2), / % (3 , #) and let 0 % (x , !) be a +oint such that (x 1) (x3)$ (!2) (! #) % If ar ( ∆/0) % 1 then maximum number of +ositions of 0 in the x! +lane is (a)
11.
12.
2
(b)
#
(c)
(d)
*he +oints (α, β), (γ ,δ) , (α ,δ) and ( γ , β)ta&en in order , where
none of these
α , β, γ , δ are different real numbers, are
(a)
collinear
(b)
vertices of a square
(c)
vertices of a rhombus
(d)
conc!clic
*he diagonals of a +arallelogram 5678 are along the lines x $ 3! % # and x 2! % '. *hen 5678 must be a
13.
(a)
rectangle
(b)
square
(c)
c!clic quadrilateral
(d)
rhombus
*he coordinates of the four vertices of a quadrilateral are (2 , #) (1 , 2) (1 , 2) and (2 , #) ta&en in order. *he equation of the line +assing through the vertex (1 , 2) and dividing the quadrilateral in two equals areas is (a)
1#.
x $ 1%
(b)
x$!%1
(c)
x ! $ 3 %
(d)
none of these
*he equation of the straight line which +asses through the +oint (# , 3) such that the +ortion of the line between the axes is divided internall! b! the +oint in the ratio " 3 is
1.
(a)
x2! $ %
(b)
x $2! % 2#
(c)
2x $ ! $ 3 %
(d)
none of these
*he equation of the straight line which bisects the interce+ts made b! the axes on the lines x $ ! % 2 and 2x $ 3! % is (a)
1.
2x % 3
(b)
! %1
(c)
2! % 3
(d)
x %1
*he equation of a straight line +assing through the +oint (2 , 3) and ma&ing interce+ts of equal length on the axes is (a)
1'.
2x $ ! $ 1%
(b)
x!%
(c)
*he foot of the +er+endicular on the line 3x $ ! %
x !$%
(d)
λ drawn from the origin is
none of these 0. If the line cuts the xaxis
and !axis at and / res+ectivel! then /0 " 0 is (a) 1.
1 "3
(b)
(c)
1"
(d)
"1
*he distance of the line 2x 3! % # form the +oint (1 , 1) in the direction of the line x $ ! % 1 is 1 2
(a) 1.
3"1
2
( 2 (b)
(c)
(d)
9one of these
*he four sides of a quadrilateral are given b! the equation x!(x 2) (! 3) % *he equation of the line +arallel to x #! % that divided the quadrilateral in two equal areas is (a)
x #! $ % (b)
)Straight /ine 0est 11 02
x #! %
(c)
#! % x $1
(d)
3
#! $ 1% x
Vidyamandir Classes 2.
*he coordinates of two consecutive vectors and / of a regular hexagon /0:;< are (1 , ) and (2 , ) res+ectivel!. *he equation of the diagonal 0; is
3x + ! = # (a) 21.
x + 3! = #
3! + # = (b)
x$
(c)
(d)
none of these
/0 is an isosceles triangle in which a is (1 , ), ∠ % 2π-3 / % c and / is along the xaxis If /0 3 %#
the equation of the line /0 is
3x + ! = 3
3! = 3 (a) 22.
23.
(b)
(c)
x$! %
(d)
none of these
*he gra+h of the function cos x . cos (x $ 2) cos 2 (x $ 1) is a (a)
straight line +assing through the +oint (, sin 21) with slo+e 2
(b)
straight lie +assing through the origin
(c)
+arabola with vertex (1 , sin 21)
(d)
straight line +assing through the +oint ( π-2, sin21) and +arallel to the xaxis.
If the +oints (2 ,) (1 , 1- √3) and (cos θ , sin θ) are collinear then the number of values of (a)
2#.
x $
3
(b)
1
(c)
2
(d)
θ ∈ = , 2π> is
infinite
*he limiting +osition of the +oint of intersection of the lines 3x$ #! % 1 and (1 $ c) x$ 3c 2! % 2 as c tends to 1 is (a)
2.
( , #)
(b)
( ,#)
(c)
(# ,)
(d)
none of these
*he coordinates of the +oint on the xaxis which is equidistant from the +oints (3 ,#) and (2 ,) are
# , ( (a) 2.
(2 ,)
(23 , )
(c)
(d)
none of these
(d)
none of these
*he distance between the lines 3x$ #! % and x $ ! $ 1 % is 3
33
33
1
1
(
(a) 2'.
(b)
(b)
(c)
If a vertex of an equilateral triangle is the origin and the side o++osite to it has the equation x $ ! % 1 then the coordinates of the triangle is
2 , 3
1 , 1 3 3 (a) 2.
2
3
2 , 2 3 3
(b)
(c)
(d)
none of these
*he equations of the three sides of a triangle are x % 2 , ! $ 1 % and x $ 2! % # the coordinates of the circumcentre of the triangle are (a)
2.
(# , )
(b)
(2 , 1)
(c)
( ,#)
(d)
none of these
4 is a variable line such that the algebraic sum of the distances of the +oints (1 , 1) (2 ,) and ( , 2) from the line is equal to ?ero. *he lien 4 will alwa!s +ass through (a)
3.
(1 , 1)
(b)
(2 , 1)
(c)
( 1 , 2)
(d)
none of these
/0 is an equilateral triangle such that the vertices / and 0 lie on two +arallel lines at a distance . If lies between the +arallel , lines at a distance # from one of them then the length of a side of the equilateral triangle is
)Straight /ine 0est 11 02
&
Vidyamandir Classes
(a)
(b)
)Straight /ine 0est 11 02
# '
3
3 (c)
(d)
(
none of these
Vidyamandir Classes +′
31.
are the +er+endicular from the origin u+on the lines xsec θ $ ! cosec
If + and
θ
% a and x cos θ ! sin
(d)
none of these
θ
% acos2θ res+ectivel! then # +
2
+ +′ 2 = a 2
+
(a) 32.
+ # +′ 2 = a 2
(b)
+
2
+ +′ 2 = a 2
(c)
4et the +er+endiculars form an! +oint on the line 2x $ 11! % u+on the lines 2#x$ '! % 2 and #x 3! % 2 +′
have the lengths + and
res+ectivel!, *hen + = +′
2 + = +′
(a) 33.
2
(b)
+ = 2 +′
(c)
(d)
none of these
If 5 (1 $ 1- √2, 2 $1-√2) be an! +oint on a line then the range of values of t for which the +oint 5 lies between the +arallel lines x $2! % 1 and 2x$ #! % 1 is
−
# 2 (
(d)
none of these
AaAB1
(d)
none of these
If the +oint (a , a) falls between the lines A x $ !A % 2 then (a)
##.
(b)
AaA%2
If (sin then
(b)
AaA%1
α , 1 √2) and / (1- √2 ,
cos
(c)
α) , π ≤ α ≤ π , are two +oints on the same side of the line x ! %
α belongs to the interval − π , π ∪ π 3π # #÷ # , #÷
− π , π # #÷
(a)
(b)
π , 3π # #÷ (c) #.
#.
(d)
*he straight lines 41 ≡ #x3! $ 2 % , 42 % 3x $#! # % and 4 3 ≡ x '! $ % (a)
form a right angled triangle
(b)
form a right angled isosceles triangle
(c)
are concurrent
(d)
none of these
*he equation of the bisector of the acute angle between the liens 2x! $ # % and x 2! % 1 is (a)
#'.
none of these
x$! $%
(b)
x! $1 %
(c)
xt %3
(d)
none of these
*he equation of bisector of that angle between the liens x$ ! % 3 and 2x ! % 2 which contains the +oint (1 ,1) is (a)
(√ 2√2) x $ (√ $ 2√2) ! % 3 √ 2√2
(b)
(√ $ 2√2) x $ ( √ √2) ! % 3 √ $ 2√2
(c)
3x % 1
x + 2y + 3 = 0
I
II
(d)
none of these
(0 , 0)
III
2x – 3y =1 IV
#.
*wo lines 2x 3! % 1 and x $ 2! $ 3 % divide the x! +lane in four com+artments
which are named as shown in the figure. 0onsider the locations of the +oints (2 , 1) (3 ,2) and (1 , 2) Ce get (a) (c) #.
∈ ID ( 1 , 2) ∈ II (2 , 1)
∈ III
(b)
(3 , 2)
(d)
none of these
If the lines ! x % , 3x $ #! % 1 and ! % mx $ 3 are concurrent then the value of m is 1 ( ( (a)
1 (b)
)Straight /ine 0est 11 02
1
(c)
(d)
none of these
Vidyamandir Classes .
If the +oint (cos θ , sin
θ) does not fall in that angle between the liens ! % Ax 1A in which the origin lines
then θ belongs to
π , 3π 2 2÷ (a) 1.
− π , π 2 2÷ (b)
(c)
( , π)
(d)
none of these
x $ ! %1
(d)
none of these
*he +oints (1 , 1) and (1 , 1 ) are s!mmetrical about the line (a)
!$x%
(b)
)Straight /ine 0est 11 02
!%x
(c)
*
Vidyamandir Classes 2.
*he equation of the line segment / is ! % x . If and / lie on the same side of the line mirror 2x! %1 , the image of / has the equation. (a)
x $ ! %2
(b)
x $ ! %
(c)
'x ! %
(d)
none of these
3.
4et 5 % (1, 1) and 6 % (3 , 2) *he +oint 7 on the xaxis such that 57 $ 76 is the minimum is ( , 1 , 3 ÷ 3 ÷ (a) (b) (c) (3 , ) (d) none of these
#.
If a ra! travelling along the line x % 1 gets reflected from the line x $ ! % 1 then the equation of the line along which the reflected ra! travels is (a)
!%
(b)
x!%1
(c)
x%
(d)
none of these
3 2
.
*he +oint 5 (2, 1) is shifted b!
+arallel to the line x$ ! % 1, in the direction of increasing ordinate to
reach 6. *he image of 6 b! the line x $ ! %1 is (a) .
(, 2)
(b)
(1 ,#)
(3 , #)
(d)
4et % (1 , ) and / % (2 , 1) *he line / turns about through an angle /′ /′ new +osition of / is *hen has the coordinate
3+ 2
3
,
− 1 ÷ 2 ÷
3− 2
3
(a)
3
,
(3 , 2)
π- in the cloc&wise sense and the + 1 ÷ 2 ÷
3
(b)
1− 2
3 1 + 3 , ÷ 2 ÷
(c) '.
(c)
(d)
none of these
line has interce+ts a , b on the coordinate axes. If the axes are rotated about the origin through an angle
α
then the line has interce+ts + , q on the new +osition of the axes res+ectivel! *hen 1 1 1 1 1 1 1 1 p 2
+
q2
=
a2
+
b2
p 2
(a)
q2
=
a2
−
b2
(b) 1 p
2
+
1 a
2
=
1 q
2
+
1 b2
(c) .
−
(d)
none of these
*wo +oints and / move on the xaxis and the !axis res+ectivel! such that the distance between the two +oints is alwa!s the same. *he locus of the middle +oint of / is (a)
.
a straight line
(b)
a +air of straight line
(c)
a circle
(d)
none of these
*hree vertices of a quadrilateral in order are (, 1) , (', 2) and (1 ,) if the area of the quadrilateral is # unit
2
then the locus of the fourth vertex has the equation.
.
(a)
x '! % 1
(b)
x '! $ 1 %
(c)
(x '!) 2 $1#(x '!)1 %
(d)
none of these
variable line through the +oint (a, b) cuts the axes of reference at and / res+ectivel! *he lines through and / +arallel to the !axis and the xaxis res+ectivel! meet at 5. *hen the locus of 5 has the equation
)Straight /ine 0est
$% 11 02
Vidyamandir Classes x a (a)
y
x
b
b
+ =1 (b)
y
a
a
x
+ =1
b
b
y
x
+ =1
(c)
)Straight /ine 0est
(d)
$$ 11 02
a
+ =1 y
Vidyamandir Classes )Straight /ine 0est Answers 1.
(c)
2.
(a)
3.
(c)
#.
(b)
.
(d)
.
(b)
'.
(b)
.
(a)
.
(a)
1.
(b)
11.
(d)
12.
(d)
13.
(c)
1#.
(a)
1.
(b)
1.
(c)
1'.
(d)
1.
(a)
1.
(a)
2.
(c)
21.
(a)
22.
(d)
23.
(b)
2#.
(a)
2.
(d)
2.
(b)
2'.
(a)
2.
(a)
2.
(a)
3.
(c)
31.
(a)
32.
(b)
33.
(a)
3#.
(d)
3.
(a)
3.
(b)
3'.
(c)
3.
(a)
3.
(c)
#.
(a)
#1.
(b)
#2.
(a)
#3.
(c)
##.
(a)
#.
(c)
#.
(b)
#'.
(a)
#.
(a)
#.
(c)
.
(b)
1.
(b)
2.
(c)
3.
(a)
#.
(a)
.
(d)
.
(a)
'.
(a)
.
(c)
.
(c)
.
(c)
)Straight /ine 0est
$) 11 02
View more...
Comments