LOAD FLOW

January 16, 2018 | Author: Raja Shekher | Category: Analysis, Physics, Physics & Mathematics, Quantity, Mathematical Concepts
Share Embed Donate


Short Description

Download LOAD FLOW...

Description

c c

c

ô  x   

P  

   P    

c

x        ’       c c c c c c c   c  c c c  c   c c ^    c  c c c    c c c   c cc  c  c c c c c cc   c  c   c c c c c cc c c c c cc  c c   c  c c cc c  c c c cc    c   c c   c  c c c c  c c  !c c c cc  c   c c"  c # c c$ c c  c c c c c c c  c c c  c c  c   c  c  c c À c   c  c   c  c   c   c c  c   c  c c     c  c  c c c  c c   c c   c c  c   c c c c  c   c 

c c c  cc c c c c c c " c  c c c c c c  c ccc c c c   c# c  c c c cc cc  c c$ c c c# c c" c  c    c$ c c c c c cc c  c c c c c c c c  c$c c c  c c   c c cc  cc   c c c c c c c c c  c c c c c c c % c  c   c  ! c  c $ c $ c &'('c c c  c &')*+c c  c  $  cc c c ,c  c c  c  c c  c c

[    -c 6c 6c 6c 6c

 c

&c. c c $c   c (c/ 0  c c c c. c c c ]c0  c

" c c c c c c cc c$ c c c c c  c   c

 c   c $c c c  c  c  c  c  c c   c  c  c c  c  c &-c1c c    c c c  c c   c c cc  c $  c c c c   c   c  c   c  c $c    c   c 2c c c  c   c  c c  $ c   c  c c c c$ c c  c c c  c c  $c  c " c  c c c  c c  $c $c  c   c c c c c   $cc c c" cc cc  $c c cc c c c$cc $c  c c  c c c cc c c3 c4c cc#  c c$c c c  cc  c c c cc c c5  c4c" c# ccc $   c$c c c c  c" c$cc   c c c c% c4c c c c c $ c cc c c c  c c’ c c   c c c c  c 3 c4c cc c c   c3 c4c c cc c.6c4c c5  c 4 c  c c c c c  c c c’c c c  c   c77c cc  c c% c4 c cc c c c c  c77c c c cc cc "     c  c  c3 c4 c$ c c c  c c c cc c c$c c  ,c  c  c5  c4 c c c c c$cc  ,c  c cc  $c c c$cc  c c% c4cc c c cc$c cc   c  c c c (c8c&c8cc8c&cc c  c cc  c c(c8c&c8cc8c&c c  c c$c(c8c&c8cc8c&c9 c c c  c  c c c c   $c " c $c 9 c c c c  c $  c9  c  c c$c  c  c  c c   c c  c  c$c" c  c c $  c9 cc

c   c ’c c c  c  c : c c $c  c  c c c  c  c  c c  c c cccccccccccccccccccc $c  c  #c ;4%c  c c c  c c c c  c  c c c   c  c  c c  c c c ;4%c  c c c  c c c c c c c c  cc c cc c  c c c ccc cc cA  c Acc  c c c c c c c! c c c c  c c c c&*cc (c %c c  c $  c 9 c c c  c  c  c c c   c  c c 3 !c c c c c c  c c c c  c c ]c %c  c c cc c c c  c Bc  c c c  c c c )c c c c  c c c c    ccc c c(c

    c  c c c c c 0  c c/ C0  c c c c   c  c c  c   c    c cc c c  ^   c c  c  c / c c  c 0   c c c  c  c c c $  c  # c c c ! c  c  c  c c   c  c " c   c c   c c c  c cD  +c  cc$cD +c c   ^      c 5c c  c ´ c c  c   c ´c+  c c $c  c c   c c *c . c c

 cc   $c$ c c$  c  # c &cc

c 5   c #&c c c    c c c c  c c c c  c c c c c # #c " c cc  c c c

 c  c cc   c

c

[  

c c 4 c c  c  c#Bc8c&cEc*,c  c c c  c c c > c c/ c  c  c  c  c #c   c / +c  c  c $c   c c c c  c ! c=  c! c c c$ c c   c c c c c c c c c c c c  c c c   c ! c " c  c  c $c  c c c c  c  c  c  c #c   c c$ c c c$ c c  cc c  ccc c  c c c c c #c  c   c c  c c c  c c $ c  c   c  c c   cc c c

