LNG Bunkering

August 7, 2017 | Author: noramarie | Category: Liquefied Natural Gas, Fuel Oil, Methane, Industries, Gases
Share Embed Donate


Short Description

Evaluation of technical challenges and need for standardization for LNG bunkering....

Description

Stud.  Techn.  Nora  Marie  Lundevall  Arnet  

Evaluation  of  technical  challenges   and  need  for  standardization  for   LNG  bunkering  

  Trondheim,  June  10,  2013    

NTNU   Norwegian  University  of     Science  and  Technology   Faculty  of  Engineering  Science  and  Technology   Department  of  Energy  and  Process  Engineering  

Project  thesis  

 

Source:  Swedish  Marine  Technology  Forum  

 

 

Preface   This  project  report  is  written  as  a  part  of  the  five  year  Master  Degree  Program  I  attend  at  the   Department  of  Energy  and  Process  Engineering  at  Norwegian  University  of  Science  and  Technology   (NTNU).  First  of  all  I  wish  to  express  my  gratitude  to  my  supervisor  Reidar  Kristoffersen.  During  the   semester  he  has  given  me  academic  guidance  on  report  matters  and  great  freedom  in  choosing  a   topic  of  interest.       The  project  report  consists  of  a  literature  review  regarding  LNG  bunkering.  The  topic  is  current  and   much  of  the  information  is  gathered  from  publications  made  within  the  last  five  years  and  from  direct   communication  with  people  in  the  industry.  The  list  of  people  who  have  contributed  and  whom  I  wish   to  thank  is  therefore  extensive.       The  report  is  written  in  cooperation  with  Det  Norske  Veritas  (DNV).  Lars  Petter  Blikom,  Segment   Director  for  Natural  Gas,  DNV,  has  been  my  industrial  supervisor.  I  would  like  to  thank  Mr.  Blikom  for   providing  me  with  assistance  on  the  topic  and  valuable  insight  form  the  industry.  His  support  and   encouragement  throughout  the  process  has  been  highly  appreciated.  I  also  wish  to  thank  the  natural   gas  team  at  DNV,  Erik  Skramstad  and  Katrine  Lie  Strøm  for  their  help  on  technical  matters.       Individuals  who  contributed  with  insight,  relevant  material,  outlining  and  establishing  the  basis  of  the   project  report  include;  Per  Magne  Einang  and  Dag  Stenersen  (MARINTEK/SINTEF),  Øystein  Bruno   Larsen  (BW  Offshore),  Ernst  Meyer  and  Henning  Mohn  (DNV),  Rolv  Stokkmo  (Liquiline),  Øystein   Klaussen  (Gassteknikk)  and  Jens  Kålstad  (Kongsberg).         Nora  Marie  Lundevall  Arnet

   

I  

Abstract   The  shipping  industry  is  searching  for  cleaner  solutions  to  comply  with  upcoming  regulations  on   emissions.  A  favorable  solution  is  to  use  Liquefied  Natural  Gas  (LNG)  as  bunker  fuel,  on  ferries  and   other  smaller  vessel  travelling  set  routes.  Implementation  of  innovative  solutions  in  the  large-­‐scale   LNG  distribution  has  been  successful,  but  the  industry  is  now  requiring  solutions  for  the  small-­‐scale   LNG  distribution  networks.  An  expansion  of  small-­‐scale  LNG  infrastructure  holds  a  great  potential  for   cost  effective  fuel  for  the  industry.       Several  LNG  bunkering  solutions  exist  today  and  new  projects  are  announced  frequently,  but  detailed   descriptions  are  rarely  published  due  to  the  intense  competition  in  the  emerging  market.  The  industry   is  also  faced  with  lack  of  standardization  within  certain  areas  of  the  bunkering  process.  Leaving   procedures  open  to  discretion  and  a  potentially  higher  risk  of  failure.       This  project  report  aims  to  evaluate  essential  aspects  relevant  to  the  emerging  LNG  bunkering  market   focusing  on  technical  challenges  and  need  for  standardization.  It  will  include  an  overview  of  LNG   safety  aspects,  a  technical  step-­‐by-­‐step  approach  to  LNG  bunkering  and  essential  equipment  used,   assessment  of  current  standards,  and  finally  a  discussion  of  critical  areas  for  LNG  bunkering  to   compete  with  current  solutions.      

   

II  

Content   1  Introduction  ..........................................................................................................................................  1   1.1  Motivation  ......................................................................................................................................  1   1.1.1  Bunkering  ................................................................................................................................  1   1.1.2  New  Projects  ...........................................................................................................................  1   1.1.3  The  Drive  .................................................................................................................................  2   1.2  Underlying  Hypothesis  ...................................................................................................................  3   1.3  Main  Goal  of  the  Report  .................................................................................................................  3   1.4  Scope  of  the  Report  ........................................................................................................................  3   2  LNG  ........................................................................................................................................................  4   2.1  LNG  characteristics  .........................................................................................................................  4   2.2  LNG  Chain  .......................................................................................................................................  4   2.2.1  Gas  Field  (Reservoir)  ................................................................................................................  4   2.2.2  Liquefaction  Terminal:  Onshore  Processes  .............................................................................  4   2.2.3  Marine  Transport  ....................................................................................................................  4   2.2.4  Receiving  Terminal  ..................................................................................................................  4   2.3  LNG  Safety  Issues  ...........................................................................................................................  5   3  LNG  Advantages  ....................................................................................................................................  6   3.1  Environmental  advantages  .............................................................................................................  6   3.1.1  Alternative  Energy  Sources  .....................................................................................................  6   3.1.2  Emission  Control  ......................................................................................................................  6   3.1.3  Emissions  Requirements  .........................................................................................................  7   3.1.4  Natural  Gas  -­‐  The  Solution  .......................................................................................................  7   3.2  Economical  Advantages  ..................................................................................................................  8   3.2.1  Investment  Costs  .....................................................................................................................  8   3.2.2  Infrastructure  ..........................................................................................................................  8   3.2.3  Marine  Fuel  Costs  ....................................................................................................................  9   4  Bunkering  ............................................................................................................................................  10   4.1  LNG  Bunkering  Definition  .............................................................................................................  10   4.1.1  Engines  ..................................................................................................................................  10   4.2  LNG  Bunkering  Scenarios  .............................................................................................................  10   4.3  LNG  Bunkering  Procedure  ............................................................................................................  11   4.3.1  Step  1  –  Initial  Precooling  1  ...................................................................................................  12   4.3.2  Step  2-­‐  Initial  Precooling  2  .....................................................................................................  13   4.3.3  Step  3  –  Connection  of  Bunker  Hose  .....................................................................................  13   4.3.4  Step  4  -­‐  Inerting  the  Connected  System  ................................................................................  14   4.3.5  Step  5  –  Purging  the  Connected  System  ...............................................................................  14   4.3.6  Step  6  –  Filling  Sequence  .......................................................................................................  15   4.3.7  Step  7  –  Liquid  Line  Stripping  ................................................................................................  16   4.3.8  Step  8  –  Liquid  Line  Inerting  ..................................................................................................  16   4.3.9  Step  9  –  Disconnection  ..........................................................................................................  16   4.4  Equipment  ....................................................................................................................................  17   4.4.1  Tanks  .....................................................................................................................................  17   4.4.2  Valves  ....................................................................................................................................  18   4.4.3  Hose  .......................................................................................................................................  18   4.4.4  Loading  arms  .........................................................................................................................  18   4.4.5  Pipes  ......................................................................................................................................  18   4.4.6  Pump  .....................................................................................................................................  18   4.4.7  Emergency  Shutdown  Systems  (ESD)  ....................................................................................  19   4.4.8  Emergency  Release  Systems  (ERS)  ........................................................................................  19   4.4.9  Emergency  Release  Couplers  (ERC)  .......................................................................................  19   4.4.10  Control  and  Monitoring  Systems  .........................................................................................  19       III    

5  Regulations  ..........................................................................................................................................  20   5.1  Standardization  Bodies  .................................................................................................................  20   5.1.1  International  Maritime  Organization  (IMO)  ..........................................................................  20   5.1.2  International  Organization  for  Standardization  (ISO)  ............................................................  20   5.1.3  Society  of  International  Gas  Tanker  &  Terminal  Operators  (SIGTTO)  ...................................  20   5.1.4  Oil  Companies  International  Marine  Forum  (OCIMF)  ...........................................................  20   5.1.5  European  Committee  for  Standardization  (CEN)  ..................................................................  21   5.2  International  Rules  and  Guidelines  ..............................................................................................  21   5.2.1  IMO  International  Gas  Code  (IGC)  .........................................................................................  21   5.2.2  IMO  International  Gas  Fuel  Interim  Guidelines  (MSC.285(86))  .............................................  21   5.2.3  SIGGTO:  Guidelines  for  LNG  transfer  and  Port  Operation   ....................................................  21   5.2.4  OCIMF:  Guidelines  for  Oil  transfers,  Ship-­‐to-­‐Ship  oil  bunkering  procedures  ........................  21   5.2.5  CEN  –  European  Standard  .....................................................................................................  21   5.2.6  Local  regulations  and  authorities  ..........................................................................................  22   5.3  The  ISO  Standard  –  ISO/TC  67/WG  10/PT1  ..................................................................................  22   5.4  Foreseen  Governance  of  LNG  Bunkering  Operations  ...................................................................  23   6  On  Site  .................................................................................................................................................  24   6.1  Best  Practice  .................................................................................................................................  24   6.2  Bunkering  Area  .............................................................................................................................  24   6.3  Purging  .........................................................................................................................................  24   6.3.1  Zero  Emission  Solutions  ........................................................................................................  24   6.3.2  Pressure  Testing  ....................................................................................................................  25   6.4  Filling  Sequence  -­‐  Tank  Pressure  and  Temperature  .....................................................................  25   6.4  1  Standard  Quality  –  Explanation  of  the  Term  .........................................................................  25   7  Discussion  ............................................................................................................................................  26   7.1  Standards  -­‐  Current  Situation  .......................................................................................................  26   7.1.1  Bunkering  vs.  Large-­‐Scale  Transfers  ......................................................................................  26   7.1.2  LNG  vs.  Conventional  Fuels  ...................................................................................................  26   7.1.3  Port  rules  ...............................................................................................................................  26   7.1.4  Bunkering  scenarios  ..............................................................................................................  27   7.2  ISO/TC  67/WG  10  .........................................................................................................................  27   7.2.1  Lacking  elements  ...................................................................................................................  27   7.2.2  Implementation  .....................................................................................................................  27   7.2.3  Equipment  .............................................................................................................................  28   7.3  Passengers  ....................................................................................................................................  28   7.4  Safety  Zones  .................................................................................................................................  28   8  Conclusion  ...........................................................................................................................................  30   Appendix  A  .............................................................................................................................................  31   Appendix  B  .............................................................................................................................................  32   Appendix  C  .............................................................................................................................................  33   Standardization  bodies  .......................................................................................................................  33   International  Maritime  Organisation  (IMO)  ...................................................................................  33   International  Organisation  for  Standardisation  (ISO)  .....................................................................  33   International  Electrotechnical  Commission  (IEC)  ...........................................................................  33   Society  of  International  Gas  Tanker  &  Terminal  Operators  (SIGTTO)  ............................................  34   Oil  Companies  International  Marine  Forum  (OCIMF)  ....................................................................  34   European  Committee  for  Standardisation  (CEN)  ...........................................................................  34   Reference  list  .........................................................................................................................................  36      

  IV    

List  of  Figures   Figure  1:  The  LNG  fuelled  fleet  .................................................................................................................  2   Figure  2:  The  Large  Scale  LNG  Chain  ........................................................................................................  4   Figure  3:  Explosion/Flammability  Curve  ...................................................................................................  5   Figure  4:  ECA  zones  ..................................................................................................................................  6   Figure  5:  Fuel  Emissions,  for  a  typical  existing  ship  ..................................................................................  7   Figure  6:  Lifecycle  economics  for  a  typical  ship  .......................................................................................  9   Figure  7:  Overall  Bunkering  Layout  ........................................................................................................  11   Figure  8:  Bunkering  Procedure  Step  1  ....................................................................................................  12   Figure  9:  Bunkering  Procedure  Step  2  ....................................................................................................  13   Figure  10:  Bunkering  Procedure  Step  4  ..................................................................................................  14   Figure  11:  Bunkering  Procedure  Step  5  ..................................................................................................  14   Figure  12:  Bunkering  Procedure  Step  6  -­‐  Bottom  Filling  ........................................................................  15   Figure  13:  Bunkering  Procedure  Step  6  -­‐  Top  Filling  (Spray)  ..................................................................  15   Figure  14:  Bunkering  Procedure  Step  7  ..................................................................................................  16   Figure  15:  IMO  Type-­‐C  Tank,  CRYO  AB  ...................................................................................................  17   Figure  16:  Dry  Break  Coupling  (Mann  Teknik  AB)  ..................................................................................  19   Figure  17:  Foreseen  governance  of  LNG  bunkering  operations  .............................................................  23    

   

V  

List  of  Abbreviations   NG  –  Natural  Gas   LNG  –Liquefied  Natural  Gas   LEL  –  Lower  Explosion  Level   UEL  –  Upper  Explosion  Level   HFO  –  Heavy  Fuel  Oil   MDO  –  Marine  Diesel  Oil     MGO  –  Marine  Gas  Oil   mmbtu  -­‐  million  British  thermal  units   ECA  –  Emission  Control  Area   IEA  –  International  Energy  Agency   TTS  –  Truck-­‐to-­‐Ship   STS  –  Ship-­‐to-­‐Ship   PTS  –  Terminal  (Pipeline)-­‐to-­‐Ship     ERC  –  Emergency  Quick  Release  Connector/Couplers   ESD  –  Emergency  Shutdown  Systems     ERS  –  Emergency  Release  Systems   IMO  –  International  Maritime  Organization   ISO  –  International  Organization  for  Standardization   SIGTTO  –  Society  of  International  Gas  Tanker  &  Terminal  Operators   OCIMF  –  Oil  Companies  International  Marine  Forum   CEN  –  European  Committee  for  Standardization   NMD  –  Norwegian  Maritime  Directorate   EU  –  European  Union   IGC  –  IMO  International  Gas  Code   IGF  –  IMO  International  Gas  Fuel  Interim  Guidelines     Sorted  after  order  of  appearance  in  the  document.        

  VI    

1  Introduction   1.1  Motivation   “The  LNG  industry  is  the  fastest  growing  segment  of  the  energy  industry  around  the  world.”  Global  oil   is  growing  about  0.9%  per  annum,  global  gas  at  2%,  while  Liquefied  Natural  Gas  (LNG)  has  been   1 growing  at  a  comparatively  soaring  4.5%.     The  International  Energy  Agency  projects  the  natural  gas  used  to  account  for  more  than  25%  of  the   world  energy  demand  (amounting  to  a  50%  increase)  by  2035,  making  it  the  fastest  growing  primary   energy  source  of  the  world.  For  LNG,  a  9%  share  in  the  global  gas  supply  was  estimated  for  2010;  by   2 2030  it  is  projected  to  account  for  15%.  “Lloyd’s  Register  believes  LNG  could  account  for  up  to  9%  of   3 total  bunker  fuel  demand  by  2025.”     1.1.1  Bunkering   4 Small-­‐scale  distribution  and  bunkering  of  LNG  has  been  booming  as  well.  LNG  was  created  as  a  way   to  transport  natural  gas  in  a  more  economical  way  over  long  distances,  as  it  is  reduced  to   th approximately  1/600  in  volume  through  liquefaction.  Transportation  and  handling  of  LNG  as  cargo   on  both  land  and  sea  have  been  proven  for  many  decades.  With  new  emission  regulations  the   potential  applications  for  LNG  is  expanding.  Among  these  applications  is  use  of  LNG  as  marine  fuel.   Particularly  attractive  for  marine  vessels  travelling  set  routes  such  as  tug  boats,  ferries,  and  support   vessels.  LNG  as  main  propulsion  fuel  is  no  longer  a  new  invention  and  the  technology  is  already   5 6 classified  as  proven.  The  first  LNG  fueled  ship  in  the  world  (Glutra)  was  launched  in  Norway,  in  2001.       The  transportation  sector  being  the  single-­‐biggest  contributor  to  oil  demand  in  many  countries   7 around  the  world,  is  always  looking  for  ways  to  cut  costs.  Vessels  running  on  LNG  instead  of  oil  are   8 already  saving  25%  on  fuels  costs  in  certain  markets.  Norway  is  currently  operating  38  gas-­‐fuelled   ships.  Based  on  intrinsic  advantages  LNG  has  as  a  fuel,  it  can  and  will  probably  be  adopted  on  an   international  basis.  In  response  to  increasing  demand,  construction  of  LNG  bunkering  infrastructure  is   9 under  development.       Development  of  a  worldwide  LNG  supply  chain  based  on  ship-­‐to-­‐ship  or  shore-­‐to-­‐ship  bunkering  is  of   10 paramount  importance  for  LNG  to  become  a  real  alternative  to  heavy  fuel  oil.  The  bunkering   solutions  most  widely  used  today  are  truck  and  terminal  supply.  Both  solutions  are  considered  less   feasible  as  trucks  provide  small  volumes  and  terminals  have  high  operational  cost.  Bunkering  from   vessel/barge,  on  the  other  hand,  is  much  more  flexible  with  respect  to  covering  several  sizes  and   locations  that  in  turn  lowers  both  cost  and  time  spent  on  bunkering.     1.1.2  New  Projects   11  “New  LNG  projects  and  applications  are  being  announced  daily  around  the  world.“     • In  Europe,  the  commission  has  set  aside  €2.1bn  to  equip  139  seaports  and  inland  ports  –   about  10  per  cent  of  all  ports  –  with  LNG  bunker  stations  by  2025.  The  plan  forms  part  of  the   12 new  EU  strategy  for  clean  fuels.   13 • Singapore:  developed  and  opened  an  open-­‐access,  multi-­‐user  import  terminal.     • In  Norway,  Skangass  in  cooperation  with  Gassnor  in  Risavika  Stavanger  is  establishing  a   bunker  terminal.     • “Washington  State  Ferries  (WSF)  is  exploring  an  option  to  use  liquefied  natural  gas  (LNG)  as  a   14 source  of  fuel  for  propulsion.”      

1  

There  are  LNG  passenger  vessels  currently  under  construction  or  in  design  for  service  in   Argentina,  Uruguay,  Finland,  and  Sweden.   • The  M/S  Viking  Grace  was  launched  some  months  ago  and  is  the  world’s  first  large  passenger   15 vessel  to  be  powered  by  liquefied  natural  gas  (LNG)   • Break-­‐bulk  terminal  in  Rotterdam.     16 • Port  of  Antwerp,  creating  a  LNG  bunker  vessel.     • “LNG  bunkering  Ship  to  Ship”  report  carried  out  by  Swedish  Marine  Technology  Forum  in   cooperation  with  Det  Norske  Veritas  (DNV)  and  others.  The  document  is  a  procedural   description  of  how  LNG  bunkering  between  two  ships  should  be  done  based  on  a  real  life   17 example.     Currently  there  are  74  confirmed  LNG  fuelled  ships  contracted.  The  following  figure  includes   developments  in  the  fleet  and  future  expansions  plans  for  the  next  three  years.       •

 

18

Figure  1:  The  LNG  fuelled  fleet  

  1.1.3  The  Drive     The  reason  for  this  strong  increase  and  interest  in  LNG  as  a  marine  fuel  is  based  on  two  main  factors:   1. The  Marine  Environmental  Protection  Committee  part  of  International  Maritime   Organization  (IMO)  is  introducing  emission  controls,  constraining  the  extent  of  exhaust  gas   19 emission.  This  is  forcing  the  industry  to  rethink  its  fueling  options.     2. The  availability  of  natural  gas  has  increased  due  to  large  offshore  discoveries  and   unconventional  gas  finds  in  the  US  (shale  gas),  creating  lower  prices  on  natural  gas  compared   to  conventional  fuels.  This  creates  a  drive  in  the  industry,  as  consumers  are  able  to  obtain   commercial  saving  against  alternative  fuels.  

   

2  

1.2  Underlying  Hypothesis   The  industry  will  continue  to  introduce  technological  innovations  and  infrastructure  needed  to  supply   the  expanding  LNG  bunkering  market  as  long  as  there  is  a  cost  benefit  to  use  LNG  compared  to   alternative  fuels.  Over  the  last  decades  the  focus  in  the  market  has  been  on  technical  and  commercial   issues,  but  now  that  the  technical  solutions  are  in  place  and  markets  are  growing  the  industry  is   20 taking  a  closer  look  at  strategic  and  regulatory  matters.       As  LNG  marine  fuel  becomes  more  common,  regulations  and  standards  need  to  be  implemented   alongside  technical  and  procedural  developments.  Standards  are  necessary  as  it  ensures  a  level  of   safety  and  create  common  grounds  for  the  operators,  again  making  it  easier  for  the  LNG  industry  to   expand.       There  are  several  bodies  that  cover  various  aspects  of  currently  incomplete  legislation  for  the   industry.  One  of  the  regulatory  frameworks  is  the  upcoming  ISO/TC  67/WG  10  Technical  Report   (which  DNV  is  leading).  The  technical  report  will  be  a  high  level  document  scheduled  for  completion  in   2014.  “The  objective  of  the  ISO  TC  67  WG  10  is  the  development  of  international  guidelines  for   bunkering  of  gas-­‐fuelled  vessels  focusing  on  requirements  for  the  LNG  transfer  system,  the  personnel   21 involved  and  the  related  risk  of  the  whole  LNG  bunkering  process.”     Within  this  definition  there  are  several  questions  raised  as  to  what  it  should  cover  and  what  it  needs   to  cover  to  be  an  effective  “tool”  in  future  bunkering  expansion  and  to  answer  the  industry’s  current   demand  for  standardization.  Currently  it  is  the  opinion  of  the  industry  that  comprehensive   international  standards  cannot  be  created,  as  the  experience  of  bunkering  LNG  is  too  limited.   Nonetheless,  with  increased  use  there  will  be  a  need  for  international  standardization  and  guidelines.    

1.3  Main  Goal  of  the  Report   The  topic  of  the  report  will  be  an  evaluation  of  LNG  bunkering  solutions,  with  main  focus  on   identifying  technical  challenges,  and  to  identify  potential  areas  for  industry’s  standardization.        

1.4  Scope  of  the  Report   The  report  will  cover  LNG  characteristics,  safety  aspects  and  the  current  state  of  technology  for   bunkering  of  LNG.  Present  a  technical  step-­‐by-­‐step  overview  over  the  bunkering  procedure  and   essential  equipment  used.  It  will  further  discuss  problem  areas,  safety  issues  and  areas  where   standards  could  be  useful  to  promote  more  widespread  use.     The  report  is  limited  by  the  available  technologies  comprising  a  discharging  unit  to  receiving  ship  for   transferring  LNG.  There  are  many  actors  in  the  industry  but  the  experience  is  limited  and  the   solutions  are  proprietary.    

 

3  

2  LNG   2.1  LNG  characteristics     Liquefied  Natural  Gas  (LNG)  is  Natural  Gas  (NG)  cooled  to  about  -­‐162°C  (-­‐260°F)  at  atmospheric   pressure.  It  is  a  condensed  mixture  of  methane  (CH4)  approximately  85-­‐96mol%  and  a  small   percentage  of  heavier  hydrocarbons.  LNG  is  clear,  colorless,  odorless,  non-­‐corrosive  and  non-­‐toxic.  In   liquid  form  it  is  approximately  45%  the  density  of  water  and  as  vapor  it  is  approximately  50%  density   of  air  and  will  rise  under  normal  atmospheric  conditions.  LNG  is  called  a  cryogenic  liquid  –  defined  as   substances  that  liquefies  at  a  temperature  below  -­‐73°C  (-­‐100°F)  at  atmospheric  pressure.  The  process   th of  liquefaction  reduces  the  volume  to  1/600  of  its  original  volume,  providing  efficient  storage  and    22 transport.      

2.2  LNG  Chain  

 

23

Figure  2:  The  Large  Scale  LNG  Chain  

2.2.1  Gas  Field  (Reservoir)   The  Chain  starts  with  gas  production. Raw  NG  comes  from  three  types  of  wells:  oil  wells  (associated   gas),  gas  wells,  and  condensate  wells  (both  non-­‐associated  gas).  NG  is  a  mixture  of  hydrocarbons.  It   consists  mostly  of  methane,  but  also  heavier  hydrocarbons:  ethane,  propane,  butane,  and  pentanes.   In  addition,  raw  NG  contains  water  vapor,  hydrogen  sulfide,  carbon  dioxide,  helium,  nitrogen,  and   24 other  compounds.  NG  quality  will  vary  depending  on  its  composition.  A  full  composition  example  of   NG  can  be  found  in  Appendix  A.   2.2.2  Liquefaction  Terminal:  Onshore  Processes   The  rich  gas  from  the  reservoirs  is  purified  to  increase  its  methane  content.  The  pre-­‐treatment   includes  removal  of  condensate,  carbon  dioxide  (CO2),  mercury,  sulfur  (H2S),  and  water  (through   dehydration).  After  pre-­‐treatment  the  natural  gas  is  now  classified  as  dry/lean  gas.  This  gas  if  further   25 refrigerated  and  eventually  liquefied  and  stored.     2.2.3  Marine  Transport   Large-­‐scale  LNG  is  shipped  from  the  liquefaction  terminal  to  the  receiving  terminal  by  LNG  carriers,   3 today  the  normal  capacity  range  for  carriers  is  145,000-­‐180,000m .     2.2.4  Receiving  Terminal   At  the  receiving  terminal  LNG  is  stored  in  large  cryogenic  tanks.  The  liquid  is  re-­‐gasified/vaporized  and   transported  to  local  market  via  the  gas  grid.  In  some  markets  a  portion  of  the  LNG  is  broken  into   smaller  cargoes  and  distributed  in  smaller  scale  by  rail,  road  or  smaller  LNG  vessels.  Small-­‐scale    

4  

distributions  can  also  originate  from  small-­‐scale  liquefaction  plants;  this  is  current  practice  in  Norway   and  the  US.    The  small-­‐scale  distribution  scenarios  are  the  focus  of  this  project  report.      

2.3  LNG  Safety  Issues   In  its  liquid  form  LNG  cannot  explode  and  it  is  not  flammable.  Hazards  arise  when  LNG  returns  to  its   gaseous  state  through  an  uncontrolled  release.  The  release  can  as  an  example  be  caused  by  a  tank   rupture  due  to  external  impact,  leaks  from  flanges  in  the  pipework  or  a  pipe  break,  etc.       The  hazards  can  be  divided  into  two  categories:   1. Cryogenic  effects  from  LNG   Exposure  to  a  liquid  at  -­‐163°C  will  cause  humans  to  freeze  and  steel  equipment  to  become   brittle.  Brittle  steel  can  break  and  cause  additional  secondary  failures.       2. Fire  and  explosion   Once  the  LNG  has  leaked,  it  will  form  a  pool  of  liquid  LNG.  This  pool  will  start  to  evaporate   and  form  a  cloud  of  gas,  primarily  consisting  of  methane.  This  gas  will  start  mixing  with  air   (with  a  20.9%  oxygen  ratio)  and  once  it  reaches  a  mixture  between  5-­‐15%  gas,  it  is  ignitable.   Outside  the  critical  level  an  explosion  or  fire  will  not  occur.  Below  the  lower  explosion  level   (LEL)  there  is  insufficient  amount  of  methane.  Similarly,  above  the  upper  explosion  level   (UEL)  there  is  insufficient  amount  of  oxygen  present.  The  critical  level  is  at  9%  ratio  of  NG  to   air.       Without  an  ignition  source,  the  gas  will  continue  to  evaporate,  disperse  at  ground  level  while   cold,  start  to  warm  and  rise  to  the  sky  (as  methane  is  lighter  than  air)  and  thereafter  drift   away  until  the  entire  liquid  pool  is  gone.  LNG  evaporates  quickly,  and  disperses,  leaving  no   residue.  There  is  no  environmental  cleanup  needed  for  LNG  spills  on  water  or  land.  If  an   ignition  source  is  present,  the  gas  cloud  could  ignite,  but  only  at  the  edges  where  the   methane  concentration  is  within  the  aforementioned  range.  There  will  be  an  initial  flash,  not   very  violent,  as  the  gas  cloud  ignites,  and  it  will  continue  to  burn  back  to  the  pool  as  a  flash   fire.  The  gas  will  continue  to  burn  as  it  evaporates  until  the  pool  of  LNG  is  gone.     For  an  explosion  to  take  place  the  gas  typically  needs  to  be  in  a  confined  space  (such  as   inside  a  building  or  vessel),  reach  the  right  mixture  with  oxygen  and  have  the  presence  of  an   ignition  source.  In  this  event,  there  could  be  an  explosion  causing  overpressure  and  drag   26 loads  and  potential  damage  to  life  and  property.      

27

Figure  3:  Explosion/Flammability  Curve  

 

  5  

3  LNG  Advantages   For  the  shipping  industry,  as  in  all  other,  profit  is  crucial.  The  provider  of  the  lowest  voyage  cost  for  a   particular  cargo  wins  the  customers.  In  all  cases  fuel  prices  top  the  expense  list  representing  50%-­‐70%   28 of  the  total  costs  of  owning  and  operating  a  ship.  For  LNG  to  be  a  viable  alternative  fuel  it  needs  to   be  price  competitive.  To  understand  why  the  industry  is  rethinking  it  fueling  options  and  how  LNG  is  a   sustainable  alternative,  this  chapter  will  present  some  of  the  advantages  of  LNG  as  marine  fuel.  The   main  source  used  is  “Greener  Shipping  in  the  Baltic  Sea”  DNV  Report,  June  2010.  

3.1  Environmental  advantages       3.1.1  Alternative  Energy  Sources   Through  technological  developments  and  innovations  the  world  today  has  a  wide  range  of  alternative   energy  sources,  besides  its  hydrocarbon-­‐based  sources.  Examples  are  wind,  solar,  biomass,  nuclear,   and  hydro  electric.  For  the  shipping  industry  though,  most  of  these  alternative  do  not  apply:     • Electric:  entire  cargo  area  would  have  to  be  filled  with  batteries   • Biomass:  would  have  to  empty  the  world  of  organic  material   • Solar:  not  enough  surface  area  for  the  number  of  panels  needed   • Wind:  there  is  not  enough  stability  in  the  vessels  to  carry  the  turbines  on  deck.  Another  type   of  wind  source  used  in  the  past  is  sailing,  but  with  respect  to  increased  travel  time  this  is  not   an  option.     The  shipping  industry  needs  to  remain  or  further  increase  its  efficiency  and  consequently  has  no   29 carbon  neutral  alternatives  at  their  disposal.     3.1.2  Emission  Control   Heavy  Fuel  Oil  (HFO),  Marine  Diesel  Oil  (MDO)  and  Marine  Gas  Oil  (MGO)  are  all  current  conventional   bunkering  fuels.  Ship  based  fuel  is  a  large  part  oil  consumption  and  all  these  fuels  are  high  on   emission  rates.  If  carbon  neutral  options  are  out  of  the  question  how  will  the  shipping  industry  meet   future  emission  regulations  dictated  by  international  authorities?  In  2015,  the  allowed  SOx  emissions   from  ships  sailing  within  the  Emission  Control  Area  (ECA)  will  be  reduced.    These  standards  of   emissions  are  already  adopted  on  a  case-­‐by-­‐case  basis  in  European  inland  waterways  and  ports,  by   certification  from  the  relevant  Classification  Societies.  Further,  in  2016,  the  International  Maritime   30 Organization  (IMO)  will  put  the  new  Tier  III  levels  of  NOx  emissions  into  force.  These  regulations  will   impose  taxes  on  emission,  which  will  increase  the  cost  of  using  conventional  fuels.      

31

Figure  4:  ECA  zones  

 

  6  

3.1.3  Emissions  Requirements   ECA  requirements:   • Maximum  level  of  sulphur  in  fuel,  all  ships:   o 1,0%  by  July  1,  2010   o 0,1%  by  January  1,  2015   • Nitrogen  emission  for  new  buildings:   o 20%  reduction  in  NOx  emission  by  2011  (Tier  II)   o 80%  reduction  in  NOx  emission  from  2016  (Tier  III)   EU  fuel  requirements  now:   • 0,1%  sulphur  in  ports  and  inland  waterways   Global  requirements:   32 • 2020/2025:  sulphur  levels  less  than  0.5%  (date  TBD  pending  2018  review)   3.1.4  Natural  Gas  -­‐  The  Solution   Based  on  a  review  of  existing  marine  engine  technology  and  expected  technology  development,  ship   33 owners  currently  have  three  choices  if  they  wish  to  continue  sailing  in  ECAs  from  2015.     • Switch  to  low  sulphur  fuel  –  minor  modifications  to  present  MGO  and  MDO  systems,  but   availability  is  already  limited     • Install  an  exhaust  gas  scrubber  –  expensive  option     • Switch  to  LNG  fuel  –  will  comply  with  upcoming  regulations  and  to  contribute  to  global   emission  reductions,  natural  gas  is  a  viable  option.     Reductions  in  emissions  form  using  LNG  as  a  fuel   • CO2  and  GHG  20-­‐25%   • SOx  and  particulates  approximately  100%   • NOx  85-­‐90%    

34

Figure  5:  Fuel  Emissions,  for  a  typical  existing  ship  

 

 

7  

3.2  Economical  Advantages   “The  marine  fuel  oil  market  is  a  large  global  market  supplying  about  300  million  tons  of  fuel  oil   35 annually,  and  the  price  developments  are  generally  following  that  of  crude  oil.”  Marine  fuels  on   long-­‐term  contracts  have  trading  prices  of  14-­‐15USD/mmbtu  (million  British  thermal  units)  for  LNG   36 and  107-­‐116USD/barrel  for  crude  oil.  (Ref:  International  Energy  Agency  (IEA))  The  prices  are   measured  in  different  units  as  the  substance  is  different,  but  if  a  conversion  is  made  directly  1  barrel   is  approximately  equal  to  5.55mmbtu.  This  means  that  crude  oil  prices  lie  in  the  range  from  19-­‐ 21USD/mmbtu.       The  LNG  price  is  based  on  large-­‐scale  sales,  not  distribution  in  the  small-­‐scale.  The  global  natural  gas   market  is  today  not  set  up  to  supply  LNG  in  small  quantities  to  consumers  such  as  ferries.  There  are   currently  no  functioning  markets  for  this,  and  no  reference  prices  consequently  exist.  There  are  many   small-­‐scale  LNG  developments  across  the  world,  but  contract  structures  and  prices  for  LNG  as  a   37 marine  fuel  is  uncertain  as  of  today.   3.2.1  Investment  Costs   A  switch  to  LNG  marine  fuel  necessitates  expenses  on  several  levels:  equipment  adaptation,   establishing  bonds  with  new  suppliers,  possibly  planning  new  shipment  routes  as  LNG  will  only  be   provided  in  certain  areas  and  training  of  personnel.  The  investment  cost  will  vary  significantly   between  ship  types  and  must  be  assessed  from  case  to  case.  Nevertheless,  the  added  investment  cost   of  choosing  LNG  fuel  for  new  ships  is  expected  to  decrease  in  the  future.  The  rate  and  extent  of  this   increment  will  largely  depend  on  the  number  of  LNG  fuelled  ships  being  contracted  (economies  of   38 scale).  Higher  volume  of  ships  running  on  LNG  will  create  the  motive  for  building  the  infrastructure   needed  to  support  small-­‐scale  supply,  which  in  turn  will  reduce  the  present  day  costs.       Ships  operating  in  the  Baltic  Sea  have  a  fairly  even  age  distribution  from  new  to  40  years  old.  The   replacement  of  old  vessels  is  continuous,  and  it  takes  about  10  years  to  replace  25%  of  the  sailing   39 fleet.     3.2.2  Infrastructure   If  distribution  and  process  costs  could  be  brought  down  to  similar  levels  as  for  oil  by  economics  of   scale,  the  current  fuel  prices  indicates  a  great  economic  potential  for  LNG.  The  infrastructure  for  LNG   bunkering  today,  however,  does  not  allow  for  the  LNG  prices  to  remain  at  this  level.  As  soon  as  LNG  is   broken  into  smaller  volumes  and  distributed  further  through  the  small-­‐scale  chain  prices  increase   drastically.  Small-­‐scale  liquefaction  and  distribution  expenses  are  the  main  contributors  to  this  price   increase.  The  potential  savings  for  the  ship-­‐owner  would  then  be  eliminated.  In  order  to  bring  down   the  price  of  LNG  for  bunkering,  it  must  be  bought  from  full-­‐scale  liquefaction  plants  and  efficient   40 distribution  chain  must  be  established.       The  industry  is  already  well  aware  of  these  issues  and  is  searching  for  effective  solutions.  Trough  the   EU  initiative  to  establish  139  ports  (as  mentioned  in  chapter  1),  LNG  will  be  accessible  and  a  ship  will   not  have  to  limit  its  routes  to  specific  bunkering  areas.  Similar  initiatives  are  taken  all  over  the  world.   To  remove  the  cost  of  establishing  small-­‐scale  liquefaction  terminals,  bunkering  from  vessel  barge  is  a   maintainable  alternative.  Ship-­‐to-­‐ship  transfer  is  the  scenario  with  the  best  projections,  both  with   respect  to  flexibility  in  bunkering  location  and  range  in  volume  supply.  The  various  bunkering   scenarios  will  be  discussed  in  the  next  chapter  ‘4  Bunkering’.  

 

8  

3.2.3  Marine  Fuel  Costs   Every  ship  requires  individual  calculations  with  respect  to  travelling  time  and  distance,  fuel   consumption  and  production  costs.  Overall  it  is  estimated  that  ships  with  an  economical  life  of  15   years  or  more  will  economically  benefit  from  using  LNG  as  a  fuel.  The  advantage  is  greater  with   increasing  fuel  consumption.  The  example  calculation  represents  a  typical  Baltic  Sea  cargo  ship  of   41 approximately  2,700  gross  tons,  3,300  kW  main  engine  and  5,250  yearly  sailing  hours.    

Figure  6:  Lifecycle  economics  for  a  typical  ship  

 

The  engine  size  and  consumption  levels  in  this  example  are  modest.  Still,  it  is  clear  that  MDO  is  the   most  expensive  option  and  LNG  is  found  to  be  a  superior  alternative.  The  results  are  favorable  to  such   an  extent  that  it  is  even  reasoned  to  be  profitable  without  ECA  requirements.      

 

9  

4  Bunkering     This  chapter  will  define  LNG  bunkering,  present  the  various  bunkering  scenarios,  provide  a  detailed   technical  description  of  the  bunkering  procedure,  and  present  approved  equipment.      

4.1  LNG  Bunkering  Definition   “The  definition  of  LNG  bunkering  is  the  small-­‐scale  transfer  of  LNG  to  vessels  requiring  LNG  as  a  fuel   for  use  within  gas  or  dual  fuelled  engines.  LNG  bunkering  takes  place  within  ports  or  other  sheltered   42 locations  at  the  base  case.”  Bunkering  should  not  be  considered  in  the  same  context  as  large  scale,   commercial  transfer  of  cargo  between  ocean-­‐going  LNG  carriers.  This  larger  operation,  where   3 volumes  are  typically  above  100,000m  is  covered  separately  under  preceding  technical  releases  and   43 standards.   4.1.1  Engines   The  ship  owners  have  two  options  with  regards  to  engine  design:  dual  fuel  engines  or  LNG  lean  burn   mono  fuel  engines.  Dual  fuel  engines  run  on  both  LNG  and  conventional  fuels  from  separate  tanks.  It   is  a  flexible  solution  for  varying  availability  in  LNG.  In  LNG  mode  these  engines  only  consume  a  minor   44 fraction  of  conventional  fuel.  Bunkering  procedure  for  dual  fuel  engines  is  a  process  that  can  take   place  simultaneously  for  both  fuels.  The  procedure  described  below  is  however  limited  to  the  LNG   transfer  system.      

4.2  LNG  Bunkering  Scenarios   Truck-­‐to-­‐Ship  (TTS):  micro  bunkering,  discharging  unit  is  a  LNG  road  tanker  size   3 approximately  50-­‐100m .   • Ship-­‐to-­‐Ship  transfer  (STS):  discharging  unit  is  a  bunker  vessel  or  barge  with  size  200-­‐ 3 10,000m .   • Terminal  (Pipeline)-­‐to-­‐Ship  (PTS):  satellite  terminal  bunkering  serves  as  the  discharging  unit   3 and  supply  sizes  are  approximately  100-­‐10,000m .     PTS  and  TTS  are  the  most  established  bunkering  scenarios  per  today  and  they  are  both  classified  as   onshore  supply.  STS  will  also  take  place  while  the  receiving  unit  is  at  dock  or  in  a  port  environment,   but  both  units  involved  in  the  transfer  are  seaborne  and  the  transfer  is  therefore  classified  as   offshore.  Use  of  STS  makes  the  bunkering  location  more  flexible  than  PTS  and  it  can  supply  higher   volumes  than  TTS.  Developments  within  this  scenario  are  the  most  feasible  and  are  therefore   45 essential  in  making  LNG  competitive  against  other  marine  fuels,  especially  for  larger  ships. •

 

10  

4.3  LNG  Bunkering  Procedure   Time  efficiency  and  safety  are  elements  of  paramount  importance  when  it  comes  to  the  bunkering   procedure.  Developing  a  suitable  procedure  is  fundamental  in  obtaining  these  facets.  The  industry  is   currently  developing  solutions  to  achieve  similar  duration  of  bunkering  operations  for  LNG  as  for   conventional  fuels.       As  LNG  bunkering  is  evolving,  technology  improvements  and  innovations  are  added  continually.  The   process,  being  relatively  new,  is  not  yet  regulated  or  standardized  (will  be  discussed  further  under   section  ‘5  Regulations’)  and  therefore  there  are  several  elements  that  could  vary  for  each  individual   bunkering  case.  Nevertheless,  this  section  aims  to  provide  a  description  suited  for  various  needs  and   different  bunkering  scenarios.  Variations  in  bunkering  procedure  depending  on  scenario  will  be   mentioned.       In  this  section  of  the  report  there  will  be  no  elaborations  on  general  principles,  conditions,   requirements,  safety  aspects  and  communication  related  to  the  process.  The  same  applies  to  details   exclusively  relating  to  bunkering  of  fuels  other  than  LNG,  in  the  case  of  dual  fuel  engines.  The  focus   will  be  on  the  technical  aspects  of  the  procedure  and  the  equipment  used.       The  main  source  for  this  part  of  the  report  is  the  short  film  “Step  by  step  Bunkering  by  DNV”.   Additional  details  have  been  acquired  from  discussions  with  individuals  from  the  industry  (se  preface   for  names)  and  the  report  ‘LNG  ship  to  ship  bunkering  procedure’  by  the  Swedish  Marine  Technology   Forum  et  al.      

 

46

Figure  7:  Overall  Bunkering  Layout  

The  diagram  is  schematic  not  to  scale,  especially  when  it  comes  to  pipe  length.     Initially  all  valves  are  closed  as  shown  in  the  diagram.  The  transfer  hose  is  not  connected  until  step   three  but  included  in  this  diagram.  The  first  step  takes  place  during  ship  mooring,  or  in  the  case  of   ship-­‐to-­‐ship  transfer  during  the  bunker  vessels  mooring  up  against  the  receiving  ship.  Discharging  unit   can  be  either:  terminal,  truck  or  bunker  vessel/barge.  Variations  in  design  and  layout  can  take  place,   but  overall  this  is  a  representative  example  of  a  layout  and  it  gives  a  good  basis  for  explaining  the   bunkering  procedure.    

 

11  

4.3.1  Step  1  –  Initial  Precooling  1   Filling  lines  are  precooled  during  mooring.  Valves  V2,  V5,  V8  and  V9  are  opened.  The  system  needs  to   be  cooled  down  slowly,  otherwise  one  part  will  contract  and  another  not.  Improper  cooling  could  also   lead  to  pipe  cracking.  The  precooling  sequence  depends  on  cargo  pump,  design  of  the  discharging   47 unit  and  size  of  installation.  The  cold  LNG  (blue)  exits  tank  1  form  the  bottom,  and  slowly  “pushes”   the  warmer  NG  (red)  in  the  pipes  into  the  top  of  tank  1.      

Figure  8:  Bunkering  Procedure  Step  1  

 

During  this  stage  both  units  must  check  temperature  and  pressure  of  their  respective  LNG  tanks.   Within  the  tank,  temperature  is  directly  correlated  with  pressure.  If  the  temperature  of  the  receiving   tank  is  significantly  higher  than  the  discharging  (classified  as  a  “warm”  tank),  there  will  be  an  initial   vaporization  when  starting  to  transfer  LNG.  As  the  pressure  of  the  tank  might  be  too  high  for  the  LNG   transfer  to  be  initiated.  This  will  increase  the  tank  pressure  and  can  trigger  the  pressure  relief  valve  to   open  if  the  pressure  exceeds  the  set  limit.  The  pressure  of  both  tanks  must  be  reduced  prior  to  the   48 bunkering  in  case  of  a  high  receiving  tank  temperature.    When  the  levels  in  the  receiving  tank  are   low,  the  rate  of  evaporation  and  heat  ingress  to  the  tank  increases,  causing  a  higher-­‐pressure  build-­‐ up.       The  transfer  of  LNG  requires  a  certain  pressure  difference,  which  generally  is  determined  by  the  cargo   pump  capacity  and  the  pressure  in  the  receiving  tank.  The  larger  the  pressure  difference,  the  more   3 efficient  the  transfer.  For  TTS  bunkering  with  capacities  of  50  m /h,  a  typical  cargo  pump  can  deliver   at  around  4  barg.  In  a  warm  tank,  the  pressure  may  be  as  high  as  5  barg.  To  be  able  to  conduct  the   transfer  you  need  a  lower  pressure  in  the  receiving  tank  than  what  is  delivered  by  the  pump.    

 

12  

4.3.2  Step  2-­‐  Initial  Precooling  2   The  fixed  speed  cargo  pump  at  the  discharging  unit  also  requires  precooling.  Valves  in  step  1  remain   opened  and  additionally  valves  V3,  V4  and  V6  are  opened.  For  transfers  where  the  pressure   difference  between  the  discharging  and  receiving  unit  is  greater  than  2barg,  tank  1  pressure  will  be   49 utilized  as  a  driving  force.  This  makes  the  cargo  pump  redundant.      

Figure  9:  Bunkering  Procedure  Step  2  

 

  4.3.3  Step  3  –  Connection  of  Bunker  Hose   All  previously  opened  valves  are  now  closed.  Dedicated  discharging  units  may  be  fitted  with   specialized  hose  handling  equipment  (i.e.  hose  crane)  or  loading  arms,  to  deliver  the  bunker  hose  to   the  receiving  ship.  The  hose  is  connected  to  the  manifold.  Each  manifold  are  to  be  earthed  and  the   receiving  ship  shall  be  equipped  with  an  insulating  flange  near  the  coupling  to  prevent  a  possible   50 ignition  source  due  to  electrostatic  build-­‐up.  One  or  two  flexible  hoses  will  be  connected  between   the  units  –  one  liquid  filling  hose  and  one  vapor  return  hose  if  needed.  For  smaller  transfers  with   3 capacities  range  of  around  50-­‐200m /h,  and  where  the  receiving  tank  is  an  IMO  type  C  tank  with  the   possibility  of  sequential  filling,  a  vapor-­‐return  hose  will  generally  not  be  needed.  For  larger  transfer   rates  a  vapor  return  line  may  be  used  in  order  to  decrease  the  time  of  the  bunkering.  Still,  it  is  the   pressure  regulating  capability  of  the  receiving  tank  that  determines  whether  a  vapor  return  line  is   required  or  not.  This  step  will  visually  look  like  the  initial  drawing  of  the  entire  system  (Figure  7).  

 

13  

4.3.4  Step  4  -­‐  Inerting  the  Connected  System   Inert  gas,  nitrogen  (green),  is  used  to  remove  moisture  and  oxygen  (below  4%)  from  tank  2  and   associated  piping.  Inerting  is  accomplished  by  sequential  pressurization  and  depressurization  of  the   system  with  nitrogen.  Presence  of  moisture  in  the  tanks  or  pipes  will  create  hydrates,  which  is  a  form   51 of  ice  lumps  that  will  be  difficult  to  remove  from  the  system.  Oxygen  in  the  system  is  a  risk  as   explained  in  section  ‘2  LNG’.  Valves  opened:  V10,  V11,  V12  and  V16.    

Figure  10:  Bunkering  Procedure  Step  4  

 

4.3.5  Step  5  –  Purging  the  Connected  System   The  remaining  system  is  purged  with  NG  (until  it  reaches  97-­‐98%  ratio),  to  remove  remaining  nitrogen   according  to  engine  specifications.  Valve  V16  is  closed  prior  to  purging.  Valve  V15  is  opened,  natural   gas  is  now  moving  out  from  the  receiving  tank.  Venting  trace  amount  of  methane  through  the  mast   (vent  2)  is  current  practice.  Valve  V10  should  be  closed  quickly  after  the  pipes  have  been  cleaned  so   as  not  to  let  too  much  methane  escape  to  the  surroundings  through  the  vent.  The  industry  is  now   52 looking  for  zero  emission  solutions.      

Figure  11:  Bunkering  Procedure  Step  5  

 

 

14  

4.3.6  Step  6  –  Filling  Sequence     For  the  filling  sequence  both  bottom  filling  and  top  filling  (the  shower/spray)  can  be  used.  For  top   filling  valve  V15  remains  open,  for  bottom  filling  it  is  closed  and  valve  V13  is  opened.  To  start  the   transfer  from  tank  1  to  tank  2  valves  V3,  V4,  V7,  V8,  V11  and  V12  also  have  to  be  opened.  Common   practice  is  to  start  with  top  filling  as  this  will  reduce  the  pressure  in  the  fuel  tank  (tank  2),  and  then   move  over  to  bottom  filling  when  a  satisfying  pressure  is  achieved.  A  high  pressure  in  the  receiving   tank  will  make  it  harder  for  the  LNG  transfer  to  take  place  and  the  pump  would  have  to  work  harder.   An  example  of  a  tank  filling  sequence  and  associated  acceptable  levels  is  given  in  section  6.4.  

 

Figure  12:  Bunkering  Procedure  Step  6  -­‐  Bottom  Filling  

Figure  13:  Bunkering  Procedure  Step  6  -­‐  Top  Filling  (Spray)  

 

3

Transfer  speed  range  from  100-­‐1000m /h  depending  on  scenario,  tanks  and  equipment,  and  whether   bottom  or  top  filling  is  used.  Bottom  filling  can  take  much  higher  volumes  than  top  filling.  Bottom   filling  is  therefore  preferred  with  respect  to  time,  but  it  is  important  that  the  tank  pressure  allows  for   this  to  take  place.  Sequential  filling  i.e.  alterations  between  top  and  bottom  filling  during  the  transfer   is  also  standard  practice,  to  control  the  pressure  in  the  receiving  tank.       This  rate  can  be  withheld  during  the  transfer  until  agreed  amount  is  reached.  The  transfer  is  to  be   monitored  on  both  ships  with  regards  to  system  pressure,  tank  volume  and  equipment  behavior.  This   53 procedure  is  to  be  performed  for  each  tank  regardless  of  fuel  type.  Maximum  level  for  filling  the   LNG  tanks  is  98%  of  total  volume  according  to  class  rules,  but  is  normally  lower  for  system  design   reasons.    

15  

4.3.7  Step  7  –  Liquid  Line  Stripping   The  liquid  that  remains  in  the  bunker  hoses,  after  the  pump  has  stopped,  must  be  drained  before   disconnection.  Valves  V3,  V4  and  V11  on  discharging  unit  is  closed,  while  valve  V6  is  opened.  This   valve  links  to  the  top  of  the  fuel  tank  (tank  2).  This  process  creates  a  pressure  build-­‐up  due  to  a  rise  in   temperature  in  the  remaining  liquid  left  in  the  pipes  and  hose.  LNG  residuals  in  these  areas  are  forced   into  both  tanks.  Subsequent  opening  and  closing  of  the  shipside  valve  V12,  pushes  the  remaining  LNG   54 into  the  receiving  ships  tanks.    

Figure  14:  Bunkering  Procedure  Step  7  

 

4.3.8  Step  8  –  Liquid  Line  Inerting     Remaining  natural  gas  in  liquid  line  is  removed  by  inerting  gas  (nitrogen)  for  safety  reasons.  Valves  V6,   V7,  V8  and  V15  are  closed,  while  V10,  V11,  V12  and  V16  are  opened.  Venting  trace  amount  of   methane  through  the  mast  is  current  practice.  The  industry  is  now  looking  for  zero  emission   55 solutions.    

  4.3.9  Step  9  –  Disconnection   Upon  confirmation  of  transferred  amount  and  quality,  the  vessel  may  commence  disconnection  of   56 the  transfer  hose,  unmooring  and  departure.       Bunkering  time  will  vary  depending  on  bunkering  scenario,  transfer  rates,  system  and  equipment   57 design,  capacities,  and  the  use  of  vapor  return.  For  an  example  of  time  spent  see  Appendix  B.      

16  

4.4  Equipment   This  section  will  cover  some  of  the  essential  equipment  used  in  the  transferring  process.  Information   from  this  part  is  obtained  from  the  following  sources:  M.  Esdaile  and  D.  Melton,  Shell  Shipping,  LNG   Bunkering  Installation  Guidelines  SST02167,  2012  and  LNG  ship  to  ship  bunkering  procedure,  Swedish   Marine  Technology  Forum  and  DNV  Class  rules.     4.4.1  Tanks  

58

Figure  15:  IMO  Type-­‐C  Tank,  CRYO  AB  

 

4.4.1.1  Storage  Tank  –  Discharging  Unit   All  tank  types  -­‐  A,  B,  C  and  membrane  tanks  are  approved  for  LNG  cargo.  There  are  major  differences   in  usage  and  regulations  between  tanks  A  and  B  vs.  C.  If  tanks  A  and  B  are  to  be  used  it  is  seen  as  an   exception  and  several  risk  analysis  would  have  to  be  completed  for  each  individual  case,  to  document   its  safety.  The  tanks  are  categorized  correspondingly:     • Atmospheric  tanks:  Typically  atmospheric  tanks  would  be  IMO  type  A  and  B  tanks  or   membrane  tanks  and  have  a  design  pressure  below  0.7  barg.  The  atmospheric  tanks  cannot   be  pressurized  and  it  is  therefore  necessary  with  additional  equipment  for  pressure  control   and  deep-­‐well  pumps  to  ensure  sufficient  LNG  flow  to  the  engines.  In  order  to  operate  and   empty  the  tank  in  case  of  pump  breakdown,  redundancy  of  the  deep-­‐well  pumps  is   necessary.  The  main  advantage  with  an  atmospheric  tanks  is  its’  high  volume  utilization,  due   59 to  the  prismatic  shape.     • Pressure  tanks:  Tanks  with  pressure  above  0.7  barg  are  normally  type  C  tanks.  These  tanks   are  made  after  recognized  pressure  vessel  standards  given  in  the  IGC  Code.  There  are  several   designs  available;  cylindrical  tanks  with  or  without  vacuum  insulation,  or  bi-­‐lobe  tanks.  All   60 LNG  fuelled  ships  today  have  vacuum  insulated  IMO  type  C  tanks.   4.4.1.2  Fuel  Tank  –  Receiving  Ship   For  the  LNG  fuel  tank,  several  containment  systems  are  feasible,  with  many  new  tank  designs  under   development.  These  tanks  are  made  after  recognized  pressure  vessel  standards  given  in  the  IGC  Code.   The  tanks  are  cylindrical,  pressurized,  double  skinned  tank  systems  including  a  venting  system  for   discharging  excess  vapor.  These  features  are  crucial  in  vapor  management  and  maintaining  low   61 temperatures.       Type  C  tanks  have  a  maximum  operating  pressure  of  about  10  barg  and  are  approved  by  several  class   3 62 societies  as  fuel  tanks.  The  size  of  the  tank  will  vary  but  the  size  range  today  is  40-­‐250m .  The  tanks   are  equipped  with  both  bottom  filling  and  top  spray  features.  Through  spraying  sub  cooled  LNG  into   the  vapor  space  (gas  pillow)  of  the  tank  the  cold  liquid  will  condense  the  vapor  and  reduce  the  tank’s   pressure.  This  process  eliminates  the  need  for  a  vent  return  in  the  tank.  This  function  of  the  tank   63 could  create  a  100%  fill  situation.  To  comply  with  the  issue  of  overfilling,  the  tank  has  a  high-­‐level   switch,  which  will  activate  an  alarm.  This  will  automatically  shut  down  the  transfer  system  as  it  is   directly  linked  to  the  vessel’s  ESD  system.  As  previously  stated,  tanks  for  liquid  gas  should  not  be  filled   to  more  than  98%  full  at  the  reference  temperature,  where  the  reference  temperature  is  as  defined   in  the  IGC  Code,  paragraph  15.1.4.  Means  of  measuring  the  liquid  level,  both  volume  and  height,    

17  

within  the  tank  are  to  be  provided  and  installed  in  such  a  way  as  to  be  compliant.  The  preferred   means  of  level  measurement  is  a  radar  type  tank  measurement  system,  or  similar  technology,  which   64 is  also  able  to  measure  corresponding  pressures  and  temperatures  within  the  tank.     The  benefits  of  using  Type-­‐C  tanks  are  standard  tanks  with  long  experience,  high  bunkering  rates,   easy  installation,  and  the  ability  the  handle  pressure  build-­‐up  in  cases  of  zero  consumption.  The   65 disadvantages  are  space  requirements  due  to  its  cylindrical  shape.       4.4.2  Valves   The  valves  used  are  manifold  trip  valves  that  can  handle  both  liquid  and  vapor  transfers,  and  need  to   comply  with  regulations  set  in  EN1474.    A  manually  operated  stop  valve  and  a  remote  operated  shut   down  valve  in-­‐series,  or  a  combined  valve,  should  be  fitted  in  every  bunkering  line  on  both  units   66 (discharging  and  receiving).  The  valves  should  be  controlled  from  the  control  room  of  both  units.     4.4.3  Hose   The  flexible  cryogenic  hose(s)  with  a  single  wall  construction  are  used.  Insulation  should  be  applied  to   the  hose  for  safety  reasons  but  should  not  limit  the  flexibility  of  the  hose.  The  hoses  are  connected   67 via  electrical  insulated  flanges  made  of  steel,  an  emergency  quick  release  connector  (ERC).   68 Maximum  velocities:  vapor  30m/s  and  liquid  7-­‐10m/s.  Minimum  requirements  for  hoses  are  defined   by  the  international  standards:  EN  1472-­‐2  and  IGC  chapter  5.7/IMO  document  MSC.285(86).     Approved  bunker  hoses:  EN  12434,  BS  4089,  EN  1474  part  1  LNG  Transfer  arms  (being  revised  as  an   ISO),  EN  1474  part  2  LNG  Hoses.   4.4.4  Loading  arms   Loading  arms  will  be  subjected  to  the  requirements  of  the  new  ISO  LNG  bunkering  standard.  They   shall  be  designed  in  accordance  with  ISO  /  DIS  28460  and  EN  1474-­‐1,  Section  4,  Design  of  the  arms.   Weight,  size  and  handling  of  the  equipment  classified  as  cryogenic  will  affect  the  safety  assessment  of   the  given  operation.     The  equipment  used  during  TTS  today  does  not  include  loading  arms.  Hose  dimension  will  for  such   operations  be  around  4  inches.    For  STS  operations  the  dimensions  would  be  considerably  higher,  10   inches  or  more.  In  addition  to  that  you  have  torque  by  relative  movement  of  the  ship  in  relation  to   each  other,  making  the  need  for  loading  arms  necessary  to  ensure  that  the  hose  does  not  come  into   69 contact  with  water  or  the  steel  deck.  PTS  will  also  use  hoses  larger  than  TTS.  Additionally  the   installation  is  fixed  which  makes  the  option  to  use  loading  arms  even  more  favorable  as  it  secures   equipment  and  strengthens  safety  elements.     4.4.5  Pipes   Main  piping  systems  in  both  units  are:  liquid  bunker  line,  gas  return  line  and  nitrogen  supply  system.   The  pipelines  are  equipped  with  several  flow  meters  to  measure:  volume  delivered,  pressure  and   temperature  for  monitoring  of  the  operation.  Pipes  containing  LNG  or  associated  vapor  shall  be   double  walled  pipe  configurations  in  stainless  steel  with  perlite  filling  under  a  permanent  vacuum.     Pipe  work  should  be  fully  compliant  with  IGC  Code,  Section  6.2.     4.4.6  Pump   The  pump  is  designed  for  handling  cryogenic  material.  It  is  theoretically  possible  to  transfer  between   tanks  in  the  presence  of  a  delta  pressure  of  2  barg  or  more.    Seeing  as  the  pressure  difference  could   be  hard  to  control  and  maintain,  it  may  be  difficult  to  transmit  without  a  pump.  A  frequency   controlled  drive  for  the  pump,  which  will  allow  pump  speed  to  be  regulated  and  the  transmission  rate   70 accordingly  with  respect  to  pressure  and  temperature  is  recommended.  The  time  it  takes  to  refuel  is    

18  

critical  for  the  receiving  ship.  In  other  words,  if  you  want  to  optimize  the  transmission  rate  to   optimize  the  time  of  bunkering  a  variable  speed  pump  will  make  it  easier  to  achieve.   4.4.7  Emergency  Shutdown  Systems  (ESD)   “The  primary  function  of  the  ESD  system  is  to  stop  liquid  and  vapor  transfer  in  the  event  of  an  unsafe   71 condition  and  bring  the  LNG  transfer  system  to  a  safe,  static  condition.”  LNG  vessels  commonly  refer   to  the  emergency  shutdown  system  (ESD)  as  ESD1  and  the  emergency  release  system  (ERS)  as  ESD2.     4.4.8  Emergency  Release  Systems  (ERS)     To  comply  with  the  necessary  release  requirements,  an  ERS  is  usually  substituted  by  a  break  away   coupling  known  as  an  emergency  release  coupler  (ERC).     4.4.9  Emergency  Release  Couplers  (ERC)   The  ERC  unit  is  to  be  fitted  at  the  receiving  units  manifold  between  the  flexible  hose  and  the  flange   connection  of  the  receiver.  The  ERC  is  to  incorporate  integral  automatic  valves  that  will  close  when   separated,  either  by  nature  of  its  design  or  by  remote  motorized  operation.  Its  function  is  to  prevent   release  of  liquid  or  vapor  to  the  surroundings  through  rapid  closure.  Under  excessive  tension  it  serves   as  a  weak  link  providing  automated  release  to  avoid  the  hose  from  breaking.  It  allows  for  quick   connection  and  disconnection.  The  system  design  must  take  into  account  possible  ice  build-­‐up  and  its   72 effects  on  operation.  This  would  generally  be  a  requirement  for  all  types  of  equipment  in  contact   with  cryogenic  material.    

Figure  16:  Dry  Break  Coupling  (Mann  Teknik  AB)  

4.4.10  Control  and  Monitoring  Systems   Control  and  Monitoring  Systems  need  to  comply  with  the  IMO  document  MSC  285(86).  All   installations  need  to  be  equipped  with  control  monitoring  and  safety  systems.  The  most  essential   monitoring  system  is  gas  detection.  The  areas  that  are  critical  for  supervision  are  areas  where   unintended  release  of  gas  can  occur  such  as  manifold  areas,  double  walled  pipes  and  enclosed  areas   73 containing  pipe  work  associated  with  the  bunkering  operation.       The  control  and  monitoring  system  should  be  directly  linked  to  the  ESD.  The  individual  shutdown   initiators  will  vary  for  each  installation.  Minimum  control  and  monitoring  requirements,  on  both   distributing  and  receiving  units,  are:   1. Position  (open/closed)  and  high-­‐pressure  detector  in  all  bunker  manifold  valves.   2. Operation  of  any  manual  emergency  stop  push  button,   3. ‘Out  of  range’  sensing  on  the  fixed  loading  arm,   4. Gas  detection  (above  40%  LEL),   5. Fire  detection,   6. High-­‐pressure  and  high-­‐level  detectors  in  receiving  LNG  tank,   7. High/low-­‐pressure  and  high-­‐level  detectors  in  distributing  LNG  storage  tank.    

19  

5  Regulations     In  the  case  of  LNG  bunkering,  rule  development  concerning  safety,  technical,  operational  and  training   requirements  are  all  relevant  subjects  to  standardization.  The  cause  of  standardization  has  many   purposes.  The  most  important  usually  being:  certifying  safety.  In  general  it  is  seen  as  a  sign  of  quality.       There  are  several  organizations  and  establishments  that  cover  various  aspects  of  the  LNG  supply   chain  for  bunkering  of  gas-­‐fuelled  ships.  This  chapter  of  the  report  will  cover  the  most  relevant   standardization  bodies,  the  most  essential  standards  set  within  this  field  to  date  and  foreseen   governance  of  LNG  bunkering  operation.  This  report  is  based  on  the  development  of  the  upcoming   ISO  standard  on  LNG  bunkering  (ISO/TC  67/WG  10/PT1).  This  standard  will  be  discussed  in  greater   detail,  as  this  is  one  of  the  possible  documents  that  could  have  answers  to  some  of  the  questions  the   industry  is  facing  today.       Sources  used  for  this  part  are  mainly  from  Germanischer  Lloyd,  Final  report,  European  Maritime   Safety  Agency  (EMSA),  Study  on  Standards  and  Rules  for  Bunkering  of  Gas-­‐Fuelled  Ships,  Report  No.   2012.005,  and  Version  1.1/2013-­‐02-­‐15  

5.1  Standardization  Bodies     5.1.1  International  Maritime  Organization  (IMO)   The  International  Maritime  Organization  (IMO)  is  a  specialized  agency  within  the  United  Nations.    Its   area  of  responsibility  includes  the  safety  and  security  of  shipping,  and  the  prevention  of  marine   pollution  by  ships.  To  accomplish  these  objectives  the  IMO  is  adopting  its  own  standards,  and  revision   and  implementation  of  international  conventions  related  to  shipping.  The  Maritime  Safety  Committee   (MSC),  part  of  IMO  organization,  is  responsible  for  the  consideration  and  submission  of   recommendations  and  guidelines  on  safety.     5.1.2  International  Organization  for  Standardization  (ISO)   The  International  Organization  for  Standardization  (ISO)  develops  standards  on  an  international  level,   for  all  kinds  for  industries.  The  ISO  is  a  non-­‐governmental  organization  and  a  network  for  national   standard  bodies.  Regarding  shipping  related  matters  it  works  closely  with  IMO.     The  Technical  Committees  (TC)  develops  the  ISO  standards.  Under  every  TC  there  can  be  several   working  groups  (WG)  with  experts  involved  in  developing  the  ISO  standards.  TC’s  involved  in  the   development  of  standards  related  to  the  gas  industry  are:   • TC  28  Petroleum  products  and  lubricants   • TC  67  Materials,  equipment  and  offshore  structures  for  petroleum,  petrochemical  and   natural  gas  industries   • TC  193  Natural  Gas   5.1.3  Society  of  International  Gas  Tanker  &  Terminal  Operators  (SIGTTO)   The  Society  of  International  Gas  Tanker  &  Terminal  Operators  (SIGTTO)  represents  the  liquefied  gas   carrier  operators  and  terminal  industries.  Their  purpose  is  to  specify  and  promote  standards  and  best   practice  for  the  liquefied  gas  industries.   5.1.4  Oil  Companies  International  Marine  Forum  (OCIMF)   The  Oil  Companies  International  Marine  Forum  (OCIMF)  is  a  voluntary  association  with  an  interest  in   the  shipment  and  terminal  operation  of  marine  fuel.  Trough  promoting  continuous  improvement  in   standards  of  design  and  operation,  the  OCIMF  aims  to  encourage  the  safe  and  environmentally   responsible  operation  of  tankers,  terminals  and  offshore  support  vessels.    

20  

5.1.5  European  Committee  for  Standardization  (CEN)   The  European  Committee  for  Standardization  (CEN)  is  an  international  association  providing  a   platform  for  the  development  of  European  standards  and  technical  specifications.  CEN  is  the  only   recognized  European  organization  dealing  with  the  planning,  drafting  and  adoption  of  European   standards.    

5.2  International  Rules  and  Guidelines   The  following  outline  covers  current  rules  and  guidelines  most  relevant  to  the  bunkering  industry.  A   broader  list  of  standards  could  be  found  in  Appendix  D.     5.2.1  IMO  International  Gas  Code  (IGC)   The  IMO  IGC  Code,  are  international  regulations  for  gas  carrying  ships.  It  is  therefore  valid  and   mandatory  for  the  bunker  vessel/barge  (small  LNG  carrier).     5.2.2  IMO  International  Gas  Fuel  Interim  Guidelines  (MSC.285(86))   The  IMO  IGF  Interim  Guidelines  are  regulations  for  the  installation  of  natural  gas  fuelled  engines  in   ships.  It  applies  the  receiving  ship,  using  gas  as  ship  fuel.  These  interim  guidelines  are  limited  to   natural  gas  (methane)  as  fuel  and  internal  combustion  engines  as  energy  converters.  The  Interim  IGF   Guidelines  will  be  the  international  safety  standard  for  the  coming  years  until  a  general  ‘Code’  has   been  developed  and  set  into  force  as  part  of  the  International  Convention  for  the  Safety  of  Life  at  Sea   74 (SOLAS)  convention.  The  guidelines  are  called  interim,  as  they  are  not  yet  finalized.  Once  ratified  in   2014,  it  will  become  mandatory  for  all  gaseous  fuel  use  on  all  vessel  types.     5.2.3  SIGGTO:  Guidelines  for  LNG  transfer  and  Port  Operation   The  SIGTTO  guidelines  are  focused  on  large  scale  LNG  transfer  from  LNG  carriers,  both  for  transfer  to   terminal  and  for  STS  LNG  transfer.  Though  these  guidelines  are  for  large  scale  LNG,  many  of  the   75 aspects  could  be  used  within  the  STS  LNG  bunkering  projects.   5.2.4  OCIMF:  Guidelines  for  Oil  transfers,  Ship-­‐to-­‐Ship  oil  bunkering  procedures   The  OCIMF  guidelines  refers  to  transfer  of  oil,  but  many  of  the  elements  will  be  the  same  and  it  can   therefore  be  applied  to  LNG  bunkering.  In  fact,  several  of  the  LNG  bunkering  procedures  taking  place   today,  are  based  on  the  structure  of  the  OCIMF  guidelines.  Another  point  is  that  some  vessels  today   are  supplied  with  dual  fuel  engines,  which  makes  these  guidelines  applicable.     5.2.5  CEN  –  European  Standard   Covers  regulations  set  on  installation  and  equipment  applicable  to  the  LNG  chain.     • EN  1473  –  Installation  and  Equipment  for  Liquefied  Natural  Gas  –  Design  of  Onshore   Installations’  including  guidelines  for  the  design,  construction  and  operation  of  all  onshore   liquefied  natural  gas  installations  including  those  for  liquefaction,  storage,  vaporization,   transfer  and  handling  of  LNG;   • EN  1474  –  Installations  and  equipment  for  liquefied  natural  gas  -­‐  Design  and  testing  of   marine  transfer  systems     o Part  1:  ‘Design  and  testing  of  transfer  arms’  including  specifications  of  the  design,   safety  requirements  and  inspection  and  testing  procedures  for  liquefied  natural  gas   transfer  arms  intended  for  use  on  conventional  onshore  LNG  terminals;     o Part  2:  ‘Design  and  testing  of  transfer  hoses’  including  guidance  for  the  design,   material  selection,  qualification,  certification  and  testing  details  for  LNG  transfer   hoses;    

21  

o

Part  3:  ‘Offshore  transfer  systems’  including  qualification  and  design  criteria  for   offshore  LNG  transfer  systems;  

  5.2.6  Local  regulations  and  authorities   This  category  of  guidelines  and  regulations  will  depend  on  bunkering  location.     • Port  and  Sea  Regulations:  e.g.  Norwegian  Maritime  Directorate  (NMD)   • Onshore  regulations:  e.g.  European  Union  (EU),  National  Fire  Protection  Association  (NFPA)   and  Federal  Energy  Regulatory  Commission  (FERC)   • Training  requirements  for  crews:  The  International  Convention  on  Standards  of  Training,   Certification  and  Watch  keeping  for  Seafarers  (STCW)  convention    

5.3  The  ISO  Standard  –  ISO/TC  67/WG  10/PT1     The  ISO  standard  –  ISO/TC  67/WG  10/PT1  ‘Guidelines  for  Systems  and  Installations  for  Supply  of  LNG   as  Fuel  to  Ships  for  LNG  Bunkering  Procedures’  is  under  development  by  the  IMO.  Prior  to   establishing  a  standard  an  ISO  Technical  Specification  (ISO/TS)  has  to  be  created.  This  document  will   go  through  several  reviews  before  it  is  published  as  a  standard.     The  aim  of  the  document  is  to  provide  guidelines  for  how  LNG  bunkering  can  be  completed  safely  and   efficiently.  Outlining  the  main  principles  and  functional  requirements,  including  requirements  for   safety,  components  and  system  training.  Simultaneously,  it  expects  the  standard  to  affect  the   bunkering  industry  in  such  a  way  that  a  ship  can  refuel  in  any  port  across  the  world.  As  it  will  cover:   • Defining  the  procedures  to  design,  install,  operate  and  maintain  the  bunkering  loading  facility   with  regard  to  safety  aspects  and  environmental  conditions   • Promotion  of  standardization  of  the  interface  between  the  LNG  supplier  and  the  ship  both   with  regard  to  operations  and  hardware  as  an  effective  safety  measurement   76 • Provide  guidance  for  the  use  of  risk  assessment  as  part  of  the  design  and  planning  process     The  document  is  aimed  at  assisting:     • Suppliers  of  LNG  (bunkering  operators)   • Authorities  and  ports  that  will  authorize  the  bunkering   • Ship  owners  and  operators  of  vessels  (to  adapt  to  refueling  from  a  supplier)   • Equipment  suppliers  

 

22  

5.4  Foreseen  Governance  of  LNG  Bunkering  Operations   There  are  several  standardization  bodies  that  will  have  a  word  in  the  subject  of  LNG  bunkering.  Who   has  the  final  say  and  sets  the  defining  standard  with  regards  to  a  certain  element  of  the  procedure  in   a  given  port?  Below  is  a  figure  representing  foreseen  governance  over  LNG  bunkering  operations.      

77

Figure  17:  Foreseen  governance  of  LNG  bunkering  operations  

 

The  ports  and  states  have  the  final  word  in  any  operation  that  takes  place  within  their  geographical   boundaries.  The  individual  ports  and  states  establish  their  standards  and  regulations  with  reference   and  basis  in  the  ISO  standards  and  other  published  regulations.  On  site  the  ship  has  to  comply  with   port  and  state  legislation,  but  issues  on  site  can  often  go  beyond  the  set  rules.  Best  practice   approaches  acquired  through  experience  on  site  could  be  used  to  manage  the  operational   procedures.  

 

23  

6  On  Site   To  gain  knowledge  of  the  practice  of  bunkering  today,  the  course  “Gas  course  category  A,  B  and  C  –   for  crew  of  gas  fuelled  ships  was  attended.  The  course  of  two  days  included  both  theoretical  and   practical  approaches  to  bunkering,  as  well  as  taking  part  in  the  TTS  bunkering  of  Fjord1  in  Trondheim.   The  course  is  based  on  the  guidelines  of  MSC  285(86).       During  the  course,  several  scenarios  and  situations  in  need  of  standardization  or  regulation  was   highlight  by  the  operators.  They  also  commented  on  areas  where  the  technology  needs  to  advance.   Relevant  topics  to  the  bunkering  sequence  will  be  discussed  in  this  chapter.      

6.1  Best  Practice   Overall  the  process  today  is  based  on  a  current  best  practice  approach.  Acquiring  the  right   information  is  in  many  cases  placed  on  the  operators,  which  could  lead  to  unsafe  situations.  The   operators  felt  prepared  to  take  on  the  responsibility  after  the  course,  but  there  were  certain   questions  that  were  left  open  to  interpretation.  The  questions  were  especially  directed  towards  the   tank  filling  sequence  and  the  safety  zone  area  (discussed  in  sections  6.4  and  7.4).  If  the  LNG  bunkering   market  expands  rapidly,  a  problem  in  training  sufficient  numbers  of  operators  could  arise.  Until  fully   regulated,  key  information  could  be  neglected  through  the  best  practice  approach      

6.2  Bunkering  Area   The  coupling  between  bunker  hose  and  pipe  is  a  ‘Links’  threaded  unit  that  opens  and  close  in   opposite  directions  of  normal  couplings.  If  a  leak  is  to  occur  it  needs  to  be  tightened  quickly.  In  this   event  the  operator  might  react  intuitively,  a  situation  that  might  lead  to  a  further  opening  of  the   coupling  rather  than  tighten  it.  The  wrench  used  to  tighten  the  couplings  therefore  needs  to  be  on  at   all  times  during  transfers  and  indicate  the  right  direction  of  closing.       In  addition,  the  hose  couplings  area  on  the  receiving  ships  side  where  faced  with  space  constraints.   Forcing  the  operator  to  crawl  over  or  under  the  bunker  hose  to  reach  valves  and  coupling  during  the   procedure,  further  provided  stress  to  the  operation.  In  both  cases  he  would  come  in  direct  contact   with  the  bunker  hose,  a  situation  that  could  lead  to  cryogenic  injuries.     The  equipment  used  and  layout  will  depend  on  the  producers,  and  proper  directions  for  usage  would   have  to  be  provided  on  a  case-­‐by-­‐case  basis.  Nevertheless  there  is  clearly  need  for  standards  on  what   is  appropriate  layout  to  ensure  safe  and  reliable  operation.  Other  parts  of  the  machinery  e.g.  tank   location  in  the  ship  is  clearly  defined  and  regulated  in  previous  publications.      

6.3  Purging     6.3.1  Zero  Emission  Solutions   Nitrogen  is  used  for  purging  both  prior  and  post  filling  sequence  (explained  in  section  4.2  Procedure).   In  both  stages  methane  left  in  the  pipes  will  currently  be  vented  through  the  mast.  If  not  vented   nitrogen  will  enter  the  receiving  tank  and  here  it  will  mix  with  the  “gas  pillow”  in  the  top  of  the  tank.   The  “gas  pillow”  is  vaporized  LNG  in  the  tank.  Some  suppliers  of  the  bunkering  systems  used,  have   proposed  to  leave  some  nitrogen  in  the  pipes,  to  comply  with  zero  emission  practice.  The  nitrogen    

24  

will  then  later,  when  the  filling  sequence  starts,  be  transported  to  the  receiving  tanks.  However  this   solution  is  not  encouraged,  as  too  much  nitrogen  in  the  fuel  tank  could  lead  to  later  operation   78 problems  when  the  ship’s  engine  will  run  on  the  tanks  gas  phase.  Overall  it  is  argued  by  researchers   that  the  purging  process  is  too  long,  allowing  for  unnecessary  amount  of  methane  to  be  released  to   the  surroundings.     6.3.2  Pressure  Testing   Nitrogen  is  also  used  for  testing  possible  leakages  through  pressure  testing  prior  to  filling  sequence.   There  are  however  several  issues  in  making  this  “test”  valid.       o Nitrogen  leakages  are  harder  to  detect  than  other  gases.  The  gas  detectors  are  set  to  detect   a  decrease  in  oxygen  content,  but  as  nitrogen  has  a  78%  concentration  in  air  already,  it  is   hard  to  distinguish.     o Even  though  nitrogen  has  not  leaked  through  the  system  natural  gas  can  leak  through.  This   could  be  rooted  in  three  possible  reasons:  couplings  loosen  over  time,  LNG/natural  gas  vapor   is  colder  or  the  fact  that  the  methane  molecules  (16g/mol)  are  smaller  than  nitrogen   molecules  (28g/mol).     During  construction,  a  normal  and  established  way  is  to  use  soap  solution  to  detect  leaks  or   alternatively  helium.  Helium  is  used  because  it  has  the  smallest  molecules  and  is  easier  to  detect  on   gas  detectors,  but  it  is  expensive.  Nitrogen  is  therefore  used  on  site.  Improving  technology  to  detect   leakages  will  therefore  be  advisable.      

6.4  Filling  Sequence  -­‐  Tank  Pressure  and  Temperature     The  top  spray  within  the  tank  is  used  to  regulate  the  pressure  and  to  cool  the  “gas  pillow”  which  is   created  at  the  top  of  the  fuel  tank.  The  gas  pillow  is  cooled  when  it  comes  into  contact  with  the  colder   LNG  added  to  the  tank.  This  will  reduce  the  temperature  and  consequently  reduce  the  pressure  of  the   tank.  A  transfer  supplied  from  truck  will  experience  that  the  quality  of  the  LNG  has  decreased  during   the  course  of  the  transportation.  The  decrease  in  quality  is  synonymous  with  the  rise  in  temperature.   Usually  the  temperature  will  rise  to  approximately  -­‐140°C  by  the  time  it  is  being  transferred.  To   comply  with  this  reduction  in  quality  the  pressure  in  the  tank,  which  also  has  increased,  will  be   reduced  prior  to  filling.       The  truck  will  decrease  its  pressure  prior  to  any  transfer  to  approximately  2barg.  It  is  then  able  to   deliver  against  a  pressure  of  up  to  8barg  in  the  receiving  (ship)  tank.  Normally  the  tank  pressure   onboard  the  ship  will  be  4-­‐6barg.  Any  transfer  usually  starts  with  top  filling  (the  shower)  to  decrease   the  pressure  of  the  tank.  If  the  tank  pressure  is  reduced  to  an  acceptable  level  the  process  will  be   changed  to  bottom  filling.  Bottom  filling  has  a  higher  velocity  and  is  essential  in  making  LNG   bunkering  time  efficient.  The  “acceptable”  tank  pressure  for  bottom  filling  in  this  scenario  is  3.5barg   or  lower.  In  the  operation  it  was  observed  that  this  pressure  was  never  obtained  and  the  ship   therefore  used  top  filling  for  the  entire  process,  making  the  transfer  slow.  If  this  is  a  recurring  incident   when  it  comes  to  LNG  bunkering  it  will  have  problems  competing  on  bunkering  time  with   conventional  fuels.     6.4  1  Standard  Quality  –  Explanation  of  the  Term   Standard  quality  is  obtained  straight  after  liquefaction  when  LNG  has  a  temperature  of  -­‐162°C  at   atmospheric  pressure.  During  transportation  the  temperature  of  the  LNG  will  rise,  which   subsequently  increases  pressure  in  any  tank  system.  These  changes  will  be  referred  to  as  a  reduction   in  quality  of  LNG.  LNG  quality  is  not  the  same  as  gas  quality,  which  refers  to  the  methane  content  in   natural  gas.  The  gas  quality  can  also  vary  substantially  and  will  depend  on  origin  and  producer.      

25  

7  Discussion   In  this  chapter  LNG  and  its  associated  bunkering  will  be  discussed  with  reference  to  the  current   framework  of  rules.  Some  of  the  gaps  in  present  standards  will  be  covered  and  connected  to  specific   experiences  from  small-­‐scale  bunkering  operations.  Specifically  with  a  focus  on  the  gaps  that  relate  to   LNG  quality  control  (temperature  and  pressure)  and  how  LNG  quality  affects  the  safety  if  a  leakage  is   to  take  place  (hazards  related  to  this  explained  in  section  2.3).  As  well  as  trying  to  point  out  some   areas  where  the  industry  will  benefit  from  standardization  to  achieve  the  necessary  economies  of   scale  that  will  make  LNG  a  more  commercially  attractive  fuel.  

7.1  Standards  -­‐  Current  Situation   Regulations  for  ships  storing  and  transporting  LNG  and  for  ships  using  LNG  as  fuel  exist  today,  and   also  for  the  transfer  process  from  one  ship  to  another,  as  long  as  both  ships  are  LNG  carriers  and   approved  according  to  the  IMO  IGC  code.  Regulations  for  transfer  of  LNG  from  an  LNG  carrier  to   another  ship  using  LNG  as  fuel,  does  however  not  exist  at  present.  Regulatory  framework  is  also   limited  when  it  comes  to  the  small-­‐scale  LNG  supply  chain  for  transport  on  inland  waterways.  If  LNG  is   to  become  a  viable  alternative,  regulation  and  practices  for  transfer  of  LNG  from  LNG  carriers  to  non-­‐ IGC  ships,  normally  referred  to,  as  LNG  bunkering,  needs  to  be  developed.     7.1.1  Bunkering  vs.  Large-­‐Scale  Transfers   The  existing  guidelines  from  SIGTTO  and  OCIMF  describe  the  handling  and  transporting  of  LNG  as   cargo  and  many  of  the  safety  requirements  could  be  adapted  to  LNG  bunkering.  Still,  these  standards   cannot  directly  be  used  for  regulating  the  bunkering  of  LNG  as  ship  fuel  due  to  the  fact  that  these   documents  are  dealing  with  the  transport  and  transfer  of  large  quantities  of  LNG  cargo  and  handled   79 by  an  experienced  crew  at  both  ends.  The  issues  are  different  when  it  comes  to  bunkering  and  using   LNG  as  marine  fuel  and  the  principles  need  to  be  downscaled  and  defined  accordingly.   7.1.2  LNG  vs.  Conventional  Fuels   LNG  bunkering  should  not  be  compared  with  bunkering  of  conventional  fuels,  because  the  relevant   issues  are  different.  With  diesel  or  other  marine  fuels  the  regulatory  framework  generally  address   environmental  emission  and  the  hydrocarbon  fire  hazard.  For  LNG  bunkering  this  is  less  of  an  issue  in   terms  of  spill  and  acceptable  levels  of  emission  are  intrinsically  achieved.  The  issue  with  LNG  is  rather   safety,  related  to  cold  and  unwanted  release  and  hazards  related  to  this,  and  the  explosive  nature  of   gasified  LNG  mixed  with  air.  Establishing  the  correct  safety  zones  and  clearly  stated  crew  training   demands  will  be  a  vital  part  of  this  process.  The  objective  being  to  make  the  process  safe  for  both   equipment  and  all  personnel  managing  the  bunkering  process.  These  are  all  elements  that  need  to  be   in  place  for  LNG  bunkering  to  compete  with  the  level  of  safety  guaranteed  when  bunkering  with   conventional  fuels.   7.1.3  Port  rules     International  port  rules  regarding  LNG  bunkering  is  currently  lacking,  forcing  each  port  that  wish  to   provide  LNG  as  marine  fuel,  to  develop  their  own  standards.  In  this  type  of  environment  it  is  very   likely  that  one  will  have  significant  difference  in  the  standards  as  a  result.  Today  practice  and   competence  are  withheld  within  the  companies  involved  in  bunkering  as  “trade  secrets”.  There  is   little  exchange  of  information  as  general  knowledge  is  low  and  knowledge  of  the  successful  procedure   is  considered  an  asset.  Additionally,  the  industry  and  standardization  bodies  believe  that  several  areas   that  will  be  relevant  in  the  future  are  in  many  cases  lacking  specific  experience  today.  This  will  be  a   critical  point  in  creating  guidelines  and  standards  for  the  future.      

 

26  

Establishing  common  guidelines  for  port  rules  with  associated  risk  assessment  approach  and  risk   acceptance  criteria  for  LNG  bunkering  procedures  will  probably  be  vital  for  the  small-­‐scale  industry  to   develop.  This  will  probably  also  affect  selection  of  equipment  leading  to  standardisation.   7.1.4  Bunkering  scenarios   Bunkering  TTS  is  relatively  well  known  process,  but  it  is  still  not  placed  in  a  regulated  format.  The   country  that  currently  has  most  practical  bunkering  experience  is  Norway.  Practice  in  this  region  is   80 however  limited  to  small  volumes  bunkered  with  hoses  from  stationary  land  tanks  or  trucks.  The   hope  is  to  expand  the  use  further  through  STS  bunkering.       Certain  parts  of  the  technology  required  for  STS  bunkering  is  present  in  STS  of  LNG  by  cargo  ships   operating  offshore  (at  sea,  not  in  a  port  environment).  For  most  of  these  components  it  will  only  be  a   matter  of  downscaling.  Other  parts  of  the  technology  for  LNG  bunkering  need  a  unique  design  and   specifications,  like  the  loading  arms.       As  mentioned  earlier,  bunkering  from  small  LNG  vessels  or  barges  (STS)  is  the  most  feasible  and   efficient  solution.  In  that  they  can  load  at  full-­‐scale  terminals  and  transport  much  higher  volumes  than   trucks.  This  allows  for  lower  frequency  of  filling  at  the  large-­‐scale  terminals  that  needs  to  consider   their  logistics  planning.  Frequent  bunkering  directly  from  the  large-­‐scale  terminals  is  not  considered   effective  use  of  the  terminal  investment.     For  terminal  bunkering  to  become  efficient  the  terminal  infrastructure  and  smaller  terminals  in   various  markets  needs  to  be  developed.  Dispersed  smaller  terminals  could  be  equipped  to  provide  all   the  bunkering  scenarios  and  is  therefore  an  essential  step  in  developing  the  future  natural  gas   infrastructure.      

7.2  ISO/TC  67/WG  10   The  ISO  Technical  Report  is  near  completion.  After  reviewing  the  draft  report  it  is  clear  that  it  will   cover  several  key  elements  important  for  an  international  initiation  of  LNG  bunkering  (listed  under   section  5.3).  The  report  focuses  on  risk  assessment  approaches,  to  ensure  safety  and  efficiency  during   LNG  bunkering.  Overall  the  guideline  is  a  vital  step  in  the  right  direction  as  it  has  opened  for   discussion  between  the  industry  and  standardization  bodies,  and  promoted  critical  thinking  with   regards  to  what  is  currently  missing  from  the  framework.     7.2.1  Lacking  elements   The  report  is  not  intended  to  cover  every  aspect  of  LNG  bunkering  and  the  industry  will  still  be  left   with  unanswered  questions.  Some  important  features  not  yet  fully  defined  and  formalized  are;  a  clear   definition  of  the  bunkering  process,  division  of  responsibilities,  the  volume  transfer  size  range  it   should  be  limited  to  and  the  distinctions  between  small  and  large-­‐scale  operations.       Currently  LNG  bunkering  experience  is  limited,  and  the  industry  does  not  feel  equipped  to  define   rules  on  such  a  detailed  level.  As  experience  increases,  the  standardization  bodies  and  industry  will   probably  increase  its  work  to  establish  the  relevant  regulations.     7.2.2  Implementation   When  the  ISO  Technical  Report  is  completed  it  will  only  be  a  guideline.  To  obtain  the  necessary   influence  on  the  international  rule  framework  it  will  have  to  be  cascaded  into  other  standards  and   regulations.        

27  

Nevertheless,  even  if  not  implemented  on  an  international  basis,  the  ISO  report  will  be  an  asset  to   state  ports  wishing  to  provide  LNG  as  bunkering  options.  Individual  port  states  can  develop  their  own   regulations  with  reference  to  the  ISO  standard.  Establishing  comprehensive  standards  is  an  extensive   and  demanding  process  and  ports  rarely  have  the  competence  to  generate  all  the  rules  and   requirements  themselves.   7.2.3  Equipment   One  of  the  elements  that  the  ISO  Technical  Report  describes  and  establishes  comprehensively  is  the   appropriate  equipment  for  LNG  bunkering.  With  reference  to  past  publications  and  qualification  test,   the  report  gives  a  full  list  over  equipment  for  both  onshore  installations  (TTS  and  PTS)  and  side-­‐by-­‐ side  installations  (STS).  The  equipment  described  in  chapter  4.4  is  based  on  this  list.       Uniform  equipment  and  solutions  is  important  with  respect  to  international  growth.  If  providers  in   the  industry  are  operating  with  distinct  equipment  only  applicable  to  their  solution,  flexibility  will  be   limited.  It  is  therefore  crucial  to  gather  around  a  set  of  proven  designs,  set  trough  appropriate  tests   corresponding  with  safety  demands.      

7.3  Passengers   The  regulatory  framework  is  currently  missing  documentation  and  risk  analysis  when  it  comes  to   passengers  on  gas-­‐fuelled  ships.  Due  to  the  uncertainty  this  creates,  several  ferries  have  to  unload   their  passengers  before  LNG  bunkering  is  commenced.  This  creates  difficulties  in  logistic  for  the  ship   owners  and  makes  use  of  LNG  as  fuel  more  arduous  for  ferries,  considering  that  some  ferries  have   passengers  onboard  at  all  times.       In  most  situations  the  maritime  authorities  or  flag  states  enforce  these  restrictions,  in  some  other   cases  it  can  be  the  ship-­‐owners  them  self.  The  respective  authorities  can  approve  bunkering  with   passengers  onboard  on  a  case-­‐by-­‐case  basis.  A  comprehensive  risk  analysis  of  the  operation  will  in   this  case  be  performed.  In  Sweden,  the  Viking  Grace  is  being  bunkered  with  passengers  onboard,  but   in  Norway  the  practice  is  till  under  debate.       Fjordline  (Norway)  has  several  ferries  in  operation  that  uses  LNG  fuel.  They  have  done  studies  on  the   safety  aspects  of  having  people  onboard  during  LNG  bunkering.  The  studies  have  been  carried  out  as   Fjordline  ferries  in  most  cases  have  passenger  on  at  all  times.  Overall  the  judgment  was  that   bunkering  with  today’s  systems  imposes  negligible  safety  treats  to  the  passengers.  Other  findings   were  that  as  long  as  passengers  remain  inside  the  ship  (not  outside  on  deck  etc.)  the  environment  on   the  ship  is  actually  much  safer  than  on  the  terminal.  The  most  important  safety  measure  was  found  to   be  getting  people  of  deck  where  they  could  be  exposed  to  any  spills  from  the  gas  mast.  Risk  of   creating  fire  and  explosions  are  minor,  as  explained  in  part  2.       The  question  comes  down  to,  what  are  the  boundaries  of  the  safety  zones?  Is  it  realistic  that  LNG   imposes  such  a  large  treat  that  passengers  should  not  be  allowed  onboard  during  bunkering?      

7.4  Safety  Zones   At  the  heart  of  safety  is  definition  of  appropriate  safety  zones.  Safety  zones  are  classified  based  on   level  of  explosion  hazards.  The  zones  are  divided  by  the  likelihood  of  presence  of  an  explosion   81 atmosphere  and  the  duration  of  such  presence  (Ref:  IEC  60070-­‐10).     • Zone  0:  an  area  constantly  subjected  to  risk  of  an  explosive  atmosphere,  for  long  periods  of   time  or  frequently.      

28  

Zone  1:  an  area,  which  under  normal  operation  is  likely  to  be  exposed  to  an  explosive   atmosphere.     • Zone  2:  an  area,  which  under  normal  operation  is  not  exposed  to  an  explosive  atmosphere.  If   an  explosive  atmosphere  is  to  be  formed  it  will  be  for  a  short  duration  of  time.     If  a  leak  is  to  take  place  the,  LNG  and  LNG  vapor  will  spread  differently  depending  on  gas  quality  at   the  point  of  leakage.  All  LNG  spills  will  eventually  evaporate,  but  the  time  and  distance  it  travels   before  it  is  completely  evaporated  will  vary.  Parts  of  the  LNG  will  be  as  a  liquid  pool  on  the  ground  (or   any  surrounding  surface),  the  rest  will  be  a  gas  cloud  of  LNG  vapor  as  it  evaporates  when  exposed  to   the  warmer  air.  Poor  quality  LNG  will  create  gas  clouds  that  last  longer  and  travel  further.  The  reason   for  this  is  that  the  temperature  difference  between  surrounding  air  and  LNG  is  smaller  (delta  T),   making  the  evaporation  process  slower.  This  increases  the  hazardous  areas,  making  the  relevant   safety  zone  larger.       The  approved  quality  of  LNG  for  bunkering  will  be  hard  to  impose  in  any  standards  on  an  international   level.  Acceptable  levels  would  have  to  be  established  on  a  ship-­‐owner  level,  where  suppliers  and   customers  make  individual  demands  and  arrangements.  Nevertheless,  several  measures  can  be  taken   to  improve  the  safety  element  for  this  threat.     • Common  procedures  for  definition  of  natural  gas  and  LNG  quality  and  sampling  could  be   established.  Forcing  suppliers  to  report  on  LNG  quality  level  so  that  correct  measures  could   be  met.     • Clear  outline  on  the  environmental  and  safety  aspects  of  release  of  methane  –  implemented   as  part  of  crew  training  to  make  workers  more  aware.   • Establishing  standards  concerning  common  safety  distances  depending  on  LNG  quality  –  this   will  force  suppliers  and  customers  to  be  more  attentive  to  the  level  of  quality  they  are   dealing  with.         •

 

29  

8  Conclusion   In  the  offshore  industry  standards  are  required  to  create  solutions  that  works.  For  economies  of  scale   to  be  achieved  in  the  LNG  bunkering  industry  and  the  positive  driving  force  it  contributes  to  take   presence,  the  required  level  of  standardization  needs  to  be  reached.       Presently  there  is  a  great  potential  and  an  interesting  technology  supporting  future  expansion  within   this  market.  In  some  parts  of  the  world  there  are  already  favorable  environmental  aspects  that   provide  substantial  economic  benefits  by  making  use  of  this  technology.     In  areas  where  small-­‐scale  distribution  is  practiced  the  industry  is  facing  high  economical  costs.  All   additional  and  restructuring  costs  must  be  streamlined  and  standardized  so  that  consumers  see  the   potential,  and  desire  change.  The  industry  is  such  that  we  choose  the  cheapest  solutions,  as  long  as  it   works  and  is  safe.  Changing  to  something  new  and  unfamiliar  needs  to  provide  a  real  benefit  if  the   current  well  know  solution  is  safe  and  reliable.  Economic  potential  therefore  have  to  be  proven  over   an  extended  time.       Health,  safety  and  environmental  aspects  are  today  controlled  and  maintained  to  a  much  greater   extent  than  when  conventional  fuels  were  introduced  decades  ago.  Injuries  or  fatalities  are  costly  for   the  industry  and  customers  must  be  able  to  guarantee  their  employees'  safety.  Classic  bunkering  has   had  many  years  to  establish  the  necessary  security  measures.       Bunkering  of  LNG  must  compete  with  this  established  level  of  security.  Safety  zones  and  other  safety   measures  must  be  identified  and  documented  for  the  solution  to  be  competitive.  To  be  adopted,   standard  methods  and  regulatory  regimes  must  be  implemented  as  widely  as  possible.

 

30  

Appendix  A    

(Source:  naturalgas.org  http://naturalgas.org/overview/background.asp  accessed:  24.04.2013)    

 

 

31  

Appendix  B   Example  of  ship-­‐to-­‐ship  timeline:  total  time  50  minutes  for  the  whole  transfer  of  65  tons  of  LNG.     Joint  venture  project  “LNG  bunkering  Ship  to  Ship”  carried  out  by  Swedish  Marine  Technology  Forum,   FKAB  Marine  Design,  Linde  Cryo  AB,  Det  Norske  Veritas  (DNV),  LNG  GOT  and  White  Some  AB.        

 

32  

Appendix  C   Standardization  bodies     Extensive  list,  covering  standardization  bodies  relevant  to  the  bunkering  industry.     Sources:  Germanischer  Lloyd,  Final  report,  European  Maritime  Safety  Agency  (EMSA) Study  on  Standards  and  Rules  for  Bunkering  of  Gas-­‐Fuelled  Ships,  Report  No.  2012.005,  Version   1.1/2013-­‐02-­‐15   International  Maritime  Organisation  (IMO)   Most  relevant  IMO  regulations  related  to  the  LNG  supply  chain  are:   • The  International  Convention  for  the  Safety  of  Life  at  Sea  (SOLAS)  convention  including   requirements  for  maritime  fuels;   • The  International  Convention  on  Standards  of  Training,  Certification  and  Watch  keeping  for   Seafarers  (STCW)  convention  including  training  requirements  for  crews;   • The  ‘International  Code  for  Construction  and  Equipment  of  Ships  Carrying  Liquefied  Gases  in   Bulk  (IGC  Code,  referenced  within  SOLAS  Chapter  VII,  Part  C)’  including  requirements  for  the   construction  and  operation  of  LNG  tanker;   • The  ‘Interim  Guidelines  on  Safety  for  Natural  Gas-­‐Fuelled  Engine  Installations  in  Ships   MSC.285(86)’;   • The  ‘International  Code  of  Safety  for  Ships  using  Gases  or  other  low  Flashpoint  Fuels  (IGF   Code,  in  development,  will  be  referenced  within  SOLAS)  including  requirements  for  the   construction  and  operation  of  gas-­‐fuelled  ships.     International  Organisation  for  Standardisation  (ISO)   Most  important  standards  related  to  the  LNG  supply  chain  are:   • The  Standard  for  ‘Installation  and  equipment  for  liquefied  natural  gas  –  Ship  to  shore   interface  and  port  operations  (ISO  28460:2010)’  including  the  requirements  for  ship,   terminal  and  port  service  providers  to  ensure  the  safe  transit  of  an  LNG  carrier  through  the   port  area  and  the  safe  and  efficient  transfer  of  its  cargo;   • The  ‘Guidelines  for  systems  and  installations  for  supply  of  LNG  as  fuel  to  ships  (currently   under  development  in  the  ISO  Technical  Committee  67  Working  Group  10)  including   requirements  for  safety,  components  and  systems  and  training;   • ISO  10976:2012  “Refrigerated  light  hydrocarbon  fluids.  Measurement  of  cargoes  on  board   LNG  carriers.  The  standard  provides  accepted  methods  for  measuring  quantities  on  LNG   carriers  for  those  involved  in  the  LNG  trade  on  ships  and  onshore.  It  includes  recommended   methods  for  measuring,  reporting  and  documenting  quantities  on  board  of  these  vessels  and   is  intended  to  establish  uniform  practices  for  the  measurement  of  the  quantity  of  cargo  on   board  LNG  carriers  from  which  the  energy  is  computed.     International  Electrotechnical  Commission  (IEC)   Most  important  standards  related  to  the  LNG  supply  chain  are:   • The  International  Standard  ‘IEC  60092-­‐502  –  Electrical  installations  in  ships  –  Part  502:   Tankers  –  Special  features’  including  hazardous  area  classification;   • ‘IEC  60079  –  Electrical  Apparatus  for  Explosive  Gas  Atmospheres’;  

 

33  



‘IEC  61508  –  Functional  Safety  of  Electrical/Electronic/Programmable  Electronic  Safety-­‐ Related  Systems’.  

  Society  of  International  Gas  Tanker  &  Terminal  Operators  (SIGTTO)   Most  important  guidelines  related  to  the  LNG  supply  chain  are:   • The  ‘LNG  Ship  to  Ship  Transfer  Guidelines’  including  guidance  for  safety,  communication,   maneuvering,  mooring  and  equipment  for  vessels  undertaking  side-­‐by-­‐side  ship  to  ship   transfer;   • ‘Liquefied  Gas  Fire  Hazard  Management’  including  the  principles  of  liquefied  gas  fire   prevention  and  fire  fighting;   • ‘ESD  Arrangements  &  linked  ship  /  shore  systems  for  liquefied  gas  carriers’  including   guidance  for  functional  requirements  and  associated  safety  systems  for  ESD  arrangements;   • ‘Liquefied  Gas  Handling  Principles  on  Ships  and  in  Terminals’  including  guidance  for  the   handling  of  LNG,  LPG  and  chemical  gases  for  serving  ship’s  officers  and  terminal  operational   staff;   • ‘LNG  Operations  in  Port  Areas’  including  an  overview  of  risk  related  to  LNG  handling  within   port  areas.     Oil  Companies  International  Marine  Forum  (OCIMF)   Most  important  guidelines  related  to  the  LNG  supply  chain  are:   • The  ‘International  Safety  Guide  for  Oil  Tankers  &  Terminals  (ISGOTT)’  published  by  OCIMF   together  with  the  International  Chamber  of  Shipping  (ICS)  and  the  International  Association   of  Ports  and  Harbours  (IAPH)  including  operational  procedures  and  shared  responsibilities  for   operations  at  the  ship/shore  interface;   • The  ‘Ship  to  Ship  Transfer  Guide  (Liquefied  Gases)’  published  together  with  the  ICS  and   SIGTTO  including  guidance  for  safety,  communication,  manoeuvring,  Mooring  and   equipment  for  vessels  undertaking  ship  to  ship  transfer  of  liquefied  gases  between  ocean-­‐ going  ships;   • The  ‘Ship  Inspection  Report  Programme  (SIRE)  –  Vessel  Inspection  Questionnaires  for  Oil   Tankers,  Combination  Carriers,  Shuttle  Tankers,  Chemical  Tankers  and  Gas  Carriers’  which   enabled  OCIMF  members  to  share  their  ship  inspection  reports  with  other  OCIMF  members.   European  Committee  for  Standardisation  (CEN)   The  European  standards  are  developed  by  Technical  Committees  (TC)  ,which  consists  in  of  a  panel  of   experts  and  is  established  by  the  Technical  Board  (Figure  7).  The  Technical  Committees  under  which   working  groups  (WG)  may  exist  in  which  the  experts  develop  the  EU  standards  for  the  gas  industry  are   • CEN/TC  12  Materials,  equipment  and  offshore  structures  for  petroleum,  petrochemical  and   natural  gas  industries   • CEN/TC  234  Gas  infrastructure   • CEN/TC  235  Gas  pressure  regulators  and  associated  safety  devices  for  use  in  gas  transmission   and  distribution   • CEN/TC  237  Gas  meters   • CEN/TC  282  Installation  and  equipment  for  LNG     Most  important  standards  related  to  the  LNG  supply  chain  are:   • European  Standard  ‘EN  1160  Installations  and  equipment  for  liquefied  natural  gas.  General   characteristics  of  liquefied  natural  gas  and  cryogenic  materials’  including  guidance  on   characteristics  of  liquefied  natural  gas  and  cryogenic  materials;    

34  









• •

 

European  Standard  ‘EN  1473  –  Installation  and  Equipment  for  Liquefied  Natural  Gas  –  Design   of  Onshore  Installations’  including  guidelines  for  the  design,  construction  and  operation  of  all   onshore  liquefied  natural  gas  installations  including  those  for  liquefaction,  storage,   vaporization,  transfer  and  handling  of  LNG;   European  Standard  ‘EN  1474  -­‐  1  –  Installations  and  equipment  for  liquefied  natural  gas  -­‐   Design  and  testing  of  marine  transfer  systems  –  Part  1:  Design  and  testing  of  transfer  arms’   including  specifications  of  the  design,  safety  requirements  and  inspection  and  testing   procedures  for  liquefied  natural  gas  transfer  arms  intended  for  use  on  conventional  onshore   LNG  terminals;     European  Standard  ‘EN  1474  -­‐  2  –  Installations  and  equipment  for  liquefied  natural  gas  -­‐   Design  and  testing  of  marine  transfer  systems  –  Part  2:  Design  and  testing  of  transfer  hoses’   including  guidance  for  the  design,  material  selection,  qualification,  certification  and  testing   details  for  LNG  transfer  hoses;   European  Standard  ‘EN  1474  -­‐  3  –  Installations  and  equipment  for  liquefied  natural  gas  -­‐   Design  and  testing  of  marine  transfer  systems  –  Part  3:  Offshore  transfer  systems’  including   qualification  and  design  criteria  for  offshore  LNG  transfer  systems;   European  Standard  ‘EN  13645  Installations  and  equipment  for  liquefied  natural  gas  –  Design   of  onshore  installations  with  a  storage  capacity  between  5  t  and  200  t’;   European  Standard  ‘EN  14620  Design  and  manufacture  of  site  built,  vertical,  cylindrical,  flat-­‐ bottomed  steel  tanks  for  the  storage  of  refrigerated,  liquefied  gases  with  operating   temperatures  between  0°C  and  -­‐165°C’.  

35  

Reference  list                                                                                                                                         1  James,  G.  2013.  Riding  The  Wave.  American  Gas,  April     2  International  Energy  Agency.  2011.  Are  We  Entering  a  Golden  Age  of  Gas?.  World  Energy  Outlook.   [report].   3  James,  G.  2013.  Heavy  Duty  Stuff:  LNG  as  Transport  Fuel.  American  Gas,  April.   4  LNG  Shipping  Review.  2012.  Veka-­‐Group  Develops  Small  LNG  Tankers.   5  Shell  Shipping.  2012.  LNG  Bunkering  Installation  Guidelines  SST02167.  [report].   6  Blogs.dnv.com.  2012.  LNG  is  the  first  step  towards  carbon  neutral  shipping  |  DNV  Blog  –  Energy  of   the  Future.  [online]  Available  at:  http://blogs.dnv.com/lng/2012/07/lng-­‐is-­‐the-­‐first-­‐step-­‐towards-­‐ carbon-­‐neutral-­‐shipping/  [Accessed:  25  April  2013].   7  James,  G.  2013.  Heavy  Duty  Stuff:  LNG  as  Transport  Fuel.  American  Gas,  April.   8  LNG  Shipping  Review.  2012.  Veka-­‐Group  Develops  Small  LNG  Tankers.   9  Germanischer  Lloyd.  2013.  Final  Report  European  Maritime  Safety  Agency  (EMSA)  Study  on   Standards  and  Rules  for  Bunkering  of  Gas-­‐Fuelled  Ships.  [report].   10  Shell  Shipping.  2012.  LNG  Bunkering  Installation  Guidelines  SST02167.  [report].   11  James,  G.  2013.  Riding  The  Wave.  American  Gas,  April   12  “Financial  Times.  2013.  LNG  potential  as  transport  fuel  explored  -­‐  FT.com.  [online]  Available  at:   http://www.ft.com/cms/s/0/7e30cc94-­‐8969-­‐11e2-­‐92a0-­‐00144feabdc0.html#axzz2RTL19Aly   [Accessed:  25  April  2013].   13  Ltd.,  S.  2013.  Singapore  LNG  Corporation.  [online]  Available  at:  http://www.slng.com.sg/  [Accessed:   25  April  2013].   14  ”  Wsdot.wa.gov.  2000.  WSDOT  -­‐  Liquefied  Natural  Gas.  [online]  Available  at:   http://www.wsdot.wa.gov/Ferries/Environment/LNG.htm  [Accessed:  25  April  2013].   15    Maritime-­‐connector.com.  2007.  World's  first  LNG  powered  passenger  ship  handed  over  to  Viking   Line  -­‐  News.  [online]  Available  at:  http://maritime-­‐connector.com/news/general/world-­‐s-­‐first-­‐lng-­‐ powered-­‐passenger-­‐ship-­‐handed-­‐over-­‐to-­‐viking-­‐line/  [Accessed:  25  April  2013].   16  Portofantwerp.com.  2013.  The  Port  of  Antwerp  announces  another  significant  step  forward  in  its   LNG  policy  |  Port  of  Antwerp.  [online]  Available  at:  http://www.portofantwerp.com/en/news/port-­‐ antwerp-­‐announces-­‐another-­‐significant-­‐step-­‐forward-­‐its-­‐lng-­‐policy  [Accessed:  25  April  2013].   17  Swedish  Marine  Technology  Forum,  Linde  Cryo  AB,  FKAB  Marine  Design,  Det  Norske  Veritas  AS,  LNG   GOT  and  White  Smoke  AB.  2010.  LNG  ship  to  ship  bunkering  procedure.  Greenshipping.  [report].   18  Lars  Petter  Blikom,  Segment  Director  for  Natural  Gas,  DNV   19  Germanischer  Lloyd.  2013.  Final  Report  European  Maritime  Safety  Agency  (EMSA)  Study  on   Standards  and  Rules  for  Bunkering  of  Gas-­‐Fuelled  Ships.  [report].   20  James,  G.  2013.  Riding  The  Wave.  American  Gas,  April   21  Germanischer  Lloyd.  2013.  Final  Report  European  Maritime  Safety  Agency  (EMSA)  Study  on   Standards  and  Rules  for  Bunkering  of  Gas-­‐Fuelled  Ships.  [report].   22  Pettersen,  J.  2012.  Compendium  LNG  Technology.  TEP4185  Natural  Gas  Technology  -­‐  NTNU.   23  PNG  LNG  Project.  2007.  Environmental  Impact  Statement  .  [online]  Available  at:  :   http://www.pnglng.com/media/pdfs/environment/eis_attachment01.pdf  [Accessed:  4  April  2013].   24  Naturalgas.org.  2000.  NaturalGas.org.  [online]  Available  at:   http://www.naturalgas.org/naturalgas/processing_ng.asp  [Accessed:  19  April  2013].   25  Fredheim,  A.  and  Solbaa,  E.  2013.  Gas  Processing  Part-­‐I  Off-­‐shore  gas  condition  for  rich  gas   transport  .  TEP4185  Natural  Gas  Technology  -­‐  NTNU.   26  Blogs.dnv.com.  2013.  Basics  of  LNG  safety  |  DNV  Blog  –  Energy  of  the  Future.  [online]  Available  at:   http://blogs.dnv.com/lng/lars-­‐petter-­‐blikom/  [Accessed:  25  April  2013].    

36  

                                                                                                                                                                                                                                                                                                                                                                                          27  Klaussen,  Ø.  2013.  Gas  course  category  A,  B  and  C  -­‐  for  crew  of  gas-­‐fulled  ships.  Gassteknikk.   28  Blogs.dnv.com.  2013.  Forecast  marine  fuel  prices  |  DNV  Blog  –  Energy  of  the  Future.  [online]   Available  at:  http://blogs.dnv.com/lng/2013/03/forecast-­‐marine-­‐fuel-­‐prices/  [Accessed:  28  April   2013].   29  Blogs.dnv.com.  2012.  LNG  is  the  first  step  towards  carbon  neutral  shipping  |  DNV  Blog  –  Energy  of   the  Future.  [online]  Available  at:  http://blogs.dnv.com/lng/2012/07/lng-­‐is-­‐the-­‐first-­‐step-­‐towards-­‐ carbon-­‐neutral-­‐shipping/  [Accessed:  25  April  2013].   30  Shell  Shipping.  2012.  LNG  Bunkering  Installation  Guidelines  SST02167.  [report].   31  Det  Norske  Veritas.  2011.  DNV  report  on  the  potential  of  LNG  shipping  in  the  Baltic.  [report].   32  Svensen,  T.  2010.  The  age  of  LNG  is  here,  most  cost  efficient  solutions  for  ECA.  [e-­‐book]   http://cleantech.cnss.no/wp-­‐content/uploads/2011/06/2010-­‐DNV-­‐The-­‐age-­‐of-­‐LNG-­‐is-­‐here.pdf.   33  Det  Norske  Veritas.  2010.  Greener  Shipping  in  the  Baltic  Sea.  Managing  Risk  DNV.  [report].   34  Det  Norske  Veritas.  2010.  Greener  Shipping  in  the  Baltic  Sea.  Managing  Risk  DNV.  [report].   35  Blogs.dnv.com.  2013.  Forecast  marine  fuel  prices  |  DNV  Blog  –  Energy  of  the  Future.  [online]   Available  at:  http://blogs.dnv.com/lng/2013/03/forecast-­‐marine-­‐fuel-­‐prices/  [Accessed:  28  April   2013].   36  International  Energy  Agency.  2011.  Are  We  Entering  a  Golden  Age  of  Gas?.  World  Energy  Outlook.   [report].   37  Blogs.dnv.com.  2012.  Which  marine  fuel  do  you  want  to  be  cheapest?  |  DNV  Blog  –  Energy  of  the   Future.  [online]  Available  at:  http://blogs.dnv.com/lng/2012/08/which-­‐marine-­‐fuel-­‐do-­‐you-­‐want-­‐to-­‐ be-­‐cheapest/  [Accessed:  6  June  2013].   38  Det  Norske  Veritas.  2010.  Greener  Shipping  in  the  Baltic  Sea.  Managing  Risk  DNV.  [report].   39  Det  Norske  Veritas.  2010.  Greener  Shipping  in  the  Baltic  Sea.  Managing  Risk  DNV.  [report].   40  Det  Norske  Veritas.  2010.  Greener  Shipping  in  the  Baltic  Sea.  Managing  Risk  DNV.  [report].   41  Det  Norske  Veritas.  2010.  Greener  Shipping  in  the  Baltic  Sea.  Managing  Risk  DNV.  [report].   42  Shell  Shipping.  2012.  LNG  Bunkering  Installation  Guidelines  SST02167.  [report].   43  Shell  Shipping.  2012.  LNG  Bunkering  Installation  Guidelines  SST02167.  [report].   44  Det  Norske  Veritas.  2010.  Greener  Shipping  in  the  Baltic  Sea.  Managing  Risk  DNV.  [report].   45  Shell  Shipping.  2012.  LNG  Bunkering  Installation  Guidelines  SST02167.  [report].   46  YouTube.  2012.  Step  by  step  LNG  Bunkering  by  DNV.  [online]  Available  at:   http://www.youtube.com/watch?v=oZWuTWtp5Rs  [Accessed:  4  Mars  2013].   47  YouTube.  2012.  Step  by  step  LNG  Bunkering  by  DNV.  [online]  Available  at:   http://www.youtube.com/watch?v=oZWuTWtp5Rs  [Accessed:  4  Mars  2013].   48  Swedish  Marine  Technology  Forum,  Linde  Cryo  AB,  FKAB  Marine  Design,  Det  Norske  Veritas  AS,  LNG   GOT  and  White  Smoke  AB.  2010.  LNG  ship  to  ship  bunkering  procedure.  Greenshipping.  [report].   49  YouTube.  2012.  Step  by  step  LNG  Bunkering  by  DNV.  [online]  Available  at:   http://www.youtube.com/watch?v=oZWuTWtp5Rs  [Accessed:  4  Mars  2013].   50  YouTube.  2012.  Step  by  step  LNG  Bunkering  by  DNV.  [online]  Available  at:   http://www.youtube.com/watch?v=oZWuTWtp5Rs  [Accessed:  4  Mars  2013].   51  Klaussen,  Ø.  2013.  Gas  course  category  A,  B  and  C  -­‐  for  crew  of  gas-­‐fulled  ships.  Gassteknikk.   52  YouTube.  2012.  Step  by  step  LNG  Bunkering  by  DNV.  [online]  Available  at:   http://www.youtube.com/watch?v=oZWuTWtp5Rs  [Accessed:  4  Mars  2013].   53  Swedish  Marine  Technology  Forum,  Linde  Cryo  AB,  FKAB  Marine  Design,  Det  Norske  Veritas  AS,  LNG   GOT  and  White  Smoke  AB.  2010.  LNG  ship  to  ship  bunkering  procedure.  Greenshipping.  [report].   54  YouTube.  2012.  Step  by  step  LNG  Bunkering  by  DNV.  [online]  Available  at:   http://www.youtube.com/watch?v=oZWuTWtp5Rs  [Accessed:  4  Mars  2013].   55  YouTube.  2012.  Step  by  step  LNG  Bunkering  by  DNV.  [online]  Available  at:   http://www.youtube.com/watch?v=oZWuTWtp5Rs  [Accessed:  4  Mars  2013].    

37  

                                                                                                                                                                                                                                                                                                                                                                                          56  YouTube.  2012.  Step  by  step  LNG  Bunkering  by  DNV.  [online]  Available  at:   http://www.youtube.com/watch?v=oZWuTWtp5Rs  [Accessed:  4  Mars  2013].   57  YouTube.  2012.  Step  by  step  LNG  Bunkering  by  DNV.  [online]  Available  at:   http://www.youtube.com/watch?v=oZWuTWtp5Rs  [Accessed:  4  Mars  2013].   58  Anderson,  H.,  Lie  Strøm,  K.,  Mohn,  H.  and  Stokke,  K.  2011.  ADBT  market  and  opportunity   assessment  -­‐  DNV.  [e-­‐book].   59  Lars  Petter  Blikom,  Segment  Director  for  Natural  Gas,  DNV   60  Katrine  Lie  Strøm,  Technical  Consultant,  DNV   61  Swedish  Marine  Technology  Forum,  Linde  Cryo  AB,  FKAB  Marine  Design,  Det  Norske  Veritas  AS,  LNG   GOT  and  White  Smoke  AB.  2010.  LNG  ship  to  ship  bunkering  procedure.  Greenshipping.  [report].   62  Shell  Shipping.  2012.  LNG  Bunkering  Installation  Guidelines  SST02167.  [report].   63  Swedish  Marine  Technology  Forum,  Linde  Cryo  AB,  FKAB  Marine  Design,  Det  Norske  Veritas  AS,  LNG   GOT  and  White  Smoke  AB.  2010.  LNG  ship  to  ship  bunkering  procedure.  Greenshipping.  [report].   64  Katrine  Lie  Strøm,  Technical  Consultant,  DNV   65  Anderson,  H.,  Lie  Strøm,  K.,  Mohn,  H.  and  Stokke,  K.  2011.  ADBT  market  and  opportunity   assessment  -­‐  DNV.  [e-­‐book].   66  Swedish  Marine  Technology  Forum,  Linde  Cryo  AB,  FKAB  Marine  Design,  Det  Norske  Veritas  AS,  LNG   GOT  and  White  Smoke  AB.  2010.  LNG  ship  to  ship  bunkering  procedure.  Greenshipping.  [report].   67  Swedish  Marine  Technology  Forum,  Linde  Cryo  AB,  FKAB  Marine  Design,  Det  Norske  Veritas  AS,  LNG   GOT  and  White  Smoke  AB.  2010.  LNG  ship  to  ship  bunkering  procedure.  Greenshipping.  [report].   68  Shell  Shipping.  2012.  LNG  Bunkering  Installation  Guidelines  SST02167.  [report].   69  Lars  Petter  Blikom,  Segment  Director  for  Natural  Gas,  DNV   70  Lars  Petter  Blikom,  Segment  Director  for  Natural  Gas,  DNV   71  Shell  Shipping.  2012.  LNG  Bunkering  Installation  Guidelines  SST02167.  [report].   72  Shell  Shipping.  2012.  LNG  Bunkering  Installation  Guidelines  SST02167.  [report].   73  Shell  Shipping.  2012.  LNG  Bunkering  Installation  Guidelines  SST02167.  [report].   74  Shell  Shipping.  2012.  LNG  Bunkering  Installation  Guidelines  SST02167.  [report].   75  Swedish  Marine  Technology  Forum,  Linde  Cryo  AB,  FKAB  Marine  Design,  Det  Norske  Veritas  AS,  LNG   GOT  and  White  Smoke  AB.  2010.  LNG  ship  to  ship  bunkering  procedure.  Greenshipping.  [report].   76  Würsig,  G.  2013.  Prepare  for  bunkering  LNG  as  a  ship’s  fuel  in  2015  -­‐  DNV.  [e-­‐book].   77  Blikom,  L.  2013.  The  status  of  implementation  of  LNG  as  a  marine  fuel.  [e-­‐book]  LNG17  Houston:.   78  Dag  Stenersen,  Marintek/Sintef   79  Swedish  Marine  Technology  Forum,  Linde  Cryo  AB,  FKAB  Marine  Design,  Det  Norske  Veritas  AS,  LNG   GOT  and  White  Smoke  AB.  2010.  LNG  ship  to  ship  bunkering  procedure.  Greenshipping.   80  Erik  Skramstad,  Vice  President,  LNG  Segment,  DNV   81  Klaussen,  Ø.  2013.  Gas  course  category  A,  B  and  C  -­‐  for  crew  of  gas-­‐fulled  ships.  Gassteknikk.  

 

38  

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF