LOAD FLOW
Short Description
Download LOAD FLOW...
Description
c c
c
ô x
P
P
c
x c c c c c cc c c c c c c c ^ c c c c c c c ccc c c cc c ccc c c c c c cc cc c c c c cc c c c c c cc c c c c cc c c c c c c c c cc !c c ccc c c c" c #c c$ c c c c c c cc c c c c c c c c c c c À c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c
c cc cc ccc c c c " c c c c c c c cccc c c c c# c c cc cc cc c c$c c c#cc" c c c$ c c c c ccc c c c c c c c c c c$c c c c c c c cc cc c cc c cc c c c c cc c c c c % c c c ! c c $c $c &'('c c c c &')*+c c c $ cc c c,c c c c c c c c
[ -c 6c 6c 6c 6c
c
&c. c c $c c (c/0 cc c c. c c c ]c0 c
" c c c c c cccc$ cc c c c c c
c c $c c c c c c c c c c c c c c c &-c1c c c c c c c c c cc c $ c c c c c c c c c $c c c 2c c c c c c c $ c c c c c c$ c c c c c c c $c c " c c c c c c $c $c c c c c c c $cc cc" cc cc $c ccc cc c$cc $c c c ccccc c c3 c4c cc# c c$c c c cc ccccc c c5 c4c" c#ccc $ c$c c c c c" c$cc cc c c% c4c c c c c $ ccc c c c c c c c c c c c c 3 c4c cc c c c3 c4c c cc c.6c4c c5 c 4 c c c c c c c c cc c c c c77c cc c c% c4 ccc c c c c c77c c c cc cc " c c c3 c4 c$ c c c c c c cc cc$c c ,c c c5 c4 c c c cc$cc ,c c cc $c cc$cc c c% c4cc cc cc$c cc c c c c (c8c&c8cc8c&cc c ccc c c(c8c&c8cc8c&c c cc$c(c8c&c8cc8c&c9 c c c c c c c c $c " c $c 9 c c c c c $ c9 c c c$c c c c c c c c c$c" c c c $ c9 cc
c c c c c c c :c c $c c c c c c c c c c c cccccccccccccccccccc $c c #c ;4%c c c c c c c c c c c c c c c c c c c ;4%c c c c c c c c c c c c cc c cc c c c cccccc cA c Acc c c c c ccc! c c c c c cc c&*cc (c %c c c $ c 9 c c c c c c c c c c c 3 !c cc c cc c c c c c c ]c %c c c cc c c c c Bc c c c c c c )c c cc c cc c ccccc(c
c c c c c c 0 c c/C0 c c cc c c c c c c cc c c ^ c c c c /c c c 0 c c c c c c c $ c # c c c ! c c c c c c c " c c c c c c c cD +c cc$cD +c c ^ c 5c c c ´ c c c c ´c+ c c $c c c c c *c . c c
cc $c$ c c$ c # c &cc
c 5 c #&c c c cc c c c cc c c c c c c # #c " c cc cc c
c c cc c
c
[
c c 4 c c c c#Bc8c&cEc*,c c c c cc c > c c/c c c c c #c c /+c c c $c c c c c c ! c= c! c c c$ c c c cc c c c c c c c cc c c c c ! c " c c c $c c c c c c c c c #c c c$ c c c$ c c cc c ccc c c c c c c #c c c c c c c c c $ c c c c c ccc c
Ú Ú 1c cc/+c c cccc c c c9 c c c c c c ! c c c
$c c cc c ĺc c c c c c $ cc c cc cc c c c c c $ c $ c #c c c cc$c c+ c 0 c c c c c c c c # c c c c c $c c c c c c9 c c
c cc
@&c8c c
Ú Ú " c c/+c c c$ccccc c> c c9 c cc" ccc$c # c c! c cc
$c ccc c
ĺc c
c c c c $c c Fc 9 c c c $c c c 9 c c c c c c c $c c c cc9 cc c c # c c c c c c c c Fc 9 c c $c c $c c c !c c9 c c c c9 c $ c #c " c !c c9 c c #c c #cDcEcD"D&D"c c c cc c9 c c c c c c cc c$c # c c c! c c c c 3ccc9 c cc $ cccc cc c c9 cc c c #cc%c c c !c c9 c c c c #cc c c$c c c c c { " c cc ccc c> $c c c$ c c 5cc $c cc9 c c c c c# cc 5cFc9 c c c c c c9 c c c cc > $cc2 c
c ! cc/+c cc c c c c c cc cc c4 c cc c c c cc c c +c c c G c c c c c 1c c c G c c c $c $c $c c c c c c c c c c $c $c c c c #c c c cc c ccc$c c/CH c c c c c c c
/c cc c c P P c c
[
! " 6c c c c c 6c c c c c 6c c cc c c c
c
c
c
c
c
! ! # P " P " 6c c c c 6c c cc cc 6c c c! " c c c c c
c
c
c
c
P $ " 6c c#c cc 6c $ c c c c 6c c! c%& c c! c" c 6c ! cc" c c c c
c
c
m % c c c c c c c c c c c c ' c c c (c)c c c c cc c 'c c ccc ' cc *c ccc ccc ccc (c cc c cc c &'c c c c c c c c c c *c c c c c c c cc c c c (c +c c c ,c c c c c c c (c ) cc c c ccc cc c cc ccc c
c c c 'c (c ) c c c c c c c c c c c c &c c c c c c c (c -c c c c c c c cc c cc c *ccccc c c ccc c c (c c c c c c c c c c c c c c *cc cccccc cc (c *c cc c ccc ccc ccc c (c )c 'c c c c c c c 'c c c c c c ,c c c c c c c c & (c+c c c &c c c c c c& (c .c c c c c c c c c c c (c+c c cc c ccc c c (c
! %P& P c c c c c c c c c cc c *c c c c c c c& (ccc cccî cc c'c ÿ (01c c
c cc ccc ccc cî c ÿ (21c c
c 'cccccc cî c ccc c ÿ (31c c
c c c c ' c c c c c c (c )c c /c c cî c c c
ÿ ( 1c c
c c .c c cc cc c ccccc c cc cccc c c cc(c cc &cc ccc ccc cc cc c cc (c)c c cc cî ccc'c
ÿ (41c
c
! cc
c c
c ) c ccÿ (41ccccccc c c c
ÿ (51c c
ÿ (61c c
! %[
m c c c c c c c c c c c c c 'c c c 'c c c c c c (c .c c c c c c c c cc 'c c c c c (c )c c /c c c c c c ccc cc cc cc cccc c cc cc (c) cc cc 'ccc c c c c ' c cccc (c
c .ccc c7c ccc (c
[
m £c.c c c c cc cccccc c î cc c îcc,c c8 (c)c cc'c c cc c 'c c cîcc c c îcc c c c c c c c c c c c c (c ) c c 'c c c c cc c c9c (c)c /c cc c c c ccc c c c:î:cc ccî(c § $ [ £c ) c c c c c c c (c ) cc c cc c c c c ccc cc
cc c c c cc c (c;ccc c c c c c c ,c c c c c c c c *ccc 'c c îcc:cî c c (c) c c 'c c cc cc c c c (c.c c cc cccc c c 'c c c îc c c c ' c c c c c c c (c c c c c c c , c cîc c c c (c ! ' ! $ £c 'c c c cc0c cc c c (c) c c cccc ccc c (c cc ccccc c c c c c c c c c c c c *c c c c c c ,c c c c (c < c c c c c c c c ccc c c cc (c c c ccc c c c c 'c c c=>c(c cc c cccc cc c c c c c, (c ! c cc'c c c ccccc c cc, (c%cc c c c c c c c c c '*c c c c c c c c c c c c cè P (c c cè Pc c c c c c cccc*cc*c c cc cc c c c c c c c c c c *c c c c c c c c c c c c c c (c c c c c c c c 'c c cc ,c c c 'c cc (c.c c ccc c c c c c c 'c c c c c c c &c c c c (c
! % m cccc ccc cî c c'c î c îc '(c c c c c c c c c c c c cî c c 'cîccî '(c)cccc c/cc cî c ÿ (?1c c
c c c /c c c 'c c c c c cî
ccc/ccc c cc'c
(c )c c c
ÿ (@1c c
c .cc c'cc cccc c/ccc c c c'c ÿ (0=1c c
c )c c cc c c c c8cc c c (c.c c cc cc ÿ (51c c ÿ (61c c c c c c c c c c c c ÿ (@1c c ÿ (0=1(c < c cc c ccc ccc cc c, cc *cc c c cc c c cc c ccc cc c c c c (c .c c c c c Aî c Aîcc c c ccc c c c c cc ccc c ccc c c ccc'c c(c c c c c c c c c c ' c c (c (0*c c c 2c c c 3c c (c +c c 0c c c ,c c c ,c 4c c c c (c
c 2*c 3cc c c 9c (c )c c cc c cc c ccc)c (0(c c c ccc c ccc)c (2(c) cc c c cc c c ccc c3(0(3(c.c c cc cccc c c c c c c c c c cc c c c c ccc 'ccc c (c
c $()(*+ ( +)(* $ $ $()(*( , -c c
$ $,? J -c
&(c &Bc (c (Bc ]c Bc ]Bc
~c***c ~c**(*c ~c**(Bc ~c**(*c ~c**(*c ~c**&*c ~c**JBc
**(c@c~c*&*c **Bc@c~c*(Bc **]c@c~c*(*c **Bc@c~c*(Bc **Bc@c~c*(Bc **Ic@c~c*]*c *&*c@c~c*B*c
c +)( ? $()(*(
c "c c c c c c &'(&c*c *c c *J)'(c "c()'(c c~c&]&&Bc @c~c')&B]c @c~cI])(c &'(&c)BIc c *')&Bc*c c *J)'(c cc @c~c')&B]c c~c&I&'](c @c~c]I*JJc @c~cI])(c c *')&Bc((&&Bc c *J)'(cc *]I*Ic c*c @c~c]I*JJc c~c&&**(Jc @c~cI])(c @c~c(]*Ic *c c *J)'(c&&BIcc~cB)J](c c *I])c c*c @c~cI])(c @c~c&'(&c *J)'(cc *J)'(cc *]I*Icc *I])c(]*Ic cc @c~cI])(c @c~cI])(c @c~c(]*Ic @c~c&'(&c c~c&&I'](c )c c c *cc *cc ccc ccc c c c c )c (3(c .c c c c c c c c c c c c c c (c ) c c c c c c c c c c c c c (c)c ccc cccc ,c cccc c ccc c cc, (c) cc c c& ccc'c c cÿcc1(c cc c cc c& c c c c c *ccc cc c&(c c c c(c (0ccc ,c c c c c'c ccc c c4c cc c cc c cccc c (c c
+)(. $ / $ ( 4cc c &c (c c ]c Bc
4c c
. c c
3 c
cÿ1c
cÿ1c cÿ+-c
9cÿ 1c cÿ+1c
cÿ 1c
&*Bc "c "c "c &*(c
*c c c c c
c *c *c *c ]Ic
c *c *c *c c
*c )(c &]c Ic &&c
!
#
*c ')c Bc &)c (]c
c
c
! §%! P "
.c c cc c cc c cc c c c& c c! " c (c c c c c c c c c c c & c c c c c c c *cc*c(((c*c(cc c& ccc'c
ÿ (221c
c
c*c(((c*ccc c cc c *cc*c(((c*c(c+cccc c c c c cc c
ÿ (231c
c
c c c cccc c cc cc *cc*c(((c*c(cc cc cA *cc*c(((c*cc c c c ccccc c c c c cc'c
ÿ (2 1c
c
)c ccÿ (231cccccc c cc cccÿ (2 1c c ÿ (241c c
c +c c c c c c & c c )' c 7 c c c c c c c *cc*c (((c *cc(c !c c c c c c c c c *c c c c *c Bc0*c(((c*c cc c
ÿ (251c c
c c
c cccc c cc *c(((c*cc(c
%& cÿ (251ccccc c c c
ÿ (261c
c
c )c &cc cc c ccc cc c cc cc cc ccc c c *c(((c*cc(c+ccccc c c ÿ (261c c
ÿ (2?1c
c
c c c
ccc,Bc0*c((((c c
c
cc)' c7 c c cc'ccc2ccc c *cc c c ccc c cccc c c (c+c ccc
ÿ (2@1c
c
c ) c c c c c c c A ÿ01c*c Bc 0*c (((c *c (c +c c c c A *c (((c *c Ac c c & c ,c ÿ (2?1c c &'c c *c (((c *c(c )c c ccA *c Bc0*c(((c*c c ccc c&'(c c
c
c
c
! §% P " % &$ c 6c 6c
0 " c ! P c
c c ccc c c ' c cc ccc c9c ccc c c cÿ 1c ccc cc BccCccCc0(c 0c c c ccc ,c (c +c c c c c c & c cîccîcc c ÿ (@1c c ÿ (0=1c '(c)c c c! " c c c c c cc c cc ' c c c& c c P £ccc ccc c cc ccc c cc c cc& c cc'ccc ÿ (261(c cc c c *c c& c c cc c
ÿ (3=1c
c
c cc cc cc c c c
ÿ (301c c
c .ccc ccc 8c cc cc cÿc Cc Dc01ccÿc Cc D01(c cc cc4 c c c(c (0c cccc cc 8cÿ6cc61(c)c c cc cc c £c
&&cc±c&c cc±c& c&(cc±c&c c c(&cc cc±c&c c((cc cc )c cc
c
ÿ (321c
c
ÿ (331c
c
ÿ (3 1c
c
ÿ (341c
c
&$ % )c! " c c c c £c ! *%c ccc c cc c c::cÿ=1c cc c cc Dc 0c c cc c ccc ccc ,c (c ! %c c c c ::ÿ=1cc c c c c c Dc 0c c c /c c c c&cc cc c cA ÿ=1c(c ! .%c c c c ::cÿ=1cc c c c c ccc c /c c c cc&cc cc c cA ÿ=1c(c ! .%c cc c::cÿ=1cc c c cc cc (c
! )%c cÿ (3=1c c ccAc::cÿ=1cEc::cÿ=1(c ! 1£c-cc c c
c
ÿ (351c
c ÿ (361c c
c ! 2%c,cccc cc cc c(c)cc cc' (c - c c ,c c 0c c c cc c c c cc 'c ÿ (351c c ÿ (361(c
0 " +c c c cc c cc c cc c(c) c cc
,)(2- ,)(3-(cc ccc ccc cÿ (21c c
ÿ (3?1c c
ÿ (3@1c c
&( 0** c cc c
ÿ ( =1c c
c .c c c c c ÿ (321c cî7 c c c c c cî c c c(c )c cî ÿ (3?1cc c c cî Èc cc'c ÿ ( 01c c
c c 'cccîcc c c cî Bc cc'c
c c
c cc c& ccÿ (3@1cccc ÿ ( 21c c
c ( 0ô c c ccc c
ÿ ( 31c c
c cÿ (3 1cc cccc c cccccc c c c c (c cÿ (3@1cccc ÿ (
1c
c
c 'c cî Bc cc
ÿ ( 41c c
c c c&'c cÿ ( 41c cc cÿ (3?1(c
[( 0* c
c cc ôc c
ÿ ( 51c c
c c c c c c ÿ (331*c c c cô c c c c c c c c c cc c c c::c(c cî Èc *cccc cÿ (3?1c
ÿ ( 61c c
c c cî Bc cc
ÿ ( ?1c
c
c 0 c cc c c c cc
ÿ ( @1c c
c c c
cî Èc ccc cÿ (3@1c
ÿ (4=1c c
c c 'c cî Bc cc
ÿ (401c
c
c c c c +c c cc cc c c c *cc c cc c c 'c (c c c ' c c c c c c ccc c(c c
c
! P )c! " c c c c c c cc ' c c(c (0ccc ' c ccc ccc) c (0c c (3(c cÿ ( 01cccc
c
'c cÿ (3@1ccc
c
c c
1e-6c % P-Q busesc for i=2:4c tmp1=(p(i)-j*q(i))/conj(v(i)); tmp2=0; for k=1:5 if (i==k) tmp2=tmp2+0; else tmp2=tmp2+ybus(i,k)*v(k); end endc vt=(tmp1-tmp2)/ybus(i,i);
constant:
');
v(i)=v(i)+acc*(vt-v(i));c endc % P-V busc q5=0; for i=1:5 q5=q5+ybus(5,i)*v(i); end q5=-imag(conj(v(5))*q5); tmp1=(p(5)-j*q5)/conj(v(5)); tmp2=0; for k=1:4 tmp2=tmp2+ybus(5,k)*v(k); endc vt=(tmp1-tmp2)/ybus(5,5); v(5)=abs(v(5))*vt/abs(vt);c % Calculate P and Qc for i=1:5 sm=0; for k=1:5 sm=sm+ybus(i,k)*v(k); end s(i)=conj(v(i))*sm; endc % The mismatchc delp=p-real(s)'; delq=q+imag(s)'; delpq=[delp(2:5);delq(2:4)]; del=max(abs(delpq)); indx=indx+1; if indx==1 pause endc endc 'GS LOAD 'FINAL
FLOW VOLTAGE
'FINAL ANGLES 'THE REAL POWERS IN 0.24])*100,pausec
CONVERGES IN MAGNITUDES IN EACH
ITERATIONS',indx,pause ARE',abs(v)',pause
DEGREE ARE',angle(v)'/d2r,pause BUS IN MW ARE',(real(s)+[0 0 0 0
'THE REACTIVE POWERS IN EACH BUS IN MVar ARE',(-imag(s)+[0 0 0 0 0.11])*100c
! $ # $ P % + $ $ # )(* $ P (+ 0 $ (+ $$ */ .(+ $ $ $ ( % Program nwtraph % THIS IS A NEWTON-RAPHSON PROGRAM % We have to solve three nonlinear equations given by % % g1=x1^2-x2^2+x3^2-11=0 % g2=x1*x2+x2^2-3x3-3=0 % g3=x1-x1*x3+x2*x3-6=0 % % Let us assume the initial conditions of x1=x2=x3=1 % % The Jacobian matrix is % % J=[2x1 -2x2 2x3 % x2 x1+2x2 -3 % 1-x3 x3 -x1+x2];c clear allc x=[1;1;1];c % The Newton-Raphson iterations starts herec del=1; indx=0; while del>1e-6c g=[x(1)^2-x(2)^2+x(3)^2-11;x(1)*x(2)+x(2)^2-3*x(3)3;x(1)-x(1)*x(3)+x(2)*x(3)-6]; J=[2*x(1) -2*x(2) 2*x(3);x(2) x(1)+2*x(2) -3;1-x(3) x(3) -x(1)+x(2)]; delx=-inv(J)*g; x=x+delx;c del=max(abs(g)); indx=indx+1;c endc 'NEWTON-RAPHSON SOLUTION ITERATIONS',indx,pausec
CONVERGES
IN
'FINAL VALUES OF x ARE',xc
P )c! " c c c c c ccc c H((c)c c cc ccc,c'c'c ccccccccccccccccccc c c cccccccccccccccccccccc c cc c c ÿ1ccccccccccccccc c c c ÿ1I2cccccc c c ccc ccccccccccccccccc cc+c cccccccccccccccc cc c ccccccccccccccccc c ccc cc c &cccccccccccccccccc c ccc cc c &cccccccccccccccccccccc cc ccc c cccccccccccccccccccc c cc cc c &cccccccccccccccccccc cc cc c .c c cc ccccc ccc cc ccc c cc c c cccc ccc(c)c c c cc ! " c c c cc (c % Program % THIS IS THE NEWTON-RAPHSON POWER FLOW PROGRAMc clear allc d2r=pi/180;w=100*pi;c % The Ybus matrix isc [ybus,ych]=ybus;c g=real(ybus);b=imag(ybus);c % The given parameters and initial conditions arec
loadflow_nr
p=[0;-0.96;-0.35;-0.16;0.24]; q=[0;-0.62;-0.14;-0.08;-0.35]; mv=[1.05;1;1;1;1.02]; th=[0;0;0;0;0];c del=1;indx=0;c % The Newton-Raphson iterations starts herec while del>1e-6 for i=1:5 temp=0; for k=1:5 temp=temp+mv(i)*mv(k)*(g(i,k)-j*b(i,k))*exp(j*(th(i)-th(k))); end pcal(i)=real(temp);qcal(i)=imag(temp); endc % The mismatchesc delp=p-pcal'; delq=q-qcal';c % The Jacobian matrixc for i=1:4 ii=i+1; for k=1:4 kk=k+1; j11(i,k)=mv(ii)*mv(kk)*(g(ii,kk)*sin(th(ii)-th(kk))b(ii,kk)*cos(th(ii)-th(kk))); end j11(i,i)=-qcal(ii)-b(ii,ii)*mv(ii)^2; endc for i=1:4 ii=i+1; for k=1:4 kk=k+1; j211(i,k)=-mv(ii)*mv(kk)*(g(ii,kk)*cos(th(ii)-th(kk))b(ii,kk)*sin(th(ii)-th(kk))); end j211(i,i)=pcal(ii)-g(ii,ii)*mv(ii)^2; end j21=j211(1:3,1:4); j12=-j211(1:4,1:3); for i=1:3 j12(i,i)=pcal(i+1)+g(i+1,i+1)*mv(i+1)^2; end j22=j11(1:3,1:3); for i=1:3 j22(i,i)=qcal(i+1)-b(i+1,i+1)*mv(i+1)^2; end
jacob=[j11 j12;j21 j22];c delpq=[delp(2:5);delq(2:4)];c corr=inv(jacob)*delpq;c th=th+[0;corr(1:4)];c mv=mv+[0;mv(2:4).*corr(5:7);0];c del=max(abs(delpq));c indx=indx+1;c endc preal=(pcal+[0 0 0 0 0.24])*100;c preac=(qcal+[0 0 0 0 0.11])*100;c % Power flow calculationsc for i=1:5 v(i)=mv(i)*exp(j*th(i)); endc for i=1:4 for k=i+1:5 if (ybus(i,k)==0) s(i,k)=0;s(k,i)=0; c(i,k)=0;c(k,i)=0; q(i,k)=0;q(k,i)=0; cur(i,k)=0;cur(k,i)=0; else cu=-(v(i)-v(k))*ybus(i,k); s(i,k)=-v(i)*cu'*100; s(k,i)=v(k)*cu'*100; c(i,k)=100*abs(ych(i,k))*abs(v(i))^2; c(k,i)=100*abs(ych(k,i))*abs(v(k))^2; cur(i,k)=cu;cur(k,i)=-cur(i,k); end end endc pwr=real(s); qwr=imag(s);c q=qwr-c;c % Power lossc
ilin=abs(cur);c
c
for i=1:4 for k=i+1:5 if (ybus(i,k)==0) pl(i,k)=0;pl(k,i)=0; ql(i,k)=0;ql(k,i)=0; else z=-1/ybus(i,k); r=real(z); x=imag(z); pl(i,k)=100*r*ilin(i,k)^2;pl(k,i)=pl(i,k); )=100*x*ilin(i,k)^2;ql(k,i)=ql(i,k); end end endc
c
ql(i,k
View more...
Comments