        Ú  Ú   1c cc/ +c c c cc c c c c9  c  c  c c c c ! c  c  c 

   $c  c cc  c ĺc  c c c   c c $ cc c c c c c c c c c c $ c $ c #c c   c cc$c c+ c 0  c c   c  c c  c  c c  # c c  c  c c $c c c  c c c9 c c

 c cc

@&c8c c

Ú   Ú    " c c/ +c c c$cc cc c c> c c9 c cc" ccc$c  # c c! c c c

   $c  ccc c

ĺc c

c  c c c   $c c Fc 9  c c  c $ c  c c 9 c c c  c  c c c $c  c c  cc9 cc c c  # c  c c  c c c  c c Fc 9 c  c $c   c $c  c c  !c  c9 c c c c9 c $ c #c " c !c  c9 c c #c c #cDcEcD"D&D"c c c  cc c9 c c  c c   c c cc c$ c  # c c c! c c c  c 3ccc9 c  cc  $ cccc c c c c9 c c c c # c c%c  c c !c  c9 c c c c #cc c c$ c c c c  c {    " c cc cc c c>  $c c c$ c c 5cc  $c cc9  c c  c   c c#  c c 5cFc9  c c  c   c c  c9 c  c c c c >  $cc2 c

           c ! cc/ +c c c c c  c c c   cc cc c4   c  cc c c c   cc c   c +c c c  G  c   c  c c c 1c c c  G  c   c c $c $c  $c c   c c c   c  c c  c c $c  $c c  c  c # c c c c c c  ccc$c c/ CH    c  c c c c c c

/ c cc c c P P      c c

[

              

! "   6c c c c c 6c c c c  c 6c  c cc c c c

c

c

c

c

c

!   !    #  P "      P "   6c  c c c 6c   c cc cc 6c   c c! " c c c c c

c

c

c

c

  P     $  "  6c  c#c cc 6c $ c c c c 6c c! c%&   c c! c" c 6c ! cc" c c c c

c

c

m %  c  c   c c c c c  c  c   c c  c ' c c c  (c)c c c c cc  c 'c c ccc ' cc  *c ccc ccc ccc  (c cc c cc c & 'c c c  c c c c  c  c    c  *c c    c c  c c  c      cc c  c  c   (c +c c  c ,c  c c c  c c c (c ) cc c c   ccc cc c  cc ccc c

c c c 'c (c ) c  c c  c  c c   c c c  c   c c & c  c c c c c c (c -c c  c  c   c c c  cc  c cc c *ccccc c c ccc c c   (c  c  c c c c c  c  c c c c c c *cc  ccc ccc cc  (c  *c cc c ccc ccc cc c c   (c )c 'c c  c c c  c c 'c c  c c c  c  ,c c  c c  c c  c c &   (c+c  c  c & c c   c c c  c&   (c .c  c c c c   c c c c  c c   (c+c c cc c ccc c c  (c



! %P& P        c c   c c c c c c  c cc c *c c c  c c c   c&  (ccc cccî   cc c'c ÿ (01c c

c  cc ccc ccc cî  c ÿ (21c c

c 'cc  cccc  cî c ccc c ÿ (31c c

c c c  c ' c   c c  c  c c   (c )c  c /c c  cî  c c c

ÿ ( 1c c

c c .c c cc cc c cc ccc c cc cccc c c cc(c cc  & cc ccc ccc cc  cc c cc (c)c c cc cî  ccc'c

ÿ (41c

c

! cc

c c

c ) c   ccÿ (41ccccccc c c c

ÿ (51c c

ÿ (61c c



! %[

  m    c  c  c   c c  c  c c c   c c   c c 'c c c 'c c c c c  c    (c .c  c  c  c c c  c c   cc 'c  c c  c c   (c )c c /c c c c c c ccc c c cc cc cccc  c cc  cc (c) cc cc 'ccc  c c c c ' c  cccc (c

c .ccc c7c  ccc (c



[

  m      £c.c c  c c  cc cccccc  c’ î cc c îcc,c c8 (c)c cc'c c  cc c 'c c  c’îcc c  c îcc c c c c    c  c c  c  c c c c  (c ) c  c 'c  c   c c  cc c c9c (c)c /c cc c c c ccc c c  c:î:cc ccî(c §  $ [     £c ) c c c   c c   c c  (c ) cc c cc c  c c  c ccc cc

cc c c  c cc c (c;cc c c   c  c    c   c c ,c c  c  c   c c   c c  *ccc 'c  c’ îcc:cî  c c  (c) c c 'c c  cc cc c c c  (c.c c cc cccc c c 'c c  c îc c c c ' c    c c  c c c c (c   c c c  c c c , c cîc c c  c  (c ! ' ! $ £c 'c c c c c0c cc c c   (c) c c  cc cc ccc c  (c cc ccccc  c  c  c c  c c c c c  c  c c *c c  c c c c ,c  c  c  c  (c < c c  c c c  c c c ccc c c  cc (c c c ccc c c  c c 'c c c=>c(c  cc c ccc c cc c c c c c, (c ! c  cc'c c c ccccc c cc, (c%cc c  c  c c c  c c  c  c '*c c  c c  c c  c c   c  c c c cè P   (c c cè Pc c c c c c ccc c*cc *c c cc  cc c c   c c c  c   c  c  c c *c c  c c  c  c  c c  c  c  c c   c c  (c  c  c  c c  c  c  c 'c  c cc ,c c c 'c cc (c.c c ccc c  c  c  c  c c 'c c c c c c  c & c c c c   (c



! % m     cccc ccc cî c c'c’ î c îc '(c c  c c  c c c c c  c   c c cî c  c 'c’îccî '(c)cccc c/cc cî  c ÿ (?1c c

c c c /c  c  c 'c c  c  c  c c’î

cc c/cc c  c cc'c



(c )c c  c

ÿ (@1c c

c .cc c'cc cccc c/cc c  c c c'c ÿ (0=1c c

c )c  c cc c c c c8cc c c  (c.c c cc cc ÿ (51c c ÿ (61c c c  c c   c c c c c  c c ÿ (@1c c ÿ (0=1(c < c cc  c ccc  ccc cc c, cc *cc c  c cc c c cc c  ccc cc c c  c c   (c .c  c c c   c A’î c Aîc c c c  ccc c c c c cc ccc  c ccc  c  c ccc'c c (c  c c  c c   c c c   c c ' c c (c (0*c c  c 2c c c 3c  c   (c +c c  0c  c c ,c  c c ,c  4c  c c  c  (c

 c 2*c 3cc c c 9c   (c )c c  cc c cc  c ccc)c (0(c  c c ccc  c ccc)c (2(c) cc  c c cc c  c ccc  c3(0(3(c.c c cc cccc  c c c c  c c c   c c cc c c  c c   ccc 'ccc c  (c

c  $()(*+           (  +)(*      $ $       $()(*(  ,   -c  c

  $ $,? J -c

&(c &Bc (c (Bc ]c Bc ]Bc

~c***c ~c**(*c ~c**(Bc ~c**(*c ~c**(*c ~c**&*c ~c**JBc

**(c@c~c*&*c **Bc@c~c*(Bc **]c@c~c*(*c **Bc@c~c*(Bc **Bc@c~c*(Bc **Ic@c~c*]*c *&*c@c~c*B*c

c +)( ?         $()(*(

c "c c c c c  c &'(&c*c *c c *J)'(c "c()'(c c~c&]&&Bc @c~c')&B]c @c~cI])(c &'(&c)BIc  c *')&Bc*c c *J)'(c cc @c~c')&B]c c~c&I&'](c @c~c]I*JJc @c~cI])(c c *')&Bc((&&Bc  c *J)'(cc *]I*Ic c*c @c~c]I*JJc c~c&&**(Jc @c~cI])(c @c~c(]*Ic *c c *J)'(c&&BIcc~cB)J](c c *I])c c*c @c~cI])(c @c~c&'(&c *J)'(cc *J)'(cc *]I*Icc *I])c(]*Ic  cc @c~cI])(c @c~cI])(c @c~c(]*Ic @c~c&'(&c c~c&&I'](c )c c c  *cc *cc ccc  ccc c c c c )c (3(c .c  c c c c c   c c c  c c c c  c  (c ) c  c c  c c c c c  c c c  c  c  (c)c ccc cccc ,c cccc c ccc c cc , (c) cc c c&  ccc'c c cÿcc1(c cc c cc c&  c c c c c   *ccc   cc c& (c c c c(c (0ccc ,c c  c c c'c  ccc c c4c cc c cc c cccc c  (c c

+)(.   $ / $       ( 4cc c &c (c c ]c Bc

4c c

. c c

3 c

 cÿ 1c

cÿ1c cÿ+-c

9cÿ 1c cÿ+1c

cÿ 1c

&*Bc "c "c "c &*(c

*c c c c c

c *c *c *c ]Ic

c *c *c *c c

*c )(c &]c Ic &&c

  ! 

    #  

*c ')c Bc &)c (]c

c

 c



!  §%!   P "  

.c c  cc c  cc   c cc c c c&   c c!  " c  (c c c   c c c c c c c  c &   c c c  c  c c  c *cc*c(((c*c(cc c&   ccc'c

ÿ (221c

c

c*c(((c*ccc   c cc c *cc*c(((c*c(c+cccc c c c    c    cc c

ÿ (231c

c

c c c cccc  c cc  cc *cc*c(((c*c(cc cc    cA *cc*c(((c*cc c c c ccccc c   c c  c cc'c

ÿ (2 1c

c

)c   ccÿ (231cccccc c cc cccÿ (2 1c c ÿ (241c c

c +c c c c c  c &  c c )' c 7 c  c  c c  c   c c *cc*c (((c *cc(c !c c  c c c c  c c c  *c c   c c *c Bc0*c(((c*c  cc c

ÿ (251c c

c c

c cccc c  cc *c(((c*cc(c

%&  cÿ (251ccccc c c c

ÿ (261c

c

c )c & cc cc c ccc ccŒ cŒ cc cc c c ccc  c c *c(((c*cc(c+ccccc   c c ÿ (261c c

ÿ (2?1c

c

c c c

ccc,Bc0*c((((c c

c

cc)' c7 c  c c c'ccc2ccc c *cc c c ccc c   cccc c c (c+c ccc

ÿ (2@1c

c

c ) c c c c  c cŒ  c A ÿ01c*c Bc 0*c (((c *c (c +c c c c A *c (((c *c Ac c c &  c ,c ÿ (2?1c c  & 'c  c *c (((c *c(c )c   c    ccA *c Bc0*c(((c*c   c ccc c& '(c c

c

 c

c

! §%   P "  %   &$  c 6c 6c

    0   "  c !    P   c

c c ccc  c c ' c  cc cc c c9c  ccc  c c cÿ 1c  ccc cc BccCccCc0(c 0c c c ccc ,c  (c +c c  c c c  c &   c c’îccîcc c ÿ (@1c c ÿ (0=1c '(c)c c c! " c c c c c cc c cc ' c c c&   c c P   £ccc ccc  c cc ccc c cc   c cc&  c cc'ccc ÿ (261(c cc c c *c c&  c c cc c

ÿ (3=1c

c

c cc cc cc c  c c

ÿ (301c c

c .ccc ccc 8c cc cc cÿc Cc Dc01ccÿc Cc D01(c cc  cc4 c c c(c (0c cccc cc 8cÿ6cc61(c)c   c cc  cc c   £c

&&cc±c&c cc±c& c&(cc±c&c c c(&cc cc±c&c c((cc cc )c  cc

c

ÿ (321c

c

ÿ (331c

c

ÿ (3 1c

c

ÿ (341c

c

 

  &$  % )c! " c  c c c   £c !  *%c ccc  c cc c  c::cÿ=1c cc  c  cc Dc 0c c  cc  c ccc  ccc ,c (c !  %c c c  c ::ÿ=1cc c c  c c  c Dc 0c  c c /c c  c’  c& c c cc c cA’ ÿ=1c(c !  .%c c c  c ::cÿ=1cc c c  c c  cc c c /c c  c cc& c c cc c cA ÿ=1c(c !  .%c cc c::cÿ=1cc c c  cc ccŒ  (c

!  )%c cÿ (3=1c c ccAc::cÿ=1cEc::cÿ=1(c !  1£c-cc  c c

c

ÿ (351c

c ÿ (361c c

c !  2%c,cccc  cc cc c (c)cc  cc' (c - c  c ,c  c 0c c c cc  c c c  cc 'c ÿ (351c c ÿ (361(c

    0   "   +c c c  cc  c cc  c cc c(c) c cc

       ,)(2- ,)(3-(cc ccc ccc cÿ (21c c

ÿ (3?1c c

ÿ (3@1c c

 &(   0** c ccŒ  c

ÿ ( =1c c

c .c c c c c ÿ (321c cî7 c c c c  c c’î c  c  c(c )c c’î ÿ (3?1cc c c  cî Èc  cc'c ÿ ( 01c c

c c 'ccc’îcc c c  cî Bc  cc'c

c c

c  cc c&  ccÿ (3@1cccc ÿ ( 21c c

c (   0ô c c ccŒc c

ÿ ( 31c c

c  cÿ (3 1cc cccc c cŒccccc c c c  c (c cÿ (3@1cccc ÿ (

1c

c

c 'c cî Bc cc

ÿ ( 41c c

c c c& 'c cÿ ( 41c cc cÿ (3?1(c

 [(   0* c

c ccŒ ôc c

ÿ ( 51c c

c c c  c c  c ÿ (331*c c  c cŒô c c c  c c c  c’ c  c c c c c c::c(c cî Èc *cccc cÿ (3?1c

ÿ ( 61c c

c c  cî Bc cc

ÿ ( ?1c

c

c    0 c  cc  c cŒ c cc

ÿ ( @1c c

c c c

 cî Èc ccc cÿ (3@1c

ÿ (4=1c c

c c 'c cî Bc cc

ÿ (401c

c

c c c c +c c cc cc  cŒ cŒ c  *cc  c cc  Œ cŒ  c 'c  (c  c c ' c  c c  c c   c ccc   c(c c

c

   !    P    )c! " c c c c c c cc ' c c(c (0ccc ' c ccc   ccc) c (0c c (3(c cÿ ( 01cccc

c

'c cÿ (3@1ccc

c

c c

1e-6c % P-Q busesc for i=2:4c tmp1=(p(i)-j*q(i))/conj(v(i)); tmp2=0; for k=1:5 if (i==k) tmp2=tmp2+0; else tmp2=tmp2+ybus(i,k)*v(k); end endc vt=(tmp1-tmp2)/ybus(i,i);

constant:

');

v(i)=v(i)+acc*(vt-v(i));c endc % P-V busc q5=0; for i=1:5 q5=q5+ybus(5,i)*v(i); end q5=-imag(conj(v(5))*q5); tmp1=(p(5)-j*q5)/conj(v(5)); tmp2=0; for k=1:4 tmp2=tmp2+ybus(5,k)*v(k); endc vt=(tmp1-tmp2)/ybus(5,5); v(5)=abs(v(5))*vt/abs(vt);c % Calculate P and Qc for i=1:5 sm=0; for k=1:5 sm=sm+ybus(i,k)*v(k); end s(i)=conj(v(i))*sm; endc % The mismatchc delp=p-real(s)'; delq=q+imag(s)'; delpq=[delp(2:5);delq(2:4)]; del=max(abs(delpq)); indx=indx+1; if indx==1 pause endc endc 'GS LOAD 'FINAL

FLOW VOLTAGE

'FINAL ANGLES 'THE REAL POWERS IN 0.24])*100,pausec



CONVERGES IN MAGNITUDES IN EACH

ITERATIONS',indx,pause ARE',abs(v)',pause

DEGREE ARE',angle(v)'/d2r,pause BUS IN MW ARE',(real(s)+[0 0 0 0

'THE REACTIVE POWERS IN EACH BUS IN MVar ARE',(-imag(s)+[0 0 0 0 0.11])*100c

 !  $  #  $ P % +   $ $             # )(* $  P   (+   0           $ (+ $$            */  .(+ $  $ $   ( % Program nwtraph % THIS IS A NEWTON-RAPHSON PROGRAM % We have to solve three nonlinear equations given by % % g1=x1^2-x2^2+x3^2-11=0 % g2=x1*x2+x2^2-3x3-3=0 % g3=x1-x1*x3+x2*x3-6=0 % % Let us assume the initial conditions of x1=x2=x3=1 % % The Jacobian matrix is % % J=[2x1 -2x2 2x3 % x2 x1+2x2 -3 % 1-x3 x3 -x1+x2];c clear allc x=[1;1;1];c % The Newton-Raphson iterations starts herec del=1; indx=0; while del>1e-6c g=[x(1)^2-x(2)^2+x(3)^2-11;x(1)*x(2)+x(2)^2-3*x(3)3;x(1)-x(1)*x(3)+x(2)*x(3)-6]; J=[2*x(1) -2*x(2) 2*x(3);x(2) x(1)+2*x(2) -3;1-x(3) x(3) -x(1)+x(2)]; delx=-inv(J)*g; x=x+delx;c del=max(abs(g)); indx=indx+1;c endc 'NEWTON-RAPHSON SOLUTION ITERATIONS',indx,pausec

CONVERGES

IN



'FINAL VALUES OF x ARE',xc

  P    )c! " c c c c c  ccc c  H((c)c   c cc  ccc,c'c'c cccccccccccccccccc c c  c cccccccccccccccccccccc c  cc c c  ÿ1cccccccccccccc c c c  c ÿ1I2cccccc c c ccc ccccccccccccccccc cc+c cccccccccccccccc cc c ccccccccccccccccc c ccc cc  c &cccccccccccccccccc c ccc cc  c &cccccccccccccccccccccc cc ccc c cccccccccccccccccccc c  cc cc  c &cccccccccccccccccccc  cc cc  c .c c cc ccc cc ccc cc   ccc c cc c c cccc ccc(c)c c c cc ! " c c c cc (c % Program % THIS IS THE NEWTON-RAPHSON POWER FLOW PROGRAMc clear allc d2r=pi/180;w=100*pi;c % The Ybus matrix isc [ybus,ych]=ybus;c g=real(ybus);b=imag(ybus);c % The given parameters and initial conditions arec

loadflow_nr

p=[0;-0.96;-0.35;-0.16;0.24]; q=[0;-0.62;-0.14;-0.08;-0.35]; mv=[1.05;1;1;1;1.02]; th=[0;0;0;0;0];c del=1;indx=0;c % The Newton-Raphson iterations starts herec while del>1e-6 for i=1:5 temp=0; for k=1:5 temp=temp+mv(i)*mv(k)*(g(i,k)-j*b(i,k))*exp(j*(th(i)-th(k))); end pcal(i)=real(temp);qcal(i)=imag(temp); endc % The mismatchesc delp=p-pcal'; delq=q-qcal';c % The Jacobian matrixc for i=1:4 ii=i+1; for k=1:4 kk=k+1; j11(i,k)=mv(ii)*mv(kk)*(g(ii,kk)*sin(th(ii)-th(kk))b(ii,kk)*cos(th(ii)-th(kk))); end j11(i,i)=-qcal(ii)-b(ii,ii)*mv(ii)^2; endc for i=1:4 ii=i+1; for k=1:4 kk=k+1; j211(i,k)=-mv(ii)*mv(kk)*(g(ii,kk)*cos(th(ii)-th(kk))b(ii,kk)*sin(th(ii)-th(kk))); end j211(i,i)=pcal(ii)-g(ii,ii)*mv(ii)^2; end j21=j211(1:3,1:4); j12=-j211(1:4,1:3); for i=1:3 j12(i,i)=pcal(i+1)+g(i+1,i+1)*mv(i+1)^2; end j22=j11(1:3,1:3); for i=1:3 j22(i,i)=qcal(i+1)-b(i+1,i+1)*mv(i+1)^2; end

jacob=[j11 j12;j21 j22];c delpq=[delp(2:5);delq(2:4)];c corr=inv(jacob)*delpq;c th=th+[0;corr(1:4)];c mv=mv+[0;mv(2:4).*corr(5:7);0];c del=max(abs(delpq));c indx=indx+1;c endc preal=(pcal+[0 0 0 0 0.24])*100;c preac=(qcal+[0 0 0 0 0.11])*100;c % Power flow calculationsc for i=1:5 v(i)=mv(i)*exp(j*th(i)); endc for i=1:4 for k=i+1:5 if (ybus(i,k)==0) s(i,k)=0;s(k,i)=0; c(i,k)=0;c(k,i)=0; q(i,k)=0;q(k,i)=0; cur(i,k)=0;cur(k,i)=0; else cu=-(v(i)-v(k))*ybus(i,k); s(i,k)=-v(i)*cu'*100; s(k,i)=v(k)*cu'*100; c(i,k)=100*abs(ych(i,k))*abs(v(i))^2; c(k,i)=100*abs(ych(k,i))*abs(v(k))^2; cur(i,k)=cu;cur(k,i)=-cur(i,k); end end endc pwr=real(s); qwr=imag(s);c q=qwr-c;c % Power lossc

ilin=abs(cur);c

c

for i=1:4 for k=i+1:5 if (ybus(i,k)==0) pl(i,k)=0;pl(k,i)=0; ql(i,k)=0;ql(k,i)=0; else z=-1/ybus(i,k); r=real(z); x=imag(z); pl(i,k)=100*r*ilin(i,k)^2;pl(k,i)=pl(i,k); )=100*x*ilin(i,k)^2;ql(k,i)=ql(i,k); end end endc

 c

ql(i,k

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF