LOGARITHMS WHEN WE ARE GIVEN the base 2, for example, an exponent !, then "e #an e$al%ate 2 !& 2! ' (& In$ersel), *f "e are +*$en the base 2 an *ts po"er ( 2? ' ( then "hat *s the exponent exponent that that "*ll pro%#e ( That exponent exponent *s #alle a lo+ar*thm lo+ar*thm&& We #all the exponent exponent ! the thelo+ar*thm lo+ar*thm of ( "*th base 2& 2 & We "r*te ! ' lo+2(& We "r*te the base 2 as a s%bs#r*pt& ! *s the exponent to to "h*#h 2 m%st be ra*se to pro%#e (& A lo+ar*thm *s an exponent& S*n#e ./0 ' ./,/// then lo+././,/// ' 0& 1The lo+ar*thm of ./,/// "*th base ./ *s 0&1 0 *s the exponent to to "h*#h ./ m%st be ra*se to pro%#e ./,///& 1./0 ' ./,///1 *s #alle the exponent*al form& form& 1lo+././,/// ' 01 *s #alle the lo+ar*thm*# form& form& Here *s the en*t*on3 lo+b x x ' ' n means bn ' ' x x & That base "*th that exponent exponent pro%#es x pro%#es x & Example 1. Wr*te *n exponent*al form3 Answer&& 24 ' !2& Answer
lo+ 2!2 ' 4&
. .6
Example 2. Wr*te *n lo+ar*thm*# form3 0 52 ' Answer.
. .6
lo+0
&
' 52&
Problem 1. Wh*#h n%mbers ha$e ne+at*$e lo+ar*thmsTo see the answer, pass your mouse over the colored area. To cover the answer again, click "Refresh" ("Reload"). o the problem yourself !rst Proper fractions. Example 3. E$al%ate lo+(.& Answer& ( to "hat exponent pro%#es .- (/ ' .& lo+(. ' /& We #an obser$e that, *n an) base, the lo+ar*thm of . *s /& lo+b. ' / Example 4.
E$al%ate lo+44&
Answer& 4 "*th "hat exponent "*ll pro%#e 4- 4 . ' 4& Therefore, lo+44 ' .& In an) base, the lo+ar*thm of the base *tself *s .& lo+bb ' . Example 5 . lo+22m ' Answer& 2 ra*se to "hat exponent "*ll pro%#e 2m - m, ob$*o%sl)& lo+22m ' m& The follo"*n+ *s an *mportant formal r%le, $al* for an) base b3 lo+bb x ' x Th*s r%le embo*es the $er) mean*n+ of a lo+ar*thm& x on the r*+ht *s the exponent to "h*#h the base b m%st be ra*se to pro%#e b x & The r%le also sho"s that the exponent*al f%n#t*on b x *s the *n$erse of the f%n#t*on lo+b x & We "*ll see th*s *n the follo"*n+ Top*#& Example 6 . Answer. lo+!
Problem 2. Wr*te ea#h of the follo"*n+ *n lo+ar*thm*# form& To see the answer, pass your mouse over the colored area. To cover the answer again, click "Refresh" ("Reload"). a>
bn ' x
logb x n
b>
2! ' (
log28 3
#>
./2 ' .//
log1!1!! 2
>
452 ' .;24&
log51"25 #2.
Problem 3. Wr*te ea#h of the follo"*n+ *n exponent*al form& bn x
a> lo+b x ' n
82 64
#> 2 ' lo+(60
b> lo+2!2 ' 4
25 32
> lo+6.;!6 ' 52
652 ' 652 ' .;!6 .;!6
Problem 4. E$al%ate the follo"*n+& 4
a> lo+2.6
3
#> lo+4.24
> lo+(.
1
e> lo+((
2
b> lo+0.6
!
f> lo+./.
!
Problem 5. What n%mber *s n1!!!
a> lo+./n ' !
#> lo+2n ' /
e> lo+n
1 . .6
' 52
4
b> 4 ' lo+2n
32
> . ' lo+./n
1!
f> lo+n
. 4
' 5.
5
+> lo+2
. !2
' n
. 2
h> lo+2
#5
' n
#1
Problem 6. lo+bb x ' x Problem 7. E$al%ate the follo"*n+& . 7
a> lo+7
lo+775. ' 5.
b> lo+7
. (.
#2
#> lo+2
. 0
#2
> lo+2
. (
#3
e> lo+2
. .6
50
f> lo+./ &/.
#2
+> lo+./ &//.
#3
h> lo+6
1"3
*> lo+b
3"4
9ommon lo+ar*thms The s)stem of #ommon lo+ar*thms has ./ as *ts base& When the base *s not *n*#ate, lo+ .// ' 2 then the s)stem of #ommon lo+ar*thms base ./ *s *mpl*e& Here are the po"ers of ./ an the*r lo+ar*thms3 Powers of 1!$
. .///
. .//
%ogarit&ms$
5!
52
. ./
5.
.
./
.//
.///
/
.
2
!
./,///
0
Lo+ar*thms repla#e a +eometr*# ser*es "*th an ar*thmet*# ser*es& Problem 8. lo+ ./n ' -
n. '&e base is 1!.
Problem (. lo+ 4( ' .&?6!0&
Therefore, ./.&?6!0 ' -
58. 1.7634 is t&e common logarit&m of 58. )&en 1! is raise* to t&at exponent+ 58 is pro*,ce*. Problem 1!. lo+ ' .& What n%mber *s x -
log a 1+ implies a 1!. -ee abo/e.0 '&erefore+ log -log x 0 1 implies log x 1!. ince 1! is t&e base+ x 1!1! 1!+!!!+!!!+!!! Nat%ral lo+ar*thms The s)stem of nat%ral lo+ar*thms has the n%mber #alle e as *ts base&
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.