ltam formula sheet.pdf

July 28, 2019 | Author: bemiphucro | Category: Probability Theory, Statistics, Analysis, Statistical Theory, Mathematical Analysis
Share Embed Donate


Short Description

Download ltam formula sheet.pdf...

Description

Exam LTAM Updated 9/10/2018

Adapt to Your Exam SURVIVAL DISTRIBUTIONS SURVIVAL DISTRIBUTIONS Probability Functions Survival Function : future lifetime or time-to-death of  Probability that  survives years

d

( ) # () = ( )   # == PrPrP r#  >> + |  >   = /(/+ ) ) / # ()( ) /() #(0∞) = =10 ##() ( )  6# = == PrP r(()# > ) # ()  6#  = == Pr (()# ≤ )  # 6# + 6 #  = 1 ( )  |6#  = and dies within the following  years == # −⋅ 6#K = K6 ## −K6## ( ) # # =  ⌊#⌋ Pr# =  = Q# ∙ #KQ  = Q|#   6#  = #K6 #   −  6#  = 6# # = # # #K6  = #K − #KK6 |6#  = 6 #K # #  6#  #K6 ( )     # #K6  = #() = − 6# = − #K6  #() = #() ⋅ #K6 = 6# ⋅ #K6 W# W W# = expZ−[/ #K6  \ = expZ−[ pZ−[##KW] \  must satisfy:

d

Actuarial Notations  Probability that

 survives

 Probability that



 Probability that

 survives

Force of Mortality

Finding



 Using Force of Mortality d

d

Properties of Force of Mortality •

  ≥ 0 ∫/#K6#K6  = ∞ ∗#K6∗ = #K6 +  ⇒ W∗#∗ = W# ∙Q QW #K6 =  ∙ #K6 ⇒ W# =  W# ∞



d

Adding/Multiplying a Constant • •

www.coachingactuaries.com

 prior

# = #  = [/j ⋅ 6 ##K6  = [/j 6#  # = [/j ⋅ 6##K6  = [/j2 ⋅ 6 #   #  = # − q# d

d

Second Moment

d



d

Variance



Curtate Expectation First Moment •

j

j



Q/

Qu

Second Moment

j

j

# =   ⋅ Q|# = (2 − 1) Q# Q/ Qu  #  = # − (#) #:W|: = [/W ⋅ 6 # #K6  +  W# = [/W 6#  Wu W #:W|: =  ⋅ Q|# +  ⋅ W# =  Q# Q/ Qu #  # # ≈ # + 0.5 # = #:W|: + W# ⋅ #KW # = #:W|: + W# ⋅ #KW #:zKW|:  = #:z|: + z# ⋅ #Kz:W|: #:zKW|:  = #:z|: + z# ⋅ #Kz:W|: # = #(1 + #Ku) •

Variance

Temporary Expectation ∘

d

Relationship between

d



 and



Recursive Formulas ∘











Special Mortality Laws Constant Force of Mortality

# =  {6 6#  = 1  # =  #:W|: =  1 (1 −  {⋅W) # = (1 −  ) # =  −  ⇒ #K6  =  − (1 +  )   =  − −  ( + ) ) 6#  = #K6 #  −  ∘



Uniform Distribution

# = ( −  )} # =  −  ⇒ #K6  =  − ( +  ) } 6 # =  #K6# =  − − (− + ))Ä # =   +− 1 # =  # # > 1, > 0 exp Ñ− ln 6# = expÑ ln  (6 − 1)Ö # =  +  #  # > 1, 1, > 0, 0, ≥ − exp Ñ− ln 6# = expÑ ln  (6 − 1)Ö ⋅ exp(−) (0 ≤  < 1) #K6   == (1⋅ − ) ⋅ # +  ⋅ #Ku 6# # #K6  = 1 −# ⋅ #  # () = 6# ∙ #K6 = # (0 ≤  < 1)1) #K6   ==  ((# ))u66  ⋅ (#Ku)6 6#K6(#) = −ln( −#ln(#) {⋅6  #   = 6# ∙ #K6 =   ⋅  ∘

Gompertz’s Law

Makeham’s Law

# = # =  ⋅ Q|# =  Q#

years

Life Table





years

Curtate Future Lifetime : number of completed future years by to death

Beta Distribution



years

 dies within



Moments Complete Expectation First Moment



 is a non-increasing function of t 



d





   −   6#  = # # #K6 =  −     −   |6#  = #K # #KK6 =  −  # =   −2  : #:W| = W# () + W# q 2 

j   6#  = [6 .# ⋅ #K  6 6#  = [/ .# ⋅ #K  K6 |6#  = [ .# ⋅ #K 

Express ’s or ’s in terms of

Fractional Ages UDD Use linear  interpolation:  interpolation:

Constant Force of Mortality Use exponential  interpolation:  interpolation:

Select & Ultimate Mortality The age at which a person is selected  is  is denoted as .

 

#K6



Select mortality is written as  where  is the selected  age  age and  is the number of years after selection.



The mortality after the select period  is  is called the ultimate mortality , where:

#K6 = #K6

Common Approach Read from the left to the right and then continue downwards.

 # #Ku #K

#Kà

30 31 32 33

Copyright © 2018 Coaching Coaching Actuaries. Actuaries. All Rights Reserved. Reserved.

1

INSURANCE



Type of Insurance

Discrete

j

 #  = sQKu ⋅ Q|# Whole Life

Qt

Continuous

j    ̅#  = [ 6 ⋅ 6# #K6 d Discrete Term Life

 ANNUITIES

INSURANCE

 u#:W| =  # − W# ⋅ #KW Continuous

   ̅ u#∶W| =   ̅# − W# ⋅   ̅#KW

Constant Force

Uniform Distribution

   ̅#  =  +     ̅ #u:W| =  +  e1 − W# f

   ̅# =  êîd#| − u = êW|    ̅ #:W| −  − ( + ) W#  = d({Kï)W W#  = W ⋅  −  Calculate l   and l   ̅ similarly to   and   ̅, but with double the force of interest,  . Equivalently, replace   with  l , or replace   with 2 +  l . ] l #  − ( # )l l #:W|êêê − e #:W|êêêfl

Discrete

W| #  = #  − u#:W| = W# ⋅ #KW

Whole Life

W|   ̅#  =   ̅#  −   ̅#u∶W| = W# ⋅   ̅#KW

Endowment Insurance

Continuous Discrete

Pure Endowment

Endowment Insurance

 #:W|u = W#  = W W# Continuous N/A Discrete

 #:W| = u#:W| + W# Continuous

   ̅#:W| =   ̅ u#:W| + W# j

Varying Insurance

()#  = s( + 1) QKu ⋅ Q|# Qt (  ̅  ̅)#  = [j6 ⋅ 6##K6 d (  ̅  ̅) #u:W|êêê  = [W6 ⋅ 6# #K6 d (í   ̅) #uW:W|êêê = [ ( − )6 ⋅ 6# #K6 d u êê +() u êêê = ( () #:W|  #:W| +1) u#:W|

u êêê =  ⋅   ̅ u êêê (  ̅  ̅) #u:W|êêê + (í   ̅) #:W|  #:W|



Type of  Annuities

Due; Discrete

j

̈ #  = sQ ⋅ Q# Qt

Immediate; Discrete

Whole Life

#  = ̈ # − 1 Continuous

j

ê# = [ 6 ⋅ 6# d Due; Discrete

̈ #:W|êêê = ̈ # − W# ⋅ ̈ #KW

Variances

Discrete

Deferred Whole Life

ANNUITIES

   ̅ Recursive Formulas  u#  = # + # ⋅ #Ku u  #:W|êêê = # + # ⋅ #Ku:Wdu| êêêêêêê ()#  = # + # ( #Ku + ()#Ku ) 1/mthly Insurance #(z)  = 1 ⌊# ⌋ Prô#(z)  = ö = õ# ⋅ zu #Kõ  = õ | zu # j (z)  #  = s (QKu)/z ⋅ zQ  | zu # Qt () í Relationship between  ,   , and  (Under UDD Assumption)    ̅#  =   # u êêê =     u êêê    ̅ #:W|   #:W|   W|   ̅#  =  W|# u êêê +  êêêu    ̅#:W|êêê =    #:W|  #:W|  (z)  #  =  (z) # Replace  A with  for continuous cases.

Percentiles The 100 th percentile of  Z  is the value



°

Prô ≤ ° ö = 

#

Continuous

W|ê# = ê#  − ê#:W|êêê = W# ⋅ ê#KW êêêêêêê #:W|êêê = êW|êêê + W| ê# j (̈ )# = s ( + 1) Q ⋅ Q# Qtj (  ̅ê)# = [ 6 ⋅ 6# d ()#:W|êêê + ()#:W|êêê = ( + 1)#:W|Wêêê (  ̅ê)#:W|êêê = [ 6 ⋅ 6# d (íê)#:W|êêê = [W( − ) 6 6# d (  ̅ê)#:W|êêê + (íê)#:W|êêê = ê#:W|êêê

Certainand-Life

Varying Annuities

Uniform Distribution

Constant Force

To calculate : 1. Draw a graph with  Z  on  y -axis and  on x -axis. 2. Identify the parts of the c urve where . Determine the value of  that corresponds to those parts. 3. Use the value of  from Step 2 to calculate .

#

#:W|êêê = ̈ #:W|êêê −1 + W # Continuous ê#:W|êêê = ê# − W# ⋅ ê#KW Due; Discrete W|̈ # = ̈ #  − ̈ #:W|êêê = W# ⋅ ̈ #KW

Deferred Whole Life

°such that:

#

Immediate; Discrete

Temporary Life

 ≤ °

°

ê#  =  +1  ê#:W|êêê =  +1  e1 − W# f

Integrate directly, or use

   ̅# = 1 −ê# Integrate directly, or use   ̅#:W| = 1 − ê#:W| êêê

Variances

]

Discrete Whole Life Temporary Life

   ̅ 

l # − ( # )l l l #:W|êêê − e #:W|êêêfl l



Replace  A with  and  with  for continuous cases.

www.coachingactuaries.com

Copyright © 2018 Coaching Actuaries. All Rights Reserved.

2

PREMIUMS

Recursive Formula

̈# = 1+ # ⋅ ̈#K

Net Future Loss

Relationship between Insurances and Annuities Discrete

Temporary Life

Continuous

  ê#   # ̅=# =11−− (2 ) ê#   ̅  = 1 − ê     ̅ #:W|êêê#:W|ê =ê 1 − (2)#:W|êê ê#:W|êêê

Whole Life Temporary Life

 (z)#  = 1 − (z)̈#(z) ̈#(z)(z) = ()⋅̈# − () ̈#:W|êê = ()⋅ ̈#:W|êê − ()(1 − W#) W|̈#(z) = ()⋅ W|̈# − ()⋅ W# () = (z)(z) () = (z)− (z)(z) (z) z  (z) z UDD Assumption

Z1+  \ = Z1−  \ •



 are

ô /ö = # − ̈# ô /ö = ¨1 + ≠ ô # − ( #) ö ô /ö =  ̅# − ê# ô /ö = ¨1 + ≠ ô  ̅# − (  ̅#) ö ô /ö (= 0 ) ( ⇒  f.premiums (benefit)  =  f.benefits) ⇒ Net Premium = (annuity) ô /ö =  ⋅ (1# −− ( #)#) ô /ö =  ⋅ ( 1̅# −− (  ̅#  ̅)#) |í  ′ ′ /≤ =  (f.benefits) +  (f.expenses) − (f.gross premiums) ô /≤ ö (= 0 ⇒ =f.gross premi) u+ms) (f.expenses) (f.benefits Continuous

Add

 to

 and



If the question asks to use the Woolhouse’s formula with two terms, just drop the last ter m. If  is not available, approximate  as:

# 1 # # ≈ − 2 (ln# + ln#) ̈#(z):W|êê ≈ ̈#:W|êêê − 2− 1 1 − W#  − 1 − 12  ô# +  − W # (#KW  +  )ö # ≈ # + 12 − 121 # ° Prô  °ö =  ° #    ° # # ° If the interest rate is 0: ∘

 such as

To calculate : 1. Draw a graph with Y  on y -axis and  on x -axis. 2. Identify the parts of the c urve where . Determine the value of  that corresponds to those parts. 3. Use the value of  from Step 2 to calculate .

Gross Premium Reserve Prospective Method ben )

6 ≤=

  − õ ≠™´K −  − õ  + (¥ − õ)  ô /≤ ö = ¨ +  +  − õ ≠ ô # − ( # ) ö   |í  ′ [=] = +⋅ +[⋯+ ∂ ] [] =  ⋅ [] 1. Replace  and d  with their continuous counterparts for fully continuous policies. 2. Add  to  for endowment insurance. Portfolio Percentile Premium

Using the portfolio percentile premium principle, the premium is set such that t here is a specified probability ( x %) that the total loss is negative:

Pr[ < 0] = %    Prô /  °ö =  / ° ° # / /   ° # # °

Percentile of The 100pth percentile of

that

is the value

. To determine

6(f. .  + 6(f.  − 6 (f. . exp.)

pre )

Expense Reserve

= Gross Premium − Net Premium 6 º = 6  ≤ − 6  W 6 º = 6 (f. exp.) − 6 (f. exp. premium)

Expense Premium

Recursive Formula Net premium reserve •



 6 + (1 + ) = #K6  ⋅  + #K6 ⋅ 6K  6 ≤ +  − (1+ ) = #K6 ⋅ ( + )≤ + #K6 ⋅ 6K  6 = 6 ⋅ 6 + 6 − 6 − 6 + 6 − 6#K6 :  −  6 6KΩ  6 = ℎ :  −  6 6Ω  6 = ℎ 6    < )    + (1 + ) − #K6  ⋅  ⋅  6K = 6 #K6 6K =  6 + (1 − )+  ⋅ 6K  Gross premium reserve

Thiele’s Differential Equation d

d

Euler’s Method Forward Euler Approximation d •



d Backward Euler Approximation d d

For net premium reserve, drop expense-related terms and replace  with net premium. Interim Reserves ( • Exact value:

Variance For a fully discrete whole life policy:

/≤ = ¨ +  +

premiums)

 ̈ 6 = 1 − #̈ K6#    − # 6 = #K6 1 − #

 for endowment insurance.

Gross Premium

efits  − 6(f.

Special Formulas For a fully discrete whole life insurance policy:

Variance

Equivalence Principle

 − 1 ̈#(z)  ≈ ̈# − 2− 1 − 12  (# + )

www.coachingactuaries.com



Discrete

Woolhouse’s Formula ( 3 terms)

Percentiles The 100 pth percentile of Y   is the value that:



Fully Discrete



 are provided on

The values for  and  when also given in the LTAM Table.





= (1+ ) = (1− )

 and



/ =  Æ´ − êêêêê Æ´|    = ¨1 + ≠ Æ´ − 

Equivalence Principle

 ( )  ( ) () ()  = 0.05

The formulas for the LTAM Table.

/ =  ™´K − ̈êêêêêêêêê ™´K|    ™ K = ¨1 + ≠ ´  − 

6 = 6 (f.

Fully Continuous

Fully Continuous

 Annuities with mthly Payments

Note:

Fully Discrete

RESERVES

Net Premium Reserve Prospective Method ben )

/ = (f.benefits) − (f.premiums)

̈  #  = 1#  =− (12−  − #) ̈#   ê ê = 1 − ̈ ê ê    #:W|êê =#:W|1 − (2 − #:W|) ê  #:W|êê

Whole Life

RESERVES

PREMIUMS



Linear approximation:

Modified Reserve Full preliminary term (FPT): The policy is treated as if it were issued one year later, with the first year of the policy being treated as if it were a oneyear term insurance. • FPT net premium



1st year modified net premium =  #:|í Renewal modified net premium = ̈##KK  = 0 #¬√Æ 6 #¬√Æ = 6#K FPT reserve

 such

:

1. Graph on y -axis and  on x -axis. 2. Identify the parts of the c urve where . Determine the value of  that corresponds to those parts. 3. Use the value of  from Step 2 to calculate .

Copyright © 2018 Coaching Actuaries. All Rights Reserved.

3

MARKOV CHAINS MARKOV CHAINS

6#¥ƒ : 6#¥ :

MULTIPLE DECREMENT MODELS MODELS MULTIPLE DECREMENT

agei+ s )  ageage  age +  6 #(ƒ) = Q/6z Q#(Œ) #KQ(ƒ) = Q/6 Q|#(ƒ) 6#(Œ) = ƒ 6 #(ƒ) ¥6# = ∆−[/6 #K¥ƒ » ƒ«¥ (Œ) + 6#(Œ) = 1  6 # 6 6K ¥ ∙ = expZ−[/ #K \ ( ) (Œ)#KQ(ƒ) = 6#(Œ) #K6(ƒ) ƒ  =   6|  # Q # Q6 6 #¥ƒ = [/6 #¥ ⋅ #K¥ƒ ⋅ 6#Kƒƒ  (ƒ ) 6#(ƒ) = 6#(Œ#) W ( ) ( ) ( ) Œ Œ Œ       −  6 # # ( ) Œ # K6 ¥ ƒ Qƒ ¥ ƒ ƒQ ¥ Q   = = 6 # #(Œ) #(Œ)  6# = Q/Q«ƒ 6#  ⋅ #K6 − 6#  ⋅ #K6 =−Pr(Pr(StSatratrtinin,m,moveoveinoutto )of ) 6 #(Œ) = #(#(Œ)ŒK6) (ƒ) (ƒ) = (#K6Œ)  6|  # ¥ ƒ ¥ ƒ Qƒ W ¥ Q # 6KΩ¥ƒ# ≈ƒQ 6# + ℎ ∑Q/Q«ƒ 6#  ⋅ #K6 − 6#¥ƒ ⋅ #K6ℎ #¥ƒ  ≠  6 #(ƒ) = [z/6 #(Œ) #K(ƒ)  ⇒ #K6(ƒ) = 66#(Œ#(ƒ)) Ω# ≈ à 1 − ℎ#¥∙  =  #K6(Œ) = ƒ#K6(ƒ) 6 ( ) 6#(Œ) = 6 Z−[/ #K(Œ) \ ¥ ̅#ƒ = [/j ï6  6#¥Q ⋅ #K6Qƒ  (Œ) = [/ #(Œ) #K(Œ)   Q«ƒ 6 # j = [/ ï6 ⋅ Pr(sta)rt in ,move into d (Œ)  −  6#(Œ)  6 # ( Œ )  ⇒ #K66K= 6#(Œ) = 6#(Œ) 6|#(ƒ) = [6 #(Œ) #K(ƒ)  ê#¥ƒ = [j/jï6 6#¥ƒ  ̈#¥ƒ = Q/Q Q#¥ƒ z j QK(ƒ) (Œ)(ƒ) benefits = ƒ Q # #KQ Q/ j Q (Œ)   a nnui t y   =  Q/ Q # 6 (¥) = 6 6W(¥) − 6(¥) −ƒ/ƒ«¥ #K6¥ƒ6¥ƒ + 6(ƒ) − 6(¥) benefits = [/j6 6#(Œ)#K6(ƒ)  (ƒ)  (Under CF)  #   b enef i t s   = (Œ)  +  j  6 (¥) = 6(¥) −ℎ6Ω(¥) annuity = [/ 6 6#(Œ)     

probability someone in state at state  (where  may equal  at probability someone in state at remains in state  until

 in

Multiple Decrement Tables (MDT) Decrements are dependent on each other. Discrete Probabilities





Continuous Probabilities Direct Approach •

 exp

d

d

For permanent disability model: d



Life Table

Approximation Kolmogorov’s Forward Equations: d d

Euler’s Method: 1.

Continuous Probabilities

2.

d d

d

Premiums For an insurance on  currently in state i that pays $1 immediately upon every transition to state  j :

 exp

d

d

d

For an annuity on  currently in state i that pays $1 per year while the person is i n state  j : d

d d

 d d

d

Insurance Applications Consider a whole life policy:

Reserves Direct Approach Use prospective method. Approximation Thiele’s Differential Equation: d

Discrete





d

Continuous

d

Euler’s Method: d d

d

0 ≤  < 1) ##((ƒŒ)) ==  ⋅⋅ ##((ƒŒ)) ##((ƒŒ)) = ##((ƒŒ)) = ##((Œƒ)) (ƒ ) #(ƒ) = ##(Œ) “1 − #(Œ)”

Fractional Ages ( UDD in the multiple decrement table:

Constant forces of decrement:

 Associated Single Decrement Tables (ASDT) The associated single decrements are independent.

6#K(ƒ) \ Z−[ / ‘ (ƒ ) (ƒ) ⇒ 6#K6 = −  ln 6#  ‘(ƒ) 6#‘(ƒ) = [/ #‘(ƒ)#K(ƒ)  ⇒ #K6(ƒ) = 66#‘(#ƒ) 6#‘((Œƒ)) + z6#‘(ƒ) =‘(ƒ)1 6# = ’ƒ 6# 6#‘(ƒ) 6#(ƒ) 6÷ #((Œ)Œ) = ∏zƒ ∑z6#‘(ƒ) (ƒ) 6#(Œ) =+ 1 −(Œ) ƒ= 1 6# 6 # 6 #(fi) (#K6(ƒ)) = ‹‹‹°‹››´(´‡fl´()fi) ⎩ #K6ƒ = ‹‹°´‡(fi) 0 ≤‘(ƒ) < 1 (Œ) ›´((fifl)) # =  # ›´ 0 ≤  < 1‘() #() = #‘() Z − 2# \  #() = #‘() · − #‘()2 + #‘(à) + à#‘()3 ∙ #‘(à)„ ((fifl)) 0 ≤  < 1 › ´ #‘(ƒ) =  #(Œ)›´ 6#‘(ƒ) =

 exp

d

 d d

d d

d

Key Relationships between No Assumption

 

and



d d



d d

UDD in Multiple-Decrement Tables (UDDMDT) ( )

UDD in Associated Single Decrement Tables (UDDASDT)( ) For 2 decrements:

For 3 decrements:

CF in MDT or ASDT (

)

MULTIPLE LIVES MULTIPLE LIVES

6#]#] =+mi6n#]#=, ]1 |6#] == #] ⋅−6#K: ]K  #] K6 #] = K6#] − #] 6#] == 6# +⋅ 6] −  ⋅  6#K6:#]]K6 =6 ##K6 +6 ]]K6 6 # 6 ] Joint Life

Independent Lives

www.coachingactuaries.com

Copyright © 2018 Coaching Actuaries. All Rights Reserved.

4

Moments

j ∘#]  = [ 6#] d j  “#] ” = 2[  ⋅ 6 #] j

Contingent Probabilities

6



d

#]  =  Q#] Q

Last Survivor

#]êêêê  = max# ,]  6#] + 6 #] = 1 |6 #] = #] − K6 #] = K6#] − #] 6#] = 6 # ⋅ 6 ] 6#] = 6 # + 6 ] − 6 # ⋅ 6] #]() = 6 #  6#K6# +⋅ 66]] +− 66]# ⋅]K66⋅] 6 # Moments

j

∘ #]  = [ 6#] d j #]  =  Q #] Relationships between  Status

+1  6z(ƒ) + ℎ6(ƒ) (1 + )Ω ƒQ ℎ (Q) +  ƒQ +  (Q)  =  Ω #K6 6KΩ 6KΩ 6KΩ Q

If lump sum benefit is assumed to be paid in the middle of an interval:

 6z(ƒ) + ℎ6(ƒ) (1 + )Ω ƒQ ℎ (Q) +  ƒQ (1+ )Ω/ +  (Q)  =  Ω #K6 6KΩ 6KΩ 6KΩ

Relationships

Independent Lives

Q

 = [ #] ∙ #K  6#]  6 6#] = [  #] ∙ ]K  6  = [ # ∙ #K  ⋅ 1 −  ]  6#]  6 6#] = [  ] ∙]K  ⋅ 1−  # 

Reserve Recursion for Policies with Multiple States Assuming there are  states and cash flows are made every h years:

 + 6 #]  = 6 #] 6#]  + 6 #]  = 6 # 6#]  = 6 #] + 6 # ⋅ 6] 6#]  + 6 #]  = 6 #] 6#] #] + #]  = 1 #] + #] = 1 #] = #]



Q

 Activities of Daily Living (ADLs): Bathing •



















Contingent Insurance

j    ̅#] = [ 6 ⋅ 6#] ⋅ #K6 d j    ̅#] = [ 6 ⋅ 6# ⋅#K6 ⋅ 6] d Relationships

() Status and

( êêêê) #] + #]  = # + ] #] ⋅ #] = # ⋅ ] 6#] + 6 #] = 6 # + 6] ∘  + ∘  = ∘  + ∘ #] #] # ] ∘  + ∘  = ∘  + ∘ #]:W|êêê #]:W|êêê #:W|êêê ]:W|êêê #] + #]êêêê  = # + ]    ̅#] +   ̅#]  =   ̅# +   ̅] ê#] + ê#]  = ê# + ê] W#] + W#] = W # + W] Covariance of #]  and #] ∘ ∘ ∘ ∘ Cov#] ,#]  =  Cov# ,]  + #  − #] ]  − #]  Cov # ,]  = 0 if #  and ]  are independent Exactly One Life Survives

Pr(exactly one life survivies  years) = 6 #] − 6#] = 6 # + 6 ] − 2 ⋅ 6 #] Relationships between Insurance Policies,  Annuities, and Premiums

 #]  = 1 − ̈ #] ê#]êêêê =  1 −  ̅êêêê#] ̈ #]:W|êêê = ̈ #] − W#] ∙̈ #KW:]KW #]êêêê = ̈1êêêê#] −  #]  = 1−  ̅#  ]̅#]

Note: The list above is not exhaustive; similar relationships can be applied to other forms of insurance/annuities with appropriate adjustments.

www.coachingactuaries.com

Δ 6 = 6(1+ ) − #K6 6

Make payments to ( y ) after ( x ) has died:

ê#|]  = ê] − ê#]

Make payments only when exactly one life is alive:

(annuities) = ê#] − ê#]

LONG-TERM INSURANCE COVERAGE LONG-TERM INSURANCE COVERAGE Disability Income Insurance (DII) Continuous Sojourn Annuity The EPV of an n-year continuous sojourn annuity on ( x ) in state i that pays $1 per year continuously while the life remains in state i is:

¥¥ êêê = [ W 6 #¥¥  ï6 d ê#:W|  W

êêê = [ 6 # #K6  êêêêêêê ï6 d  ê#K6:W6| ê#:W|  With waiting period of w  years, the EPV is:

WÁ

 êêêêêêê − ê êêêê  ï6 d  qê#K6:W6| 6# #K6 #K6:Á|

With waiting period of w  years and benefit term of m years, the EPV is:

W(zKÁ)

Profit Vector

Pr = (Pr Pr Pr … PrW) Profit Signature Profit per policy issued

Π = Pr6 ⋅Prob“in force −at1 time Πin force at time 0” Profit signature: (Π Π Π … ΠW ) where Π  = Pr Π6  = Pr6  ⋅ 6 # ,  = 1,2,3,…,  Profit Measures NPV ∞

EPV of benefit of an n-year DII:

[

Profits for Traditional Products The profit per policy in force at time t is

Change in Reserve

Reversionary Annuities



PROFIT TESTS PROFIT TESTS

Pr6 =  6 + 6 − 6(1 + ) − #K66 − #K6 6

   ̅#] +   ̅#] =   ̅#]    ̅#] +   ̅#] =   ̅#]    ̅#] +   ̅#] =   ̅# •



Dressing Eating Toileting Continence Transferring

 êêêêêêêêê − ê#K6:Á|  êêêê ï6 d  qê#K6:zKÁ| [ 6 # #K6 WÁ  êêêêêêê − ê  êêêê ï6 d  qê#K6:W6| + [W(zKÁ) 6# #K6 #K6:Á|

NPV = Πƒ ⋅ õƒ ƒ where  = risk discount or hurdle rate Partial NPV

Q

NPV() = Πƒ ⋅ õƒ ƒ

IRR ∞

NPV = Πƒ ⋅ õƒ = 0 DPP

ƒ

DPP = min:NPV() > 0 Profit Margin NPV Profit margin = (f.premiums )

Copyright © 2018 Coaching Actuaries. All Rights Reserved.

5

Zeroized Reserves 1. Begin with the last year an d work backwards 2. Set the profit for the year to zero then solve for the beginning-of-year reserve 3. If the reserve is negative, set to zero and repeat this entire process again until time 0 Gain by Source Gain in the order of expenses, interest, a nd mortality (  actual): Expense: Interest :

 ′ = ‘6 − 6‘(1 + 6 ) + 6‘ − 6‘#K6 6 − 6 6‘ + 6 − 6  ‘ #K6 − #K6 6 + 6 − 6

Defined Contribution Pension Plans

 (pension fund) = (pension benefits) Annual Retirement Benefit =  ⋅ ¯˘˙ ⋅   = total number of years of service ¯˘˙ = final average salary  = accrual rate Defined Benefit Pension Plans where



§

Mortality :

Actual Profit Using the actual experience:

Actual Profit = 6‘ + 6 − 6‘(1+ 6‘)‘ ‘ −#K6(6 + 6 ) − #K6 ⋅ 6 Expected Profit Using the assumed experience:

Expected Profit = 6 + 6 − 6 (1+ 6) −#K6(6 + 6) − #K6 ⋅ 6 Total Gain = Actual Profit − Expected Profit = Gain from Expenses + Gain from Interest + Gain from Mortalities Total Gain

Two methods to calculate the amount of retirement benefit: PUC: projects salary to retirement or exit date TUC: calculates salary based on employee’s current age §







Early retirement

Annual Retirement Benefit =  ⋅ ¯˘˙ ⋅  ⋅(1 − pension reduction factor) Annual Retirement Benefit =  ⋅ ¯˘˙ ⋅  Annual Retirement Benefit =  ⋅ ¯˘˙ ⋅  ˝˛ˇ˘˝˛!˛˙ˇ "˛$˘ˇ%&˝"$"' "˛ ⋅ (1+ COLA) Withdrawal without COLA Withdrawal with COLA

Normal Contribution



Two methods of funding benefits: PUC and TUC



If there are no mid-year exits: §

PUC:

§

TUC:

6

6 )´*+

6

Retiree Health Benefits Benefit Premium Annuity for age  x  at time t 

Replacement Ratio

j , + )\ ̈,(,) = Q Q # Z( +(, )

=

Value of retiree health benefit at ret irement for a life retiring at age xr  in t  years: ,

salary in the year before retirement 

Salary Projection S : Salary s: Salary scale •







Q

 pension income in the year after retirement 

 ̅ ̅ ]K6 = ](1+ %)6 ] = # ⋅ ]#  ̅] =  #̅  ⋅ ̅̅]# ] = [ ̅]K6  = ̅  #̅# ⋅ [̅]K6  Rate of salary function to salary scale:  ] = [ ̅]K6  Salary scale to rate of salary function: ̅] ≈ ].ˆ : Rate of salary : Rate of salary function

Constant percentage of increase Salary Scale

Rate of salary

Relationships

d

6 + 6  = EPV(benefits for mid-year exits)+# 6K

If there are no mid-year exits:

6  = 6

SURVIVAL MODEL ESTIMATION SURVIVAL MODEL E STIMATION Kaplan-Meier and Nelson-Aalen Estimators Empirical Distribution

Pr(  = ) = # of data points =  W () = Pr(  ≤ ) = # of data points ≤  Var2 W() = Var2 W () = W () ⋅ 1− W () Kaplan-Meier Estimator

ƒ

3ƒ  = ’¨1 − ¥¥ ≠ ¥ 3 ℎ4ƒ  = 1 − 3ƒƒ

Tail Correction Efron’s tail correction: •

3() = 0 for  >  3() = 53(), 6  = (all accrued benefits at time  ) 0, forfor   +# 6K 6 + 6  = EPV ƒ  7ƒ  =  ¥¥ ¥87]  6 =  6 ⋅ 6 fi 3     =  ƒ 6K ) ´  = q ⋅ − 1 

Funding the Benefits Actuarial Liability

(benefits for mid-year exits)

MATHEMATICS PENSION PENSION MATHEMATICS Valuation of Benefits Motivations 1. Attract potential employees 2. Provide incentive for employees to stay 3. Facilitate turnover of older employees 4. Provide tax-friendly compensation 5. Pressure from trade unions 6. Reward employees who have contributed to the company’s success

Normal Cost



Klein and Moeschberger's tail correction:



Brown, Hollander, and Korwar’s tail correction:

Nelson-Aalen Estimator

Variance of Estimators Greenwood’s Approximation: •

Used for Kaplan-Meier •

(,)̈ (,)

When healthcare premiums increase exponentially with age and at a constant annual inflation rate where:

ƒ   Var2 ô3ƒ ö = ô3ƒ ö  ¥(¥ −¥ ¥ ) ¥ Klein’s Estimation:

ƒ

Var2 ô7ƒ ö =  ¥ (¥ −à ¥) ¥

¥

ƒ

Var2 ô3ƒ ö = ô3ƒ ö  ¥ (¥ −à ¥ ) ¥

¥

 = ( + 1,)⁄(,)   = Var2 ô3ƒ ö = ô3ƒ ö ⋅ Var2 ô7ƒ ö ( + , + ) = Q(1+ )Q(,) 1 +  ̈,(,) = ̈#õ|¥∗ where ∗ = (1 + ) − 1  /ˆ#6 =  #KQ# Q ( + , + )̈,( + , + ) Q /ˆ# =  (,)   #KQ# ¥Q∗̈#KQ|¥∗ Q Used for Nelson-Aalen

• •

 annual rate of inflation for healthcare costs

In general,

Actuarial Value of Total Health Benefit (AVTHB)

Actuarial Liability at time t, t V 

/ˆ#

  +   ∙ #KQ# Q ( + , + )̈,( + , + ) Q

www.coachingactuaries.com

Copyright © 2018 Coaching Actuaries. All Rights Reserved.

6

Confidence Interval Linear Confidence Interval for

 ( )

:

3() ± (uK°)/ : V2ar ô3()ö )u/;
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF