LLNL Explosives Handbook

May 31, 2016 | Author: rdugas | Category: N/A
Share Embed Donate


Short Description

Download LLNL Explosives Handbook...

Description

UCRL-51319^/fitr./)

PROPERTIES OF CHEMICAL EXPLOSIVES AND EXPLOSIVE SIMULANTS Compiled and edited by Brigitta M. Dobratz

December 15, 1972

Prepared for U.S. Atomic Energy Commission under contract No. W-7405-Eng-48

LANA/RENCE LIVERMORE LABORATORY University of Califomia/Livermore

TH;C

-

i | IQTI

• ,_ ,•

Mlh

,:^ji

DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

LAWRENCE UVERMORE LAB0RA1ORY Chtari«ya/CMR>rnit/lA«mnr«C»M»«(/]M550

UCRL-51319^

Bui-,/

PROPERTIES OF CHEMICAL EXPLOSIVES ANO EXPLOSIVE SIMULANTS Compiled and edited by Brigitta M. Dobratz MS. date: December 15, 1972 (Supersedes UCRL-6759, Vol. 1, and UCRL-14592)

-NOTICEThis report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, maizes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED NOTICE mtelns information ^uu^MBHsry nature ^ S i m ^ ^ ^ j u r e d p r i n u ^ ^ M i ^ ^ e r n a l use at the o r i g i n a t i n ^ l ^ k M ^ ^ ^ n s s u b j e c t to r e vision or c o r r e c t ^ | M i m ^ ^ | H ^ ^ o e 8 not repz%sent a tinalra^f^^ is p a s B ^ confidenc|Mirshould not be abstracted or" disaJ^P^ithout the approval of the originating lation or DTI Extension, Oak Ridge.

i

Contents Foreword Conversion Factors Glossary I. High Explosives 1. Introduction 2. Manufacture Specifications 3. Names and Formulations 4. Physical P r o p e r t i e s Physical State and Density Molecular Weight and Atomic Composition Melting Point, Boiling Point, and Vapor P r e s s u r e Crystallographic and Optical P r o p e r t i e s References 5. Chemical P r o p e r t i e s Heat of Formation Heat of Detonation Conapatibility Solubility References 6. Thermal P r o p e r t i e s Thermal Conductivity Thermal Expansion Specific Heat Thermal Stability

7.

.

.

.

.

.

.

Thermal Stability of L a r g e r Explosive Charges References Mechanical P r o p e r t i e s Static Mechanical P r o p e r t i e s Initial Modulus Creep Stress-Strain Relationships

vii viii ix 1-1 1-1 2-1 2-1 3-1 4-1 4-2 4-4 4-6 4-9 4-10 5-1 5-1 5-2 5-4 5-7 5-8 6-1 6-1 6-4 6-6 6-8 6-51 6-52 7-1 7-4 7-5 7-6 7-8

Failure Envelope Friction

7-9 7-10

Complex Shear . . . , ' Dynamic Mechanical P r o p e r t i e s Compressive S t r e s s - S t r a i n and Tensile Strength Hugoniot Data Sound Velocity

.

.

7-14 7-15 .7-15 7-17 7-21

-111-

8.

9.

References Performance Detonation Velocity Estimation Equations Chapman-Jouguet Detonation P r e s s u r e Cylinder Test Measurements of Explosive Energy Equation of State Detonation Energy References Sensitivity and Initiation Drop Weight Test Susan Test Comp B-3 Cyclotol 75/25 LX-02-1 LX-04-1 LX-07-2 LX-09-0 LX-10-0 LX-11-0 LX-14-0 Octol 75/25 PBX-9010 PBX-9011 PBX-9205 PBX-9404-03 PBX-9501 TNT

.

.

.

7-23 8-1 8-1 . 8-2 8-5 8-6 .8-8 8-10 8-12 8-14 9-1 9-1 9-3 9-5 9-6 9-7 9-8 9-9 9-10 9-11 9-12 9-13 9-14 9-15 9-16 9-17 9-18 9-19 9-20

XTX-8003 Skid Test Gap Test Shock Initiation Critical Energy Initial Shock P r e s s u r e References 10. E l e c t r i c a l P r o p e r t i e s Dielectric Constant References 11. Toxicity References

9-21 9-22 9-26 9-29 9-29 9-30 9-32 10-1 10-1 10-3 11-1 11-2

-iv-

7/74

II.

Mock Explosives 12. Introduction 13. Names and Formulations 14. Physical P r o p e r t i e s References 15. Thermal P r o p e r t i e s Thermal Conductivity and Specific Heat Thermal Expansion References 16. Mechanical P r o p e r t i e s Static Mechamical P r o p e r t i e s Initial Modulus Tension Creep Failure Envelope Friction Dynamic Mechanical P r o p e r t i e s Compressive Stress-Strain Hugoniot Data References . . . . . . . . III. Code Designations LLL Code Designations Formulations in Production (LX Code) Research Explosives (RX Code) LASL Code Designations IV. Data Sheets: Collected P r o p e r t i e s of Explosives and Energetic Materials V. Bibliography Chemical Analysis General Reference Works Health and Safety Initiation and Sensitivity Mechanical and Physical P r o p e r t i e s Performance Radiation Effects Thermal P r o p e r t i e s

7/74

.

.

.

.

.

12-1 12-1 13-1 14-1 14-1 15-1 15-1 15-4 15-4 16-1 16-2 16-2 16-3 16-4 16-5 16-6 16-6 16-7 16-8 17-1 17-1 17- 1 17-3 17-7 18-1 19-1 19-1 19-3 19-7 19-9 19-13 19-15 19-21 19-23

-V-



#

d

>

Foreword This handbook presents information axid data for high explosives of interest to p r o g r a m s of Lawrence Livermore Laboratory. The loose-leaf format is designed to permit easy revision and updating as new information and data become available. Thus, additions and corrections a r e welcomed by the compiler. High Explosives (HE) a r e divided into two c l a s s e s : initial detonating or p r i m a r y explosives and noninitiating or secondary HEs. The p r i m a r y HEs, such as azides and fulminates, a r e extremely sensitive to ignition by heat, shock, and electrical discharge; ignition goes to high-order detonation even for milligram quantities. Their use is therefore limited to squibs and stairting m a t e r i a l s for low-energy detonators. Since p r i m a r y explosives have little application here, their p r o p e r t i e s have been specifically excluded from this compilation. Hereafter, secondary explosives a r e designated as HEs. Since many of the secondary high explosives (which a r e formulated and manufactured within the AEC complex) a r e mixtures, the properties of the additives and binders used have been included. The data a r e the most up-to-date and accurate available to the knowledge of the compiler. Some data, however, can r e p r e s e n t only a range, an approximation, or comparative values; this is especially t r u e of explosive m i x t u r e s . Such cases a r e noted in the text as they occur. The s o u r c e s of information include textbooks, journal articles, technical r e p o r t s , memoranda, l e t t e r s , and personal communications. Various schemes considered in the past to annotate the tables with the apposite r e f e r e n c e s proved too cumbersome. However, an attempt is naade in this revision and will be continued in subsequent revisions to provide p r e c i s e r e f e r e n c e s to the information and data presented. Data not specifically referenced were obtained from UCRL-14592 ; further information and additional r e f e r e n c e s can be obtained from the compiler. References a r e listed at the end of each section. The compilation consists of sections on high explosives and mock explosives, code designations, data sheets on individual m a t e r i a l s , and a bibliography. A list of abbreviations precedes the section on high explosives. The data a r e given in the units (metric or English) in which they were reported originally. All values and units, however, a r e converted to the International System of Units (S.I.)^; throughout this handbook the SI values a r e given in parentheses following the values in English or m e t r i c units. The imits a r e given in the table below and on other tables and figures where used. Reference to a company or product name in this compilation does not imply approval o r recommendation of the product by the University of California o r the U. S. Atomic Energy Commission to the exclusion of others that may be suitable. P r o p e r t i e s of Chenaical Explosives, Lawrence L i v e r m o r e Laboratory, Rept. UCKL-145S2 (1965). 'Metric P r a c t i c e Guide. American Society for Testing and Materials, Philadelphia, E 380-70 (1970). 7/74

VI1

CONVERSION FACTORS Units and factors for conversion to SI system. Unit system Symbol U. S^British Angle C-J p r e s s u r e Creep compliance Density Detonation velocity Heat of ^ detonation Heat of . formation Initial modulus Length Pressure

Sliding velocity Specific heat^ Temperature

cgs deg

rad

1.745329 X 10-2

bar

Pa

10^

m2/N

1.450377 X 10-4

Mg/m^ km/s

1

cal/g

J/kg

4.184 X 10^

cal/g

J/kg

4.184 X 10^

kcal/mol

kJ/mol Pa

4.184 6.894757 X 10^

m

10-10

mil

m

psi

Pa

2.54 X 10"^ 6.894757 X 10^ 1.01 X 105 1.00 X 10^ 4.233 X 10-4

PCJ

1/psi (= in.2/lbf) ^cm^ mm/^tsec

P D

^det AH,

^0

psi o

A P

V

s T

atm

Pa

bar

Pa

in. /min

m/s

fl/sec BTU/lb-°F

m/s

cal/g-°C

op

k

Vapor pressure Weight

CTE

in./in.-°F cnVcm-°C mm Hg, T o r r

v.p.

K

W/m-K

BTU/hr-ft-°F ca]/cm-sec-°C

Thermal expansion

J/kg-K K

°C

Thermal conductivity^*

SKm/k/s)^ Multiplication factor

lb

1

3.048 X 10-1 4.184 X 10^ [(Tp - 32)/1.8] +273.15 T^ + 273.15 1.729577

W/m-K m/m-K

4.184 X 102

n^m-K Pa

1

kg

1.8

1.333 X 102 4.535924 X l O " !

In this column, the abbreviations used a r e those of the International System of Units (SI)2; in this system, degrees Kelvin = K. Thermochemical BTU or calorie.

VLll

7/74

Glossary AFNOL AWRE b.p. BDNPA BDNPF BEAF BKW BTF

polymerization product of primarily DINOL and 4,4-dinitropimeloyl chloride Atomic Weapons Research Establishment, U.K. boiling point bis(2,2-dinitropropyl) acetal bis(2,2-dinitropropyl) formal 1,2-ethanediol bisdifluoronitroacetate Brinkley-Kistiakowski-Wilson (equation of state)

P CAB CEF CJ CTE D DATB dec. DFTNB DINOL

benzotrifuroxan calculated bulk sonic velocity calculated longitudinal velocity specific heat cellulose acetate butyrate tris-^-chloroethyl phosphate Chapman-Jouguet coefficient of thermal expansion detonation velocity l,3-diamino-2,4,6-trinitrobenzene decomposition difluorotrinitrobenzene 2,2,8,8-tetranitro-4,6-dioxa-l,9-nonane diol

DIPAM DMFA DMSO DNPA DNPN

2,2',4,4',6,6'-diaminohexanitrobiphenyl, dimethylformamide dim'ethylsulfoxide 2,2-dinitropropyl acrylate 4,4-dinitropentanonitrile

DOP E EDNP EGDN

dioctylphthalate, di-(2-ethylhexyl)-phthalate energy ethyl 4, 4-dinitropentanoate ethylene glycol dinitrate ultrasonic modulus coefficient of friction freezing point

% C

f f.p. FEFO G ^50 HE HMX HNAB HNS HVD 7/74

dipicramide

bis(2-fluoro-2, 2-dinitroethyl) formal complex shear modulus drop weight sensitivity high explosive 1, 3, 5, 7 - t e t r a n i t r o - 1 , 3, 5, 7-tetrazacyclooctane 2, 2', 4, 4', 6, 6'-hexanitroazobenzene 2, 2', 4, 4', 6, 6'- hexanitrostilbene high velocity detonation IX

JWL K

J o n e s - W i l k i n s - L e e (equation of s t a t e ) d e g r e e s Kelvin

k

thermal conductivity

LASL

L o s A l a m o s Scientific L a b o r a t o r y

LLL

Lawrence Livermore Laboratory

LVD

low v e l o c i t y d e t o n a t i o n

m. p.

m e l t i n g point

MEK

m ethyl ethylk etone

MIBK

methylisobutylketone

MW

m o l e c u l a r weight

N

newton (pound-force)

n

r e f r a c t i v e index

NC

nitrocellulose

NG

nitroglycerine

NM

nitromethane

NOL

Naval Ordnance L a b o r a t o r y

NONA

nonanitroterphenyl

NQ

nitroguanidine

PCJ PBX

Chapman-Jouguet p r e s s u r e plastic-bonded explosive

PENTEK

pentaerythritol

PETN

pentaerythritol tetranitrate

PR

Poisson's ratio

R

molecular refraction

RDX

1, 3, 5 - t r i n i t r o - l , 3, 5 - t r i a z a c y c l o h e x a n e

RTV

r o o m - t e m p e r a t u r e vulcanizing

S.I.

S y s t e m e I n t e r n a t i o n a l e ( I n t e r n a t i o n a l S y s t e m of U n i t s )

STP

s t a n d a r d t e m p e r a t u r e and p r e s s u r e

T

temperature

Tg TACOT

glass transition temperature t e t r a n i t r o - 1 , 2, 5, 6 - t e t r a z a d i b e n z o c y c l o o c t a t e t r e n e

TATB

1, 3, 5 - t r i a m i n o - 2 , 4, 6 - t r i n i t r o b e n z e n e

TEF

tris-^-chloroethylphosphate

Tetryl

2, 4, 6 - t r i n i t r o p h e n y l m e t h y l n i t r a m i n e

THF TMD

theoretical maximum density

TNM

tetranitromethane

TNT

2, 4, 6 - t r i n i t r o t o l u e n e

V

volume

V

velocity

v.p. WLF

vapor p r e s s u r e

tetrahydrofuran

W i l l i a m s - L a n d e l - F e r r y (shift equation) X

a P AH , , AHr a i3 e V p

7/74

linear coefficient of expsinsion cubical coefficient of expansion heat of detonation heat of formation adiabatic coefficient of expansion linear CTE cubical CTE dielectric constant sliding velocity density

XI

PROPERTIES OF CHEMICAL EXPLOSIVES AND EXPLOSIVE SIMULANTS I. High Explosives 1.

INTRODUCTION

High explosives a r e metastable compounds or mixtures that can r e a c t rapidly to give gaseous products at high t e m p e r a t u r e and p r e s s u r e . The attendant expansion of these products is the mechanism by which explosives do useful work. As with p r i m a r y explosives, reaction can be initiated by shock and heat. High explosives, however, differ from p r i m a r y explosives in three ways: 1. Small unconfined charges, even though ignited, will not usually detonate high-order. 2. Electrostatic ignition is very difficult (except in explosive dust clouds). 3. Ignition of any sort r e q u i r e s considerably l a r g e r shocks.

12/72

1-1

CM

2. MANUFACTURE Pure explosives a r e usually synthesized by sulfuric/nitric-acid nitration of o r ganic compounds. The product is separated from the mixed acids by filtration, then worked free of impurities and dried. TNT is one of the few pure explosives that can be fabricated directly by melting and casting into a desired shape. Most other m a t e r i a l s must be diluted either with TNT (thereby castable) or with plastic (thereby pressable) before they can be fabricated into useful shapes. The procedure used for fabricating castable, TNT-containing formulations is as follows: TNT is melted and the desired solid ingredients a r e added with s t i r r i n g . The melt is precrystallized into a slurry, and vacuum is applied just before pouring into a mold. Cracking and variations in density and composition a r e minimized by careful control of the cooling r a t e . Plastic-bonded explosives (PBX) a r e pressed from "molding" powders, which may be produced in several ways. A typical preparation is by the s l u r r y technique: powdered explosive and water a r e agitated in a container equipped with cover, condenser, and s t i r r e r . A lacquer composed of the plastic (together with a plasticizer, if required) dissolved in a suitable solvent is added to the s l u r r y . The solvent is r e moved by distillation, causing the plastic phase to precipitate out onto the explosive as a coating. The plastic-explosive agglomerates into "beads" as the s t i r r i n g and removal of solvent a r e continued. Finally, water is removed from the beads by filtering and drying, leaving the molding powder. Good molding powders have a high bulk density and a r e free-flowing and dustless. PBX molding powder can be pressed into usable shapes by two methods: compression molding with steel dies, or hydrostatic or isostatic pressing. In the l a t t e r method the explosive is placed in rubber sacks and subjected to fluid p r e s s u r e . With either method, consolidation of the molding powder to reasonable densities (97% of theoretical) is obtained at p r e s s u r e s between 12,000 and 20,000 psi (83 and 138 MPa) and molding t e m p e r a t u r e s between 25 and 120°C ( 298 and 313 K). An important and n e c e s s a r y feature of molding is the use of vacuum. The molding powder is normally evacuated to a p r e s s u r e of l e s s than 1000 lu Hg (133 Pa) before pressing. Both p r e s s e d and cast explosives a r e usually machined to final shape. Many intricate forms have been cut successfully. As a rule, the machining of explosives is s i m i l a r to the machining of a conventional plastic, except that water is used as a cutting-tool coolant. New explosives a r e machined by remote control until their behavior under machining has been carefully evaluated. Specifications Manufacture and testing a r e controlled by specifications for production explosives. A list of pertinent specifications is given in Table 2 - 1 . 7/74

2-1

Table 2. 1. Specifications for manufacture and testing. Specification number

Title Explosives

BDNPA/BDNPF

WS-1141

Comp B Comp-B-3 FEFO

MIL-C-401 MIL-C-45113 RM-253202

HMX HNAB LX-04 LX-07 LX-09 LX-10 LX-13 Octol PBX-9007

MlL-H-45444 SS274590 RM-252353 RM-253379 RiVl-253200 RM-253511 RM-253520 Mil -0-45445 PA-PD-711

PBX-9011

13Y-101030

PBX-9205

13Y-103317

PBX-9404

13^-103159 RM-252336

PBX-9407

13Y-109098

PBX-9501

13\-109643

PETN

Mil -P-387

KDX Tetryl

Mil -R-398 JAN-T-339

TNT XTX-8003

Estane Fluoroelastomer pDNPA Polystyrene Sylgard

Mil -1-248 13Y-104481 13Y-101031 RM-252988 RM-253201 MIL-P-55026 13Y-104480

U capons Specification for Mixture of Bis(2,2-dinitropropyl)acetal-Bis(2,2-dinitro-propyl) formal. Military Specification for Composition B. Military Specification for Composition B - 3 . I I I Material Specification for I iquid Explosive Bis(2,2-dinitro-2-fluoro-ethyl) formal (FEFO). Military Specification for HMX. Sandia Spec itication for Synthesis of HNAB (Hexanitroazobenzene). I I I Material Specification for I X-04 Molding Powder. I 1 I Material Specification for I X-07 Molding Powder. 1 1 I Material Specification for I X-09 Molding Powder. I I I Material Specification for I X-10 Molding Powder. I I I General Spec ific ation for I X-13. (CRD) Military Specification for Octol. Pi( atinny Arsenal Pure base Description for Powder, Molding Compound Explosive (PBX). (PBX-9007). I ASI Material Specification for PBX-9011 Molding Powder. I AS! Material Specification for PBX-9205 Manufactured by the Slurry Method. I ASI Material Specification for PBX-9404 Molding Powder. I I I Vlaterial Specification for PB\-9404 Molding Powder. I ASI Material Specification for PBX-9407 Molding Powder. I ASI Material Specification for PBX-9501 Molding Powder. Military Specification for Pentaerythritol Tetranitrate (PFTN). Military Specification for RDX. Joint Army-Navy Specification for Tetryl (Trinitrophenylinethjlnitramine). Military Specification for I N T I ASI Material Specification for XTX-8003 Extrudable Explosive. Binders I ASI Material Specification for Estane 5740 X-2. LI L Material Specification for Uncured Fluoroelastomer Binder I I L Material Specification for 2,2-DinitropropyIacrylate Polymer (pDNPA) Plastic Binder Military Specification for Polystyrene, Unmodified (For Use as a Binder in Explosives). I ASI Material Specification for Dow Corning Resin 93-022 (Aerospace Grade Sylgard 182). Explosive P a r t s and Testing

RM-253391 RM-252356

I I L Specification for Mechanical Properties Testing of Plastic-Bonded High Explosive P a r t s . LI L General Specifications for Plastic-Bonded High Explosives.

2-2

7/74

3.

NAMES AND FORMULATIONS

This section consists of Tables 3-1 through 3-4, which list the names and formulations of various explosives and energetic compounds. Table 3 - 1 . P u r e explosive compounds. Material'

Chemical name

Other designations

BTF

B e n z o t r i s - [ l , 2, 5] o x a d i a z o l e [4,4,7]-trioxide

Benzotrifuroxan, hexanitrosobenzene

DATB

1, 3 - D i a m i n o - 2 , 4, 6 - t r i n i t r o benzene

DIPAM

3 , 3 - D i a m i n o - 2 , 2 ' , 4, 4 ' , 6, 6 ' hexanitrobiphenyl

DNPA EDNP FEFO

2,2-Dinitropropyl acrylate

Off-white

Ethyl-4, 4-dinitropentanoate

Yellow

Bis(2-fluoro-2, 2-dinitroethyl)formal

Straw

Color Buff Yellow

Hexanitrodiphenylamine hexite, dipicrylamine

HMX

1, 3, 5, 7 - T e t r a n i t r o - 1 , 3, 5, 7 tetraazacyclooctane

HNAB

2, 2 ' , 4 , 4 ' , 6, 6 ' - H e x a n i t r o a z o benzene

Orange

HNS NC (12% N)"^

2, 2 ' , 4, 4 ' , 6, 6 ' - H e x a n i t r o s t i l b e n e

Yellow

Partially nitrated cellulose

Nitrocellulose (lacquer grade), cellulose trinitrate, piroksilin

White

NC (13,35% N,

Partially nitrated cellulose

Nitrocellulose, guncotton

White

Nitroglycerin

Clear

minll^

Cycle t e t r a m e t h y l e n e tetranitramine, octogen

White

NG

1, 2, 3 - P r o p a n e t r i o l t r i n i t r a t e

NM

Nitromethane

NQ

Nitroguanidine

Aminomethaneamidine

White White

Clear

PETN

Pentaerythritol tetranitrate

Penthrite,

RDX

1, 3, 5 - T r i n i t r o - l , 3, 5 - t r i a z a cyclohexane, hexahydro1, 3, 5 - t r i n i t r o - s - t r i a z i n e

Cyclotrim ethylene trinitramine. h e x o g e n c y c l o n i t e , Gh

White

TACOT

Tetranitro-l,2,5,6-tetraazadibenzocyclooctatetrene

Tetranitrodibenzo1, 3a, 4, 6 a tetraazapentalene

Redorange

TATB

1, 3, 5 - T r i a m i n o - 2 , 4, 6 - t r i n i t r o benzene

Bright yellow

2, 4, 6 - T r i n i t r o p h e n y l m e t h y l nitramine

Yellow

'Tetryl •TNM

Tetranitromethane

"TNT

2,4,6-Trinitrotoluene

TEN

Clear T r o t y l , T, tol

Buff to brown

P r o p e r t i e s of m a t e r i a l s m a r k e d with a s t e r i s k s a r e s u m m a r i z e d in d a t a s h e e t s (Section IV). N i t r o c e l l u l o s e is not, s t r i c t l y s p e a k i n g , a s i n g l e c h e m i c a l c o m p o u n d . D i f f e r e n t g r a d e s a r e c o m m e r c i a l l y a v a i l a b l e , the g r a d e d e n o t i n g the d e g r e e of n i t r a t i o n . F o r t h i s handbook we c i t e , w h e r e p o s s i b l e , d a t a c h a r a c t e r i s t i c of l a c q u e r - g r a d e n i t r o c e l l u l o s e (12.0% N) and g u n c o t t o n (13.3 5% N, m i n ) . L a c q u e r - g r a d e n i t r o c e l l u l o s e i s not an e x p l o s i v e but an e n e r g y - c o n t r i b u t i n g p l a s t i c b i n d e r in P B X - 9 4 0 4 .

7/74

3-1

Table 3-2.

Cast explosives: names and formulations.

Explosive

F o r m u l a t i o n (wt%) O t h e r ingrediLents

TNT RDX

Baratol

24

Ba(N03)2

76

Boracitol

40

B o r i c acid

60

* C o m p B , G r a d e A^

36

63

Comp B-3

40

60

^Cyclotol'^

25

75

H-6

30

45

Wax

1

Wax

5

Al *Octol *Pentolited Tritonal

20 0.5

25

CaClg HMX

75

50 80

PETN Al

50 20

P r o p e r t i e s of m a t e r i a l s marked with a s t e r i s k s are summarized in data sheets (Section IV). The weight percent values given in the table a r e nominal and subject to some variation. ^Comp B, Grade A is formulated as a 60/40 RDX/TNT mixture, but high-quality castings usually a r e higher in RDX content due to the removal of a T N T - r i c h section at the top of the casting. There a r e several cyclotols and pentolites. The most common cyclotol is RDX/TNT 75/25. The most common pentolite is PETN/TNT 50/50.

3-2

7/74

Table 3 - 3 .

Plastic-bonded explosives: Names and formulations. Formulation

Explosive^

Other designations

Ingredient

wt%

*LX-04-l

P B H V - 8 5 / j 15

HMX Viton A

85 15

Yellow

*LX-07-2

RX-04-BA

HMX Viton A

90 10

Orange

*LX-09-0

RX-09-CB

HMX pDNPA FEFO

93 4.6 2.4

Purple

HMX pDNPA FEFO

93.3 4.4 2.3

Purple

HMX Viton A HMX Viton A

95 5 94.5 4.5

Blue-green spots on white Blue-green spots on white

HMX Viton A

80 20

White

HMX Estane 5702-Fl

95.5

Violet spots on white

RDX Polystyrene Di(2-ethylhexyl)phthalate Rosin

90 9.1

RDX Kel-F

90 10

White

HMX Estane 5740-X2

90

Off-white

RDX Pqlystyrene Di(2-ethylhexyl)phthalate

92 6

White

HMX NC (12.0% N) Tris(i3-chloroethyl)phosphate

94 3

-PBX-9407

RDX E x o n 461

94 6

W h i t e o r black*^

* P B X - 9 501

HMX Estane BDNPA BDNPF

95 2.5 1.25 1.25

White

LX-09-1

*LX-10-0

RX-04-DE

LX-10-1 *LX-ll-0

RX-04-PI

*LX-14-0

*PBX-9007

PBX-9007 T y p e B

-PBX-9010 'i't-BX-gOll

X-0008

*PBX-9205

*PBX-9404

P B X - 9 4 0 4 - -03

Color

4.5 White o r m o t t l e d gray°

0.5 0.4

2 White o r b l u e

3

P r o p e r t i e s of m a t e r i a l s marked with a s t e r i s k s a r e s u m m a r i z e d in data sheets (Section IV). Depending on graphite content. 7/74

3-3

Table 3-4.

M i s c e l l a n e o u s e x p l o s i v e s : N a m e s and f o r m t i l a t i o n s . Formulation Ingredient

wt%

Color

RDX Di(2-ethylhexyl)sebacate Polyisobutylene M o t o r oil

91

White

EL-506A

PETN Binder

85 15

Red

EL-506C

PETN Binder

63 37

Red

Explosive^

Other designations

Comp C-4

5.3 2.1 1.6

*LX-01

NTN

Nitromethane Tetranitromethane 1 - Nitropr opane

51.7 33.2 15.1

Clear

*LX-02-l

EL-506 L-3

PETN Butyl r u b b e r Acetyltributyl citrate Cab-O-Sil

73,5 17.6

Buff

*LX-08

PETN Silicone r u b b e r Cab-O-Sil

63.7 34.3 2.0

Blue

LX-13

PETN Silicone r u b b e r

80 20

Green

6.9 2.0

MEN-II

RX-Ol-AC

Nitromethane Methanol Ethylenediamine

72.2 23.4 4.4

Clear

*XTX-8003

Extex

PETN Silicone r u b b e r

80 20

White

P r o p e r t i e s of m a t e r i a l s m a r k e d w i t h a s t e r i s k s a r e s u m m a r i z e d in d a t a s h e e t s (Section IV).

3-4

12/72

Table 3 - 5 . Additives and binders. Material" BDNPA/BDNPF Cab-O-Sil M-5 DOP Estane 5702-Fl Exon 461 Kel-F 800 Kel-F 3700 Polystyrene Sylgard 182 TEF Viton A

Other designation

Chemical name Bis(2,2-dinitropropyl) acetal/ bis(2,2-dinitroprDpyl) formal 50/50 w/o Di(2-ethylhexyl)-phthalate

dioctylphthalate polyurethane solution system

Trifluorochloroethylene/ vinylidine chloride copolymer Poly (trifluorochloroethylene) Poly (trifluorochloroethylene) Silicone resin Tris-|8-chloroethylphosphate Hexafluoropropylene/ vinylidine fluoride 1:2

Properties of these materials are summarized in data sheets (Section IV).

7/74

3-5

Color Straw White Clear Light amber White Off-white Off-white Clear Light straw Clear White

t>

to

CO

4.

PHYSICAL PROPERTIES

This section contains information relating to selected physical constants and properties of HEs of interest. These p r o p e r t i e s a r e physical state and density (Table 4-1); moleciilar weight MW and atomic composition (Table 4-2); melting point m. p . , boiling point b . p . , and vapor p r e s s u r e v . p . (Table 4-3 and Fig. 4-1); crystallographic ajid optical properties (Table 4-4). Many properties a r e density-dependent. For calculations for mixtures, some useful auxiliary relationships between composition and density a r e as follows:

y mi p (TMD) =

-^

I

V. = W

W. =

y (v^Pi) - ^•^—

(-i/Pi)

ipjp.)

100 ViPi

' I^Vi^

I V, v^ ^

100 m . / p .

V.

^

(mi/Pi) '

100 m.

S-i

Void V. = 1 - ( P Q / T M D ) , where TMD is theoretical maximum density, m is m a s s , v is volume, W is weight percent, V is volume percent, p is theoretical density, subscript i designates the component, and p„ is the actual density of the mixture.

7/74

4-1

P h y s i c a l S t a t e and D e n s i t y Table 4 - 1 .

P h y s i c a l S t a t e s and d e n s i t i e s . TMD^,

(g/cm^

P

(Mg/m^))

Nominal density, p (g/cm^

(Mg/m^))

Material

Physical state

AFNOL

Liquid

1.48

1.48

Baratol

Solid

2.63

2.60-2.61

BDNPA/BDNPF^

Liquid

Boracitol

Solid

1.383-1.397 ^b

BTF

Solid

1.901

1.87

Cab-O-Sil^

Solid

2.3

2.2

Comp B, G r a d e A

Solid

1.74

1.71

Comp B-3

Solid

1.75

1.72

C o m p C-4

P u t t y l i k e solid

Cyclotol 7 5/25

Solid

1.77

1.75-1.76

DATB

Solid

1.837

1.79

DIPAM^

Solid

1.79

DNPA

Solid

1.47

DOP

Liquid

EDNP

Liquid

0-.9861 1.28

EL-506A

Solid

1.48

EL-506C

Solid

1.48

Estane^

R u b b e r y solid

1.18

Exon 4 6 1 ^

Solid

1.70

FEFO

Liquid

H-6

Solid

HMX

Solid

1.900

HNAB-I^

Solid

1.795 c a l c . 1.799 o b s .

HNAB-11^

Solid

1.744 c a l c . 1.750 o b s .

HNAB-III^

Solid

1.718 o b s .

HNS^'^

Solid

1.74

K e l - F 800^°

Solid

2 .02

K e l - F 3700^°

Solid

1 .85

LX-01

Liquid

1.23

LX-02

P u t t y l i k e solid

1.44

1 .43-1..44

LX-04 LX-07

Solid

1.889

1 .860- •1,870

Solid

1.892

1 .860- •1.870

LX-08

P u t t y l i k e solid

1.439

>1.42

LX-09

Solid

1.867

1 .837- •1.845

LX-10-0

Solid

1.896

1 .858- -1.868

1.53-1.54

1.59

1.607 1.74 ( c a s t )

4-2

1.89

1 .72

7/74

Table 4 - 1 .

(continued) TMD^ p

Material

Physical state

(g/cm^

LX-10-1 LX-11 LX-13

Solid Solid Putty curable to rubbery solid Solid Liquid Solid Solid Liquid Liquid

1.895

LX-14 MEN-II NC (12.0% N) NC (13.3 5% N, min) NG NM

Octol PBX-9007 PBX-9010 PBX-9011 PBX-9205 PBX-9404 PBX-9407 PBX-9501^ Pentolite 50/50 PETN Polystyrene 12 RDX^^ Sylgard 182^^ TACOT TATB TEF Tetryl TNM

Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Solid Liquid Solid Solid Liquid Solid Liquid

TNT

Solid

NQ

15

Viton A' XTX-8003

Rubbery solid Putty curable to rubbery solid

(Mg/m^))

Nominal density, p (g/cm^

(Mg/m^))

1.558

1.870 1.87-1.876 =1.53

1.849

1.834

1 .Ui 1

1.58 1.58 1.59 1.13 at 20°C (293 K) 1.72 1.83 1.697 1.822 1.795 1.72 1.865 1.81 1.855 1.71 1.77 1.12 1.806 1.05 1.85 1.938 1.425 1.73 1.6.'S0 at 13°C (286 K) 1.654

1,556

1.55 1.80-1.82 1.66 1.789 1.770 1.68 1.831-1.844 1.60-1.62^ 1.843 1.67 1.76 1.05

1.61 1.88 1,71

Cast: 1.5-1.6 P r e s s e d : 1.63-1.64 1.815 =^1.53

Theoretical maximum density. A TMD value based on boric acid and TNT is 1.52; during the vacuum casting at over 80°C (3 53 K), however, some of the boric acid breaks down to B2O2 This has the effect of increasing the TMD by an unpredictable amount. Nominal density in detonator and booster applications. 7/74 4-3

M o l e c u l a r Weight and A t o m i c C o m p o s i t i o n Table 4 - 2 .

M o l e c u l a r w e i g h t s and a t o m i c c o m p o s i t i o n s . F o r m a t e r i a l s that a r e p u r e c h e m i c a l c o m p o u n d s , m o l e c u l a r w e i g h t s and m o l e c u l a r f o r m u l a s a r e given: for t h o s e that a r e m i x t u r e s , an a r b i t r a r y m o l e c u l a r w e i g h t of 100 i s a s s i g n e d , and an e m p i r i c a l f o r m u l a c o r r e s p o n d i n g to t h i s weight i s g i v e n . F o r such m i x t u r e s , the weight p e r c e n t a g e of an e l e m e n t i s given by t h e p r o d u c t of t h e a t o m i c weight and i t s s u b s c r i p t in t h e e m p i r i c a l f o r m u l a . El e m e n t a l c o m p o s i t i o n

Explosive

c

MW

H

N

0.74

0.53

0.90

2.38

B a 0.29 B 0.97

O

Baratol

100

BDNPA/BDNPF

100

Boracitol

100

1.23

3.79

0.53

3.97

BTF

252.1

6

0

6

6

Cab-O-Sil

60.09

C o m p B , G r a d e A^

100

2.03

2.64

2.18

2,67

C o m p B-S*^

100

2.05

2.51

2.15

2.67

C o m p C-4

100

1.82

3.54

2.46

2.51

Cyclotol 7 5 / 2 5

100

1.78

2.58

2.36

2.69

DATB

243.1

6

5

5

6

DIPAM

4 54.1

12

6

8

12

DNPA

204.1

6

8

2

6

DOP

390.57

24

38

7

12

EDNP

220.2

EL-506A

100

EL-506C

100

Estane 5702F-1 FEFO E x o n 461

Other

2.41

4 2

6

4.29

1.08

3.27 2.68 1.7 58

5.94

100

3.25 5.137

0.87

7,500

0.187

320.1

5

6

4

4

2

(213.43)^^

10

F 2 CI 3 F 3

H-6

100

1.890

2.590

1.612

2.009

HMX

296.2

4

8

8

8

HNAB

452.21

12

4

8

12

HNS

450.3

14

6

6

12

K e l - F 3700

(116.48)^^

2

Ca 0.0045 CI 0.0090 Al 0 . 7 4 1

CI 1 F 3

LX-01-0

100

1.52

3.73

1.69

3.39

LX-02-1

100

2.77

4.86

0.93

2.99

Si 0.03

LX-04-1

100

1.55

2.58

2.30

2.30

F 0.52

LX-07-2

100

1.48

2.62

2.43

2.43

F 0.35

LX-08-0

100

1.93

4.39

0.81

2.95

Si 0.50

LX-09-0

100

1.43

2.74

2.59

2.72

F 0.02

LX-09-1

100

1.425

2.735

2.592

2.721

F 0,0144

4-4

7/74

Table 4 - 2 .

(continued) El emental composition

Explosive

MW

C

H

N

O

Other

LX-10-0

100

1.42

2.66

2.57

2.57

F 0.17

LX-10-1

100

1.410

2,663

2.579

2.579

F 0.156

LX-11-0

100

1.61

2,53

2.16

2.16

F 0.70

LX-14

100

1.521

2.917

2.587

2.658

MEN-II

100

2.06

7,06

1.33

3,10

NC (12.0% N)

262.6

6

7

2.25

9.5

NC (13.35% N, m i n )

274.1

6

7

2.5

NG

227.1

3

5

3

9

NM

61.0

1

3

1

2

NQ

104.1

1

4

4

2

Octol

100

1,78

2.58

2.36

2.69

PBX-9007

100

1.97

3.22

2.43

2.44

PBX-9010

100

1.39

2.43

2.43

2.43

PBX-9011

100

1.73

3.18

2.45

2.61

PBX-9205

100

1.83

3.14

2.49

2.51 2.69

CI 0.03 P 0,01 CI 0,07 F 0.09

LX-13

See XTX-8003

10

PBX-9404

100

1.40

2.75

2.57

PBX-9407

100

1.41

2.66

2,54

2,54

PBX-9501

100

1.47

2,86

2.60

2,69

Pentolite 50/50

100

2.33

2,37

1.29

3,22

PETN

316.2

5

8

4

12

8

8

3

6

6

6

2

6

Polystyrene RDX S y l g a r d 182

(104.15)^ 222,1 ( 74.16)„

1

TACOT

388,2

12

4

8

8

TATB

258.2

6

6

6

6

TEF

285,5

6

12

Tetryl

287.0

7

5

5

8

TNM

196.0

1

0

4

8

TNT

227.1

7

5

3

6

5

3,5

1.80

3.64

Viton A XTX-8003

(187.08)j^ 100

4

7/74

4-5

Si 1

CI 3 P 1

F 6.5 1.01

3.31

Based on nominal composition of 63% RDX, 36% TNT, and 1% wax. assumed to have the composition CH2, Based on nominal composition of BDX/TNT 60/40.

CI 0.09 F 0.26

Si 0.27 The wax was

Table 4 - 3 . Material

Ref.

Melting points m^p., boiling points b. p,, and vapor p r e s s u r e s v, p. (°C)

(K)

AFNOL

105-110

(378-383)

Baratol

79-80

(352-353)

BDNPA/BDNPF

BTF Comp B, G r a d e A Comp B-3

79-80

(352-353)

198-200

(471-473)

-80

(~3 53)

79-80

(352-353)

(-150 at (0 01 m m

79-80

(352-353)

DATB

Cyclotol 75/25 16

286

(559)

DIPAM

4

304

(377)

--

DNPA

17

DOP EDNP

18

(268)

-6

222-230

18 0

83 at OD m m

Ref

( m m Hg)

0 1 a t 100°C

(13 33 at 373 h )

0 1 at 100»C

(13 33 at 373 K)

0 1 at 100°C

(13 33 at 373 K)

(423 a t 1 33 P a )

----------

-- b

C o m p C-4

(K)

--2

Boracitol

b p. CO

Fef

(4')5-503)

523)

Dec >270

(>543)

See XT

L X -14

2 14 X 10

9

L X - 02

L X -13

(3'iJ-3200 0473) -29

PBX-9010 PBX-9011 PBX-9205

Dec.>250 Dec.>200

PBX-9404 PBX-9407 PBX-9501 Pentolite 50/50 PETN

Dec.>240 76

139-142

101-101.5

(374-375)

( 523) (-•473) (-513) (349) 8

(412-415)

i3

Polystyrene

12

240

(513)

RDX

13

205

(478)

TACOT TATB

24 25

Dec >3B0 Dec.>325

(-653) ( 598)

TEF

26

203

Tetryl

130

TNM

14 2 80.9

TNT

(Pa)

(^523)

13.2

Octal PBX-9007

(mm Hg)

(476) (403) (287)

0.0015 at 20°C 37 at 25°C

(0.2 at 293 K) (49J3 at 298 K)

0.1 at 100°C

(13.33 at 373 K)

0.1 at 100 t 8 X 10"^ at 100°C

(13 33 at J7i h) (11X10 at 373 K)

10

mm

, . ^^

6352 r (K)

3850 '"^10 ' cm ' " "' 1 (K) from 111-130 C (384-403 K)

125.7

(o9'))

(3 54)

XTX-8003

1 mm Hg = 1.33323 X 10^ Pa No fixed melting point. '^Two types of HNS a r e in production: HNS-I, /

/

/ c i / ' v , /

i i s h? u^ s M s h ^ ^ L^ h

/

/

ih /

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l

A-l A-l __a A - l

A-l

A-l

A-2 A-2 A - l A-2

A-2

A-2

A-2

3

3 A-l

A-2

A-l = A-l'^ A-2 A-2 A-2

A-2

A-2

A-l = A - 2

A-2

A-l =

A-l'^

3

A-2

A-2

A-2

A-2

A-2

A-2

A-2

A-2

A-2

Do not use Aerobond 2017 with LX-09. The cure of the adhesive is inhibited by the explosive. BIPAX-2902, EPY-150, and Hysol epoxy patch kit are epoxies certified for bonding strain gauges to LX-04, LX-07, LX-09, LX-10. and PBX-9404. Does not meet environmental specifications. 5-4

7/74

Table 5-5. F i l l e r s and coatings: Chemical reactivity and compatibility. bond strength equal to that of A, compatible; OK for long-term explosive. storage. B compatible; OK for s h o r t - t e r m 2, bond strength l e s s than that of explosive. storage (less than 30 davs). 3, no bond strength. Blank, compatibility has not been checked.

#

F i l l e r or coating DC 93-109^*'^ DC 93-119^^ DC 93-120*^ DC 93-122^''^ DuPont 4817 conductive silver FDA 2 Red FDA 3 Green GE RTV 632^'^ Silastic Q 93-009*^ Silastic Q 93-029*^ Silastic RTV 140*^ Silastic RTV 732^ Silastic RTV 891^^

/ ^

A-3

A-3

A L' 1iilil A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

B-3

A-3

A-3

B-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-3

A-2

A-2

A-2

A-2

A-2

A-2

A-2

A-2

A-2

A-2

A-2

A-2

A-2

A-2

A-2

A-2

A-2

A-2

ihr r

/ >

/ '^J

/ ^

/CO

/ ^

/

j

^ A-3

/ . / •

/ ^

/ -v

A-3

Nonflowing RTV silicone rubber used mostly for potting s p a c e r s , detonators, and detonator cables. Do not attempt to use Nuocure 12, Nuocure 28, or Thermolite 12 catalysts with Silastic Q 93-109 or Q 93-029 when the material will be in contact with LX-09 or other formulations containing F E F O or DNPA. These systems contain a platinum catalyst. Do not mix them in a container which has been used to mix the more conventional RTV silicones, e . g . . Silastic Q 93-009 and Q 93-029. The catalyst in these and s i m i l a r RTV s y s t e m s poisons the platinum catalyst and thus inhibits the cure. RTV: r o o m - t e m p e r a t u r e vulcanizing.

7/74

5-5

Table 5-6.

A d h e s i v e t a p e s found to be c o m p a t i b l e with v a r i o u s high e x p l o s i v e s . t a p e not l i s t e d should be t e s t e d b e f o r e u s e .

Manufacturer

Any

Color

Trade name

Number

3M

Scotch Brand E l e c t r i c a l Tape

#33

Black

3M

Scotch Brand Mylar

#56

Yellow

3M

Scotch Brand E l e c t r i c a l

#57

Yellow

3M

Scotch Brand Masking

#232

Tan

3M

Scotch Brand Photo Tape

#235

Black

3M

S c o t c h B r a n d Double Sided Masking

#400

Tan

3M

Scotch Brand Tape

#420

Lead

3M

S c o t c h B r a n d Double Sided Masking

#465

Tan

S c o t c h B r a n d Double Sided Masking

#466

Tan

3M

Scotch Brand P l a s t i c

#471

Yellow

3M

Scotch Brand P l a s t i c

#471

Red

3M

Scotch Brand P l a s t i c

#471

White

3M

Scotch Brand Cellophane Tape

#600

Clear

3M

Scotch Brand Cellophane Tape

#850

Clear

3M

S c o t c h B r a n d M a g i c Mending

#810

Clear

3M

Scotch Filament Tape

#880

Pearl

3M

S c o t c h B r a n d Double Sided Masking

#Y9146

Tan

B e h r - Manning

Bear Tape

#4/1

Tan

Hampton Manufacturing Company

Blue C r o s s T a p e

Mystik Tape, Inc.

Mystic Tape

Okonite Compajiy

High V o l t a g e R u b b e r T a p e

Permacel

Permacel

#29

Black

Permacel

Permacel

#32

Red

Permacel

P e r m a c e l Cellophane Tape

Saunders Engineering Corporation

Teflon T a p e

Technical Tape Corporation

Tuck Tape

Yellow

Technical Tape Corporation

Tuck Tape

Black

3M

Yellow #5803

Brown

Clear #S15 #S16 #S18

5-6

Black

Blue/brown

7/74

-0

Table 5-7. Qualitative solubilities of pure explosives. Solubilities a r e expressed as follows, in t e r m s of weight of lubstance dissolved at room temperature per 100 ml of solvent: i - insoluble (less than 0.1 g). sl = slightly soluble (0.1 to 5 g), s = soluble (over 5 g). Solvent

BTF

DATB

DIPAM

DNPA

EDNP

Acetone Benzene Carbon disulfide Carbon tetrachloride Chloroform DMFA DMSO Ethanol Ethyl acetate Ethyl ether Nitric acid Sulfuric acid Pyridine Water

FEFO

HMX

HNAB°

HNS'

sl

NC NG

sl

s s sl sl

sl sl

s

NM

NQ

PETN

RDX

TACOT"

TATB

Tetryl

TNM

_

sl sl

1 1

sl

1

sl sl s

s

s

sl

S

S

1

s



sl

sl

sl

sl

,10 sl sl

S

sl

1

OI I -J

Table 5-8, Qualitative solubilities of additives and binders. Solubilities a r e expressed as follows, in t e r m s of weight of substance dissolved at room temperature per 100 ml of solvent: i = insoluble (less than 0.1 g), sl = slightly soluble (0.1 to 5 g), s = soluble (over 5 g). Solvent Acetone Benzene Dichloroethane DMFA DMSO Gasoline Glycerine MEK MIBK THF Toluene Water Xylene

BDNPA/ BDNPFll

Cab-O-Sil

DOP

12

Estane 5702-Fll3

Exon 46ll4

Kel-F^^

TNT

s sl

Polystyrene^^

Sylgard 182

TEF^^

Viton A

References D. L. Ornellas, Lawrence L i v e r m o r e Laboratory, personal communication (1974). D. L. Ornellas, J . Phys. Chem. 72, 2390-2394 (1968). H. W. Sexton, Armament Research and Development Establishment, Fort Halstead, United Kingdom, personal communication (1956), D. L. Ornellas, J. C. Carpenter, and S. R. Gunn, Rev. Sci. Inst. 37^. 907-912 (1966). A. Ya. A pin and Yu. A. Lebedev, Dokl. Akad. Nauk USSR 114, 819-821 (1957). D. O'Keefe, Sandia Laboratories, Albuquerque, N. Mex., personal communication (1972). K. G. Shipp, J. Org. Chem. 29, 2620-2623 (1964). T, Urbanski, Chemistry and Technology of Explosives (McMillan, New York, 1964-1967), vols, 1-3, W. Selig, Some Analytical Methods for Explosives and Explosive Simulants, Lawrence L i v e r m o r e Laboratory, Rept. UCRL-7873 P t s . 1-4 (1964-1973). V. D. Gupta and B. L. Deopura, Mol. Phys. 1_9, 589-592 (1970). M. Finger, P r o p e r t i e s of Bis(2,2-dinitropropyl)acetal and Bis(2,2dinitropropyDformal, Eutectic Mixture, Lawrence L i v e r m o r e Laboratory, Rept. UCID-16088 (1972). Food Machinery and Chemical Corporation, Ohio-Apex Division, Nitro, W. V., P l a s t i c i z e r s (no date), B. F . Goodrich Company, Cleveland, Ohio, Estane Polyurethane Solution Systems, Service Bulletin, TSR 64-18 (1964). Firestone Plastics Company, Pottstown, Pa., Exon, Sales Service Bulletin No. 20 (1956). Minnesota Mining and Manufacturing Company, St. Paul, Minn., K e l - F E l a s t o m e r — P r o p e r t i e s and Applications, Service Bulletin (no date). J. Brandrup and E. H. Immergut, Eds., Polymer Handbook (Interscience, N.Y., 1966), Celanese Chemical Corporation, New York, N.Y., Celluflex CEF, Product Bulletin N-46-2 (1955),

5-8

7/74

6.

THERMAL PROPERTIES

This section contains tables and information on t h e r m a l conductivity k, c o efficient of thermal expansion CTE, estimated specific heat Cp, glass transition point Tg, and thermal stability. Thermal Conductivity Measurements of thermal conductivity made on an apparatus s i m i l a r to that used at the National Bureau of Standards a r e included in Table 6 - 1 , Thermal conductivities as a function of temperature a r e given in Fig. 6-1 for 8 explosives; the straight lines r e p r e s e n t the best fit of the data. Table 6 - 1 . Thermal conductivities k. Explosive

Comp B-3 Comp C-4 DATB LX-04 LX-07 LX-09 LX-10 LX-11 NC (12,7% N) PBX-9010 PBX-9011 PBX-9404 PBX-9501 Polystyrene

(BTU/hr-ft-°F)^

0.22 0.23 0.25 0.25 0,21 ( e s t .

0.25 0.25

(lO"^ cal/cm-sec-°C) 11.84 6.27 6.22 6.00 9.25

(0,4.95) (0.262)

(°C) (°F) 18-75 18-72

6,83 6.22

(0.260)

3.5^

(K)

(291-348) (291-345)

(0.260)

(0.251) (0.380) 21.1 70 70 (0.398) 70 (0.432) 70 (0.432) 70 (0.363)(est (0.230) (0.215) (0.432) 70 (0.432) 21,1 70 (0.451) 0 (0.105) (0,116) 50 (0.128) 100 (0.146)(cured) (0.286)

5.5 5.14' 10.0 10,1 10.8^ 2,5i: 2,78; 3,06'

Sylgard 182 Tetryl (p = 1.53) TNT (p = 1.60)

(W/m-K)^

18-45

(294) (294) (294) (294) (294)

(294) (294)

(273) (323) (373)

(291-318)

One cal/cm-sec-°C = 4. 184 X 10"^ W/fn-K; 1 BTU/hr-ft-°F = 0.004135 c a l / c m - s e c - ° C = 1.729577 W/m-K, Where measurements were made in both British and m e t r i c units, only the British units were converted.

7/74

6-1

0.60 _

0.35

0.0014 LX-10-0

0.30

0.50

_ 0.0012 LX-09-0

0.25

-

0,0010

0.40 U o

0,20 E

I

0.30 0.60 r- ^

0,0008

LX-04-1

1

E o

0.35

0,0014

hCQ

I 0.50 -

«

D O

-PBX-9501 0.30

0,25

-

0,0012

-

0.0010

0.40 •PBX-9404 0.20 0.30

— 0.0008 -60

J_ 0

100

200

Temperature — °F (250)

(300)

(350)

Temperature— K

1 5 Fig. 6 - 1 . Thermal conductivity k as a function of t e m p e r a t u r e for L X - 0 4 - 1 , LX-07-0, LX-09-0,6 LX-10-0,5 LX-14-0,'7 PBX-9011,^ PBX-9404,^ and PBX-9501.^ Conversion factors: 1 B T U ^ r - f t - ° F = 1.7239577 W/m-K; 1 c a l / c m - s e c - ° C = 4.184 X 102 W/m-K.

6-2

7/74

The thermal conductivity data shown in Fig. 6-2 as a function of HMX content indicate the rsinge of properties available with HMX/Viton explosives; see also the CTE data shown in Fig. 6-3 as a function of HMX content. T h e r m a l conductivity k i n c r e a s e s with increasing HMX content; CTE d e c r e a s e s .

I

0,30

0.5190

0.20

_ 0,3460 E

t— OQ

0.10

-

-

0,1730

50 HMX—wt %

Fig. 6-2. Thermal conductivity k vs wt% HMX for HMX/Viton s y s t e m s at 70°F (21°C, 294 K). Conversion factors: 1 B T U / h r - f t - ° F = 1.729577 W/m-K; 1 c a l / c m - s e c - ° C = 4.184 X 102 W / m - K ,

7/74

6-3

Thermal Expansion Thermal expansion data were obtained by the use of bulk m e r c u r y dilatometers or a linear expansion apparatus; the two methods produce comparable r e s u l t s . Figure 6-3 shows CTE as a function of HMX content for HMX/Viton s y s t e m s . Table 6-2 l i s t s the measured linear (a) and cubic (jS) expansion coefficients of explosives and binders along with their glass transition t e m p e r a t u r e s and p r e s s e d densities. The cubic expansion coefficients (j3) can be calculated for isotropic m a t e r i a l s as /3 = 3 a.

160

Above T

g 200 E \ E >o o

c

^o o

80

u o

Below T

^N>. E

100 o U

E o ^O I

o

U

50

100

Jo

HMX—wt %

Fig. 6-3. Coefficients of t h e r m a l expansion CTE vs wt% HMX for HMX/Viton s y s t e m s . Conversion factor: 1 in./in.-°F = 1.8 c m / c m - ° C = 1.8 m / m - K .

6-4

7/74

Table 6.2.

Explosiveg and binders: Coefficients of t h e r m a l expansion CTE, glass transition t e m p e r a t u r e s Tg, and p r e s s e d densities p. Linear CTE (a)*

(10"° in An - ' F )

(io-6 cm/cm °c\ \ or um/m-K I "Fl

-WT

Cubic CTE (gl°-° /lO"^ cm/cm-"C\ T \ or ^m/m-K / (°C (K»

"TFT

Ti^r

density /g/cm V Mg/m-

Explosives Baratol Boracitol Comp B-3

3 3 + 0 26T 46 7 54 6 97 5 32-46 52-66

DATB DOp" Estane ^ 5702-Fl HMX

-40 0 6 27

to to to to

60'C 60°C 25"C 63°C

-20»C 85"C

-53 9 to 73 9»C -65 to 165"F

HNAB' HNE^

(213 333) (273-333)

(279-298) (300-336) (253) (358)

(219-347) (219 347)

30 to 70 (243 343)

80 92

K e l - F 3700 LX-02

385

LX-04

28 5 39 5

(51 3) (71 1)

LX-07

26 7 34 8

(48) (63)

27 31 24 26 31 46

(48 8) (55 8)

65 -18 -65 -18

to to to to

-18°F 165-F -18-F 165°F

(219-245) (245 347)

228 2

(219 245) (24 5 347)

182 9

-65 -20 65 0 -65 10

to to to to to to

-20''F 165"F 0"F 165°F -10°F 165°F

(219-244) (244 347) (219 255) (255 347) (219-249) (261 347)

LX-08

None above (253) (245)

1 860-1 870 1 860-1 870

565

Lx-oa LX-10 LX-U LX-13 LX-u' NC (12 7% N) PBX-9010 PBX-9011 PBX 9404 PBX-9501 PETN^

1 0 8 2 est est

(44 6) (47 0) (56) (83)

See XTX-8003 27 31

(48 5) (55 8)

28 7 37 3

(51 7) (67 1)

28 32 30 46

(50 (58 (55 (83

1 2 6 1

6) 0) 1) 0)

76 5-89 9 60-80

Polystyrene

E

zi/—\

-1 —

/I /I -2

/

1

/

I

-3

/ -4

/'

_ E

1

11

1

1

1 00

- 3

-1

11

-2

<

/

-3 1 50

-a

Fig. 6-4.

1 100

1 150

J .

200

1

1 ,

250 300 Temperature — °C

\

- ^ _ 350

400

450

500

(nn) DTA curve (solid line) and pyrolysis (thermal conductivity) curve (dashed line) for Viton A. 24

-

1

D -PETN

1

1

1

1

300

400

' ^ \ \

1

1

iJ 100

1

Q.

E o

B

(/) -^

75 — Estane

1

1

•^

\ \

\

c o> t_

°

50 —

o

^ 1

\

\

\

\

\

\

25 0

0

1

1

1

1

100

200

300

400

500

0

100

200

Temperature — °C

Fig. 6-5.

7/74

TGA curves for explosives and binders. 26

6-49

500

Table 6. 4. T h e r m a l stabilities of various explosives.

Explosive

„LLL reactivity test (cm"' g a s S T P / 0 . 2 5 g e v o l v e d in 22 h r a t 120°C (393 K))

Baratol Boracitol BTF

0.015-0.02 -

V a c u u m stability test (cm^ g a s S T P / g evolved in 48 h r a t 120°C (393 K)) 0.19 0.02-0.04

0.24-0.40

B T F (purified)

0.05

Comp B, Grade A

0.051

0.05-0.16

Comp B-3

0.033

0.27

C o m p C-4

0.026

Cyclotol 75/25

0.014-0.04

0.25-0.94 177

--

95

--

--

>177

--

--

59

--

--

54

--

--

28

--

--

H-6

60

--

--

HMX LX-02-1

33

40

--

80

--

--

LX-04-1 LX-07-2 LX-09-0 LX-10-0 LX-11-0 LX-13

41

55

--

38

--

--

32

--

--

35

--

40

59

--

--

See XTX-8002

LX-14-0

51

>177

--

--

Octol PBX-9007

41

--

--

35

28

--

PBX-9010

30

45

--

PBX-9011

44

98

--

PBX-9205

42

36

--

PBX-9404 PBX-9407

34

35

40

33

30

--

PBX-9501^ Pentolite 50/50 PETN

44

80

--

-35

--

--

11

--

--

28

--

--

TATB

>100

--

--

Tetryl

28

--

--

TNT

80

>177

--

XTX-8003 (uncured) (cured)

25 21

--

NQ

RDX



9-2

7/74

Susan Test The Susan Sensitivity Test is a projectile impact test with the projectile shown in Fig, 9 - 1 . The weight of explosive in the projectile head is about 1 lb (0,45 kg). The

Fig, 9 - 1 , The Susan projectile. Scaled drawing; the high explosive head is 4 in, long by 2 in, in diameter (0,102 m X 0,051 m).

target is armor-plate steel. The r e s u l t s of the t e s t s a r e expressed in t e r m s of a "sensitivity" curve in which the relative "point-source detonation energy" released by the explosive as a result of the impact is plotted against the velocity of the projectile. The relative point-source detonation energy can be derived from a t r a n s i t - t i m e m e a s urement of the air shock from the point of impact to a p r e s s u r e gauge 10 ft (3,1 m) away. The results determined in this manner a r e somewhat subjective, particularly when the reaction level shows a large but relatively slow increase with time. The p r e ferred way to get at the "point-source detonation energy" at present is to relate it to the o v e r p r e s s u r e measured 10 ft (3,1 m) from the impact. This r e s u l t s in much more reproducible data and is not subject to many of the e r r o r s of the t r a n s i t - t i m e m e a s u r e ments. On the figures in this section the energy scale has been set to range from z e r o for no chemical reaction to approximately 100 for the most violent detonation-like reactions (all explosive consumed) for the most energetic explosives. L e s s violent burning reactions that appear to consume all of the explosive can give values on the scale as low as 40; the energy equivalent of TNT fully reacted as a point source, would r e g i s t e r at 70 on the scale. F o r each explosive considered, comments a r e made on the details of the impact process that seem to bear on the impact safety of an explosive. Remarks about probabilities of large reactions a r e relevant to unconfined charges in the 25-lb (11.3-kg) c l a s s . Smaller unconfined charges show a trend of decreasing r e action level as the charge size gets s m a l l e r .

12/72

9-3

References to the "pinch" stage of the impact r e f e r to the t e r m i n a l stage when the nose cap has been completely split open longitudinally and peeled back to the steel projectile body, which is rapidly being brought to a halt.

9-4

12/72

Comp B-3 Comp B-3 (RDX/TNT 60/40) behaves reasonably well in the standard Susan test (Fig. 9-2). Ignition is observed only after extensive splitting and deformation of the projectile nosecap, more or l e s s at the beginning of the "pinch" staige of impact. This results in a threshold velocity of about 180 ft/sec (55 m / s e c ) . The reaction level is quite dependent on impact velocity; it never r i s e s to its full potential even at an impact velocity of 1500 ft/sec (457 m / s e c ) . Any reaction enhancement is seen quite soon after initial ignition. Comp B-3 shoxild be considered as generally r a t h e r difficult to ignite by mechanical means and as having a low probability for violent reaction once ignited, provided the relative confinement is rather low. It has given substantially l a r g e r reactions in the Mod-IA projectile thsui in the standard Mod I; the important difference between the two projectiles appears to be the exceptionally straight flight of the Mod-IA, which results in higher p r e s s u r e s on the explosive and more effective confinement. Comp B-3 has been observed to detonate in impact geometries where there was good Inertial confinement at the time of ignition, sind where It has been subjected to mechanlc£il work by the Impact.

100 80 o>

60

Q>

C

a>

40 20

0) 0£

0 0 800 1600 Projectile velocity at impact —ft/sec (0)

±

(244)

J

(488)

Projectile velocity at impact — m/s

Fig, 9-2.

12/72

Susan test: Comp B - 3 . Conversion factor: 1 ft/sec = 3.048 X 10" 1 m / s .

9-5

Cyclotol 75/25 Cyclotol 75/25 (RDX/TNT 75/25) has both good and bad properties as measured by the Susan test (Fig, 9-3). The threshold velocity for reaction Is probably about 180 ft/sec (55 m/sec), which Is r a t h e r typical of the TNT-bonded cast explosives and higher than most plastic-bonded explosives. On the other hand, reaction levels generally a r e moderately high at relatively low velocity and on occasion a r e considerably higher. Cyclotol 75/25 shoTild be considered as generally r a t h e r difficult to Ignite by mechanlcEil means but capable of a leirge reaction once Ignited. Note should be taken of the very low drop height for Ignition In the 14-deg (0.24-rad) skid test (Table 9-2).

100

800 1600 Projectile velocity at impact —ft/sec (0)

±

(244)

J

(488)

Projectile velocity at impact — m/s

Fig. 9-3. Susan test: Cyclotol 75/25. Conversion factor: 1 ft/sec = 3.048 X 10" 1 m / s .

9-6

12/72

LX-02-1 LX-02-1 (PETN/butyl rubber/acetyltributyl citrate/Cab-O-Sil 73.5/17,6/6,9/2.0) appears more difficult to ignite in the Susan t e s t than XTX-8003, but the exact t h r e s hold value is poorly defined due to the very small reactions observed and the limited number of tests (Fig. 9-4), Even at 505 ft/sec (154 m/s), the reaction level was very low. The very limited data indicate that LX-02-1 has a very small probability of building to a violent reaction from an accidental ignition where there is relatively little or no confinement.

QJ m 0

_j)



_o

20 — 0

_

1

1

1

1

I

l

l

0 800 1600 Projectile velocity at impact — f t / s e c (0)

J

u

J

(244)

L.

(488)

Projectile velocity at impact — m/s

Fig. 9-8,

12/72

Susan t e s t : LX-10-0, Conversion factor: 1 f t / s e c = 3,048 X l O ' l m / s ,

9-11

LX-11-0 LX-11-0 (HMX/Viton 80/20) is among the least reactive of the PBXs tested in the Susem test (Fig. 9-9), The threshold for reaction is probably about 170 f t / s e c (52,8 m / s ) , judging from the nosecap deformation of 1,8 to 1,9 in, (46 to 49 mm) at the time ignitions were observed for the higher velocity shots. Most TNT-containing cast explosives require even more deformation for ignition; however, the reaction level is quite dependent on impact velocity and Is generally lower than that observed for LX-04-1, although not as low a s that observed for Comp B - 3 , The r a t h e r liigh value of 44 energy units at 612 ft/sec (187 m / s ) is considered atypical and possibly due to ELxisymmetric Impact, Reaction enhancement is observed at the "pinch" stage of the impact, LX-11-0 should be considered as moderately difficult to ignite by mechanical means and as having very low probability of building to violent reaction from a minor ignition where there is relatively little confinement.

0)

T

\\J\J

—r

t/i

'

1

'

'

r

1

80 —



60 —





i-



40 —

— •

S)

> ^

20 — 0



• .AS





1

0

1

1

1

1600

800

Projectile velocity at impact — f t / s e c I (0)

I

I

I

\ (244)

I

I

I

1 (488)

Projectile velocity at impact — m/s

Fig. 9-11. Susan t e s t : Octol 75/25. Conversion factor: 1 f t / s e c = 3.048 X 10"1 m / s .

9-14

7/74

PBX-9010 PBX-9010 (RDX/Kel F 90/10) displays some v e r y undesirable p r o p e r t i e s in the Susan test (Fig. 9-12). Ignition Is observed after about 0.5-in, (13 mm) of projectile nosecap deformation, which would make the threshold velocity for reaction about 110 ft/sec (34 m / s ) . The reaction levels observed a r e high and Independent of impact geometry. The observed energy r e l e a s e Is not as high a s that often seen with the m o r e energetic explosives PBX-9404, LX-09-0, and LX-10-0, but Intrinsic energy content does not completely explain the difference; geometric factors at the time of maximum reaction a r e thought to also contribute to the observed r e s u l t s . The r e a c tion buildup Is svifflclently rapid that no "pinch" stage enhancement of the reaction is observed. PBX-9010 exhibits both a low threshold for reaction and sufficient r e a c t i vity to indicate a very large probability of violent reaction or detonation from any a c cidental mechanicsJ. ignition.

100 80 O} 4) C

v

60 —





40 20

0)

0 0 800 1600 Projectile velocity at impact —ft/sec (0)

(244)

(488)

Projectile velocity at impact — m/s

Fig. 9-12. Susan t e s t ; PBX-9010. Conversion factor: 1 f t / s e c = 3.048 X l O ' l m / s .

7/74

9-15

PBX-9011 PBX-9011 (HMX/estane 90/10) is among the least reactive of the PBXs tested in the Susan test (Fig, 9-13), The threshold for reaction is probably about 165 f t / s e c (50 m / s ) , judging from the nosecap deformation of about 1,7-in, (43 mm) at the time of observed ignition for the higher-velocity shots. The reaction level is quite dependent on the impact velocity; it is generally somewhat lower than that observed for LX-04-1 but not as low as for Comp B-3, Reaction enhancement is observed only at the "pinch" stage of the impact, PBX-9011 should be considered as moderately difficult to ignite by mechanical impact and as having v e r y low probability of building to violent reaction from a minor ignition where there is relatively little confinement. PBX-9011 has given only mild reactions in other impact geometries that often give detonations with explosives such as L X - 0 4 - 1 .

(U

1 \JKJ

V —

1

1

a j> (U

1

1

Vi

'

T

1

80 —



60 —



i-

0)

i-

a> c

40 —

— •

(U

> _o 0)



20



0

• W-S-S

L

1

1

1-

1

0 800 1600 Projectile velocity at impact — f t / s e c I (0)

I

I

I

I (244)

\

I

1

I (488)

Projectile velocity at impact — m/s

Fig. 9-13, Susan test: PBX-9011. Conversion factor: 1 f t / s e c = 3,048 X 10" 1 m / s .

9-16

7/74

PBX-9205 PBX-9205 (RDX/polystyrene/di-2-ethylhexylphthalate 92/6/2) is s i m i l a r to LX-07-2 in some of its properties (Fig. 9-14). The threshold velocity for reaction is probably about 120 ft/sec (37 m/s), judging from the nosecap crush-up at the time of observed ignition with higher-velocity impacts. As with LX-07-2, the response is dependent on impact velocity and is intermediate between that of PBX-9404 and L X - 0 4 - 1 . Thus, PBX-9205 has a low threshold for reaction but only a moderate r a t e of buildup to violent reaction. It appears that accidental mechanical ignition of PBX-9205 would have a moderate probability of building to violent deflagration or detonation.

lOOr

800 1600 Projectile velocity at impact —ft/sec (0)

(244)

(488)

Projectile velocity at impoct — m/s

Fig. 9-14. Susan t e s t : PBX-9205. Conversion factor: 1 ft/sec = 3.048 X 10"! m / s .

7/74

9-17

PBX-9404-03 PBX-9404 (HMX/NC/tris-i3-chloroethyl phosphate MlZJ?,) displays some very undesirable p r o p e r t i e s in the Susan test (Fig. 9-15). Ignition is seen after only about 0.35-in. (8.9 mm) of deformation of the projectile nosecap, which is consistent with the v e r y low tiireshold velocity of 105 f t / s e c (32 m / s ) . The reaction levels a r e generally quite high for impacts in the range of 105 to 200 f t / s e c (32 to 61 m / s ) . These reactions build to violent levels with sufficient rapidity that no "pinch" stage enhancement of the reaction is observed. At higher impact velocities, the reaction level seems to depend somewhat on impact velocity, but it is always at least moderately high. "Pinch" stage enhancement of the reaction at these higher-impact velocities is very noticeable, PBX-9404 exhibits both a very low threshold velocity for reaction and rapid buildup to violent reaction. Any mechanical ignition of PBX-9404 has a very large probability of building to violent deflagration or detonation.

4)

1

\j\j

'

*/i

D _aj 0)

80 — 60

c

0) 0)

>

'Z.

_D 4)

1

'

1

1



f

/ »•

0)

'

40 _





%t



20 — 0

1

1

1

1

1

1

0 800 1600 Projectile velocity at impact — f t / s e c (0)

J

L

(244)

J

I

L

(488)

Projectile velocity at impact — m/s

Fig, 9-15. Susan t e s t : PBX-9404, Conversion factor: 1 f t / s e c = 3,048 X l O ' l m / s .

9-18

7/74

PBX-9501 PBX-9501 (HMX/estane/DNPAF 95/2.5/2.5) is a high-energy explosive with low impact sensitivity for an explosive of its power (Fig. 9-16). The threshold velocity for reaction is about 200 fl/sec (61 m/s), which is higher than that for most PBXs and about equal to that for many TNT-based explosives. Reactions start after about 2.52 in. (6.4 cm) of projectile deformation, which is consistent with the observed threshold velocity. Once threshold velocity is exceeded, reactions become violent over a r a t h e r narrow velocity range. Small reactions do not automatically grow to large reactions as they do in many other high-energy PBXs. Skid-test ignitions, for example, give v e r y low reactions.

(U

1 \J\J

1

1

1

1

1

1

1

;O/>

JJ

(U

80 —



u.



60 'XI _o on

20 __ 0

— ,

1

,

1

1

1

1

0 800 1600 Projectile velocity at impact — f t / s e c 1 (0)

I

I

I

I (244)

I

'

l

l (488)

Projectile velocity at impact — m/s

Fig. 9-16. Susan t e s t : PBX-9501. Conversion factor: 1 f t / s e c = 3.048 X 10" 1 m / s .

7/74

9-19

TNT TNT shows no undesirable p r o p e r t i e s by the Susan test (Fig. 9-17). Minor ignitions a r e seen down to about 235 f t / s e c (72 m / s ) impact velocity but only after extensive splitting of the projectile nosecap and abrupt halt of the projectile at the final or "pinch" stage of impact. No violent reactions are observed even at impact velocities above 1200 ft/sec (366 m / s ) . F u r t h e r , the TNT response is independent of whether it is cast or is a high- or medium-density pressing. TNT should be considered very difficult to ignite accidentally by mechanicsd means; any reaction from such an ignition should be regarded as having an extremely low probability of building to violent levels where there is relatively little confinement.

1

Si o

J)

80

>s

60

D) i-

c 0)

.> _o

40

1

1

1

'

1

:

1

~_

20 0

.*



• 1 _..

0 800 1600 Projectile velocity at impact —ft/sec I I I I I I I I I (0) (244) (488) Projectile velocity at impact — m/s Fig. 9-17.

Susan t e s t : TNT. Conversion factor: 1 f t / s e c = 3,048 X 1 0 " ! m / s .

9-20

7/74

XTX-8003

XTX-8003 (PETN/silicone rubber 80/20) is moderately difficult to ignite in the Susan test (Fig, 9-18), requiring an impact velocity of about 160 f t / s e c (49 m / s ) , judging from the 1.4-in, (36 mm) of projectile nosecap deformation at the time of observed ignition. Reaction levels ranged from quite low to moderately low over the velocity range tested. While the number of tests is limited, it appears that XTX-8003 has a very small probability of building to violent reaction from an accidental ignition where there is relatively little or no confinement.

C(kJ/kg-K)):



Thermol stability (cm of gas evolved at 120 ° C (393 K ) ) : 4.

PHYSICAL PROPERTIES

Physical state: Color:

solid

lgfor48hr: 8.

C2_03H2_g4N2_^gO2_g^

0.05-0.16

DETONATION PROPERTIES

D (mm//Jsec ( k m / s ) ) :

100

Density (g/cm"^):

TMD:

1.74

Nominal:

1.71

Meas.:

295

Calc:



E^y|((mm/Msec)V2 6 mm: Crystal data:

(MJ/kg)):

( p=

1.72

)

(p=

1.717

)

(p=

1.717

)

1.035

19 mm: 1.330



9.

SENSITIVITY

H^Q(cm(10"^

5.

7.99

P j - j (kbar ( 1 0 " ' G P a ) ) :

m.p. ( " C ( K ) ) : - 8 0 ( - 3 5 3 ) b.p. ( ° C ( K ) ) : v . p . (mm Hg ( P a ) ) : —

R:

0.051



A t . comp.: MW:

0.25 9 for 22 hr:

Susan test:



m)):

12 tool

128 tool

45





CHEMICAL PROPERTIES

A Hj^^ ( k c a l / g ( M J / k g ) ) : Calc: Exp: A Hj, ( k c a l / m o l ( k J / m o l ) ) :

^2° {Jl)

^^2° (g)

1.54 (6.44)

1.40 (5.86)

-

-

Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event

+1.0 (+5.78)

Solubility ( s - s o l . , si - s i . s o l . , i - i n s o l . ) :



Gap test (mils (mm)): 16-26 (0.41-0.66)

(p=

1.710

)

6. THERMAL PROPERTIES k: 6.27 X l o ' ^ c a l / s e c - c m - ° C (0.262 W / m - K ) CTE:

10, ELECTRICAL PROPERTIES: e:



11.

TOXICITY

^___.^———^——^—_^^__-_.^^^^—_ 7/74

18-9

Comp B

COMP B, GRADE A

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

+5 +4 + 3[ 42

10 Comp B

9

'

8 7 6 5

J y^^^^

+1 / ,' \ ^ 0-x^ \ -1 1 -2 \ -3 \ -4 ^-1 -5 C) 1 00 200 300 Tennpera ture - " C

4 3 2 1 0

> E

18-10

7/74

EXPLOSIVE: C Y C L O T O L 7 5 / 2 5

DESIGNATION:

2 . STRUCTURE OR FORMULATION

6. THERMAL PROPERTIES (continued)

wt% RDX

75

TNT

25

T (°F(K)):

Cyclotol

7 5 / 2 5



Cp(cal/g-°C(kJ/kg-K)):



Thermal stability (cm of gas evolved at 120 ° C (393 K ) ) : 4.

PHYSICAL PROPERTIES

Physical state: Color:

solid

0,25 g for 22 hr:

0.014-0.04

lgfor48hr:

0.25-0.94



A t . comp.:

8. DETONATION PROPERTIES

C^_7gH2_5gN2_3g02_gg

MW: 100

D (mm/iusec ( k m / s ) ) :

Density (g/cm"^):

TMD: Nominal:

P(-j (kbar (10"^ G P a ) ) :

1.75-1.76

m.p. ( ° C ( K ) ) : 79-80 (352-353) b.p. ( ' > C ( K ) ) : — v . p . (mm Hg ( P a ) ) : 0.1 at 100°C (13.33 at 373 K )

Meas.:

316

Calc:



E^y|((mm/;usec)2/2 6 mm: Crystal data:

8.30

( p=

1.76

)

(p=

1.752

)

(p=

1.754

)

1.77

(MJ/kg)):

1.140

19 mm: 1.445



9.

SENSITIVITY

HjQ(cm(10"2

R:



5.

CHEMICAL PROPERTIES

A Hj^^ (kcal / g ( M J / k g ) ) : Calc: Exp: A Hj. ( k c a l / m o l ( k j / m o l ) ) :

m)):

12 tool 33

12B tool —

Susan test: T h r e s h o l d v e l o c i t y - 180 f t / s e c ( - 5 5 m / s ) ; g e n e r a l l y d i f f i c u l t to i g n i t e but capable of l a r g e r e a c t i o n . ^2° (H )

^ 2 ° (g)

1.57 (6.57)

1.44 (6.03)



_

Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event 14 (0.24) 45 (0.79)

+3.01 (+13.8)

Solubility ( s - s o l . , si - s i . s o l . , i - i n s o l . ) :



0.88 (0.27) 28.0 (8.53)

Gap test (mils (mm)): S m a l l s c a l e : 1 0 - 1 6 (0.25-0.41) L a r g e s c a l e : 1.646 (41.8)

4 0

(p = 1.753) (p = 1.756)

6 . THERMAL PROPERTIES k:

10, ELECTRICAL PROPERTIES:



CTE:



e:

3.38

11.

TOXICITY

— 7/74

18-11

(p = 1.75)

Cyclotol 7 5 / 2 5

CYCLOTOL 7 5 / 2 5

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

<

+5 +4 +3 +2 +1 0 -1 -2 -3 -4 -5

()

Cyclotol

/

'

f\\

^J 1

1

1 1

100 200 300 Te npe nature - ° C

DTA (-) and p y r o l y s i s (

10 9 8 7 6 5 4 3 2 1

n

) curves.

18-12

7/74

EXPLOSIVE: l , 3 - D I A M I N O - 2 , 4 , 6 - T R I N I T R O B E N Z E N E

DESIGNATION:

2.

6. THERMAL PROPERTIES (continued)

STRUCTURE OR FORMULATION

T (»F(K)):

NH„ OjN

DATB



y

NOj Cp(cal/g-''C(kj/kg-K)):



NHj NOj 4.

Thermal stability (cm of gas evolved at 120 ° C (393 K ) ) :

PHYSICAL PROPERTIES

Physical state: Color:

solid

0.25 g for 22 hr:

E

r\ -

100 150 200 250 300 350 400 450 500 Temperature — ° C

DTA (-) and p y r o l y s i s (

) curves.

18-24

7/74

MATERIAL:

Exon 461

DESIGNATION :

TRIFLUOROCHLOROETHYLENE/

VINYLIDINE CHLORIDE COPOLYMER (Binder) SUPPLIER : F i r e s t o n e P l a s t i c s Co. 2. STRUCTURAL FORMULATION

—X

u — u —u

X — U

\

— c — c — -

/

\

/

_

n

4 . PHYSICAL PROPERTIES Physical state : s o l i d

Crystal data :

Color : w h i t e A t . comp. : ( C 4 H 2 C l 3 F 3 ) ^ MW:(213.43)n Density (g/cm ) :

TMD : Nominal :

1.70 R:

m.p. ( ^ ( K ) ) : b.p. CCiK)): v . p . (mm Hg (Pa) ) : Brittle point (°C (K) ) : f.p. (°C(K)):

n : Shore hardness :

5. CHEMICAL PROPERTIES

7. MECHANICAL PROPERTIES

A H ^ (kcal/mol (kJ/mol) ) :

Tensile strength (psi (kPa) ):

Solubility ( s - s o l . , s l - s l . s o l . , i-insol.) :

Elongation (°/() :

s — g a s o l i n e , M E K , toluene, x y l e n e

6. THERMAL PROPERTIES

10. ELECTRICAL PROPERTIES

k:

f :

2.82

CTE:

11. TOXICITY Slight.

T (°F (K) ) : y

C

P

(cal/g-»C(kJ/kg-K)):

NOTES

7/74

18-25

(p=

1.7)

Exon 461 —1

r

+3

Exon 461

-^2 -rl '<

>

0^

E

-1 -2 -3 50

100 150 200 250 300 350 400 450 500 Temperature — ° C

DTA (-) and p y r o l y s i s (

) curves.

18-26

7/74

EXPLOSIVE: B I S ( 2 - F L U O R O - 2,2 - D I N I T R O E T H Y L ) FORMAL 2 . STRUCTURE OR FORMULATION

DESIGNATION:

FEFO

6. THERMAL PROPERTIES (continued) T (

-t

11 -

-1 -2

.

-3

-

^ 1 J..

50

^1

E



V 1

1

100 150 200 250 300 350 400 450 500 Temperature — °C

DTA (-) and p y r o l y s i s (

) curves.

18-38

7/74

EXPLOSIVE: 2.

l.\-01

DESIGNATION:

STRUCTURE OR FORMULATION

6. THERMAL PROPERTIES (continued)

wt% NM

51,7

TNM

33.2

l-Nitropropane

15.1

LX-01

T (°F(K)):



Cp(cal/g-°C(kJ/kg-K)):



Thermal stability (cm of gas evolved at 120 " C (393 K): 4 . PHYSICAL PROPERTIES

0.25 g for 22 hr:

Physical state:

1 g for 48 hr:

Color:



clear

A t . comp.: MW:

liquid

1.8 at 80°C (353)

8. DETONATION PROPERTIES

C j 52H3_^3N^^gg03_3g

100

Density ( g / c m ):

TMD: Nominal:

D (mm/Msec ( k m / s ) ) : 6.84

( p=

1.24

)

P ^ j (kbar ( 1 0 " ' G P a ) ) :

(p=

1.31

)

1,23 —

m.p. ( ° C ( K ) ) : - 5 4 (219) b.p. ( ' • C ( K ) ) : — v . p . (mm Hg ( P a ) ) : 29,0 at 25°C (3866 at 298 K)

Meas.: 156 Calc:

177

E^y,((mm/Msec)V2 6 mm: Crystal data:

(MJ/kg)):



SENSITIVITY

H^Q(cm(10"^

Susan test:

R:



5.

CHEMICAL PROPERTIES

A Hj^^ ( k c a l / g ( M J / k g ) ) : Calc: Exp: A Hf ( k c a l / m o l ( k j ^ / m o l ) ) :

^2^ (Jl)

^jO (^^

1.72 (7.20)

1.52 (6.36)





m)):

12 tool



Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event



Gap test (mils (mm)):



6 , THERMAL PROPERTIES

CTE:

10. ELECTRICAL PROPERTIES: —

e:



11.

TOXICITY

— 12 72

12B tool

-27.5 (-115.2)

Solubility ( s - s o l . , si - s i . s o l . , I - insol.):



)

19 mm: —



9.

k:

(p=

:U

(p=

)

LX-01

LX-01

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

^0 18-J

12/72

EXPLOSIVE: 2.

LX-02-1

DESIGNATION:

STRUCTURE OR FORMULATION

6. THERMAL PROPERTIES (continued)

wtTu PETN

73.5

Butyl rubber

17.6

Acetyltributyl citrate

6.9

Cab-O-Sil

2.0

L X - 0 2

T (°F(K)): 9

none above -4 (253)

Cp(cal/g-°C(kJ/kg-K)): Est,:

0.29 (1.213)

Thermal stability (cm of gas evolved at 120 ° C (393 K): 4.

PHYSICAL PROPERTIES

Physical state: Color:

0.25 g for 22 hr:

puttylike solid

1 g for 48 hr:

0.3-0,6 —

buff

A t . comp.:

8.

C2_7^H4_ggNQ_g302 ggSig^^g

MW: 100

DETONATION PROPERTIES

D (mm/^sec ( k m / s ) ) :

7,37

( P= 1.44

)

3 Density ( g / c m ):

TMD: Nominal:

1.44 1,43-1.44

P^j(kbar(10"'GPa)):

m.p.(°C(K)): no f i x e d m . p . b.p. ( ° C ( K ) ) : — v . p . (mm Hg (Pa)): —

Meas.:



Calc:



E^y,((mm/Msec)2/2

Crystal data:



6 mm:



19 mm:



9.

(MJ/kg)):

(p=

)

(p=

)

SENSITIVITY

H^Q(cm(10"^

m)):

12 tool

12B tool

80 R: 5.



Susan test: V e r y d i f f i c u l t to i g n i t e ; s m a l l p r o b a b i l i t y of b u i l d i n g t o a v i o l e n t r e a c t i o n .

CHEMICAL PROPERTIES

A Hj^^ ( k c a l / g ( M J / k g ) ) : Calc: Exp: A Hj, ( k c a l / m o l ( k j / m o l ) ) :

^2° {Jl )

^^2° (g)

1,42 (5,94)

1,16 (4,85)





Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event

- 4 9 . 1 (-205.3)

Solubility ( s - s o l . , si - s i . s o l . , I - i n s o l . ) : —

Gap test (mils (mm)):



6. THERMAL PROPERTIES k:



CTE: a = 128.7 m / m - K at 244-253 K

10. ELECTRICAL PROPERTIES: e:

P = 385 m / m - K at 243-343 K 11.

TOXICITY



12/72



-S'

(p=

)

LX-02

LX-02-1

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Fail ure envelope

NOTES

>/2. 18-

12/72

EXPLOSIVE:

LX-04-1

DESIGNATION:

2 . STRUCTURE OR FORMULATION

6. THERMAL PROPERTIES (continued) T

Wt^o

HMX

85

Viton A

15

L X - 0 4

C

(°F (K)):

-18 (245)

(cal/g-°C(kJ/kg-K)): E s t . : 0.30 (1.25)

Thermal stability (cm of gas evolved at 120 ° C (393 K ) ) : 4 . PHYSICAL PROPERTIES

0.25 g for 22 hr:

Physical state:

1 g for 48 hr:

Color:

solid



yellow

A t . comp.:

8.

C^_55H2_5gN2_3o02 3 O F Q 52

MW: Density (g/cm"^):

TMD: Nominal:

DETONATION PROPERTIES

D (mm//usee ( k m / s ) ) : 8.46

( p= 1.86

)

P j , j (kbar ( 1 0 " ' G P a ) ) :

(p=

1.865

)

( p = 1.865

)

1.889 1.860-1.870

m.p. ( ° C ( K ) ) : dec. >250 (>523) b.p. ( ° C ( K ) ) : — v . p . (mm Hg (Pa)): —

Meas.: 350 Calc:

330

E^y|((mm/Msec)V2

Crystal data:



6 mm:

1.170

19 mm:

1.470

9.

m)):

12 tool

12B tool

41

55

Susan test: T h r e s h o l d v e l o c i t y 140-150 f t / s e c (43-46 m / s ) ; m o d e r a t e l y easy t o i g n i t e ; l o w p r o b a b i l i t y of b u i l d i n g t o a v i o l e n t r e a c t i o n . Some g e o m e t r i e s detonate h i g h - o r d e r .

R: — CHEMICAL PROPERTIES

A Hj^^ ( k c a l / g ( M J / k g ) ) :

(MJ/kg)):

SENSITIVITY

H^Q(cm(10"^

5.

0.01-0.04

^2° (i)

^ 2 ° (g)

Calc:

1.42 (5.94)

1.31 (5.49)

Exp:

1.31 (5.49)

1.25 (5.23)

Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event 14 (0.24) 45 (0.79)

A Hf ( k c a l / m o l ( k J / m o l ) ) : - 2 1 . 5 (-90.1) Solubility (s - s o l . , si - s i . s o l . , I - I n s o l . ) :



14.1 (4.30) 5,0 (1.52)

Gap test (mils (mm)): Small-scale: P r e - 1 9 6 5 : 6 0 - 8 0 (1.5-2.0) P o s t - 1 9 6 5 : 4 0 - 6 0 (1.0-1.5)

2 3

( p = 1.865

6 . THERMAL PROPERTIES k: 9,25 X l o " * c a l / s e c - c m - ° C ; 0,22 B T U / h r - f t - ' F ^.^g. (0.380 W / m - K ) a = 28.5 X l O ' ^ i n . / i n . - ° F at - 6 5 to - 1 8 ' ' F (51.3 MHi/m-K at 219-245 K) a = 39.5 X l O " ^ i n . / i n . - ' ' F at - 1 8 t o 165°F ( 7 1 . l A i m / m - K at 245-347 K )

10, ELECTRICAL PROPERTIES: e : 3.44

11.

13 = 228.2 M m / m - K at 243-343 K )

7/74

18-•43

TOXICITY

(p = 1.86)

)

LX-04

LX-04-1

7. MECHANICAL PROPERTIES 1 10.35 _

1

1

" ~ ~ ~ -\

PR = 0 . 3 0

\

D

a.

« 1 o UJ

6.89

-

-

\

v^^^

3.45 n 200

1 250

1 300

1 350

Temperature — K Initial modulus

Z

87.0

1

1

1

322 K 58.0

-

S 29.0

-

o X

T E

6000

294 K

( ^

O-

2000 4000 Strain — n m/m

hi^ii412

\24

Time— hr

U

Creep

Failure envelope

NOTES

50

150

250

350

Temperature — °C DTA (-) and p y r o l y s i s (

) curves.

18-44

7/74

EXPLOSIVE:

LX-07

DESIGNATION:

2 . STRUCTURE OR FORMULATION

HMX

90 10

LX-07

6. THERMAL PROPERTIES (continued)

wt^ Viton A

,

T ("F ( K ) ) : - 1 8 (245) 9 Cp(oal/g-»C(kJAg-K)): E s t . : 0.28 (1.172) Thermal stability (cm^ of gas evolved at 120 ° C (393 K>:

4 . PHYSICAL PROPERTIES

0.25 9 for 22: hr:

Physical state; solid

1 « for 48 hr:

Color:



orange

At. comp,: MW:

0.01-0.04

8. DETONATION PROPERTIES

C^,^s^,e2^2A3^2A3^0.35

100

Density ( g / c m ^ ) :

TMD:

D (mm/»isec ( k m / $ ) ) : 8.64

( P= 1.87

P^j(kbar ( 1 0 " ' G P o ) ) :

(p=

1.892

Nominal: 1.860-1.870 m,p, ( ' C ( K ) ) : dec. >250 (>523) b.p. ( • € ( < ) ) : — v . p . (mm Hg ( P a ) ) : —

Meas.:



Calc:

346

E^y,((mm/fisec)^/2 Oystal data:



(MJ/kg)):

6 mm:

1.250

19 mm:

1.575 ( L X - 0 7 - 1 )

9.

1.865

)

( p = 1.857

)

(LX-07-1) |

SENSITIVITY

H2Q(cm(10"^

m)):

12 tool

12B tool

38



R: —

5.

Susan test: Threshold velocity ~ 125 f t / s e c (~38 m / s ) : has moderate buildup to violent reaction. ( L X - 0 7 - 2 ) .

CHEMICAL PROPERTIES

A H ^ j (kcal/g (MJ/kg)): Calc: Exp: A Hf (kcal/mol ( k j / m o l ) ) :

"2° ( i )

^2° (g)

1.49 (6.23)

1.37 (5.73)





Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event *14 (0.24)

- 1 2 . 3 (-51.7)

Solubility ( s - s o l . , s l - s l . s o l . , i - i n s o l . ) :



1

2.5 (0.76)

6

*45 (0.79) 7.1 (2.16) 5 *LX-07-l Gap test (mils (mm)): ( p = 1.857 70-90 (1.8-2.3) (LX-07-1)

)

6 . THERMAL PROPERTIES k: 0.23 B T U / h r - f t - » F (0.398 W / m - K ) CTE:

10, ELECTRICAL PROPERTIES:

€1



n.

TOXICITY

a = 26.7 X 10"^ i n . / i n . - ' F at - 6 5 to -18''F (48 m / m - K at 219-245 K) a = 34.8 X 10"^ ln./ln.-"'F at - 1 8 to l e s - F (63 m / m - K at 245-347 K)



0 = 182.9 m / m - K at 243-343 K

4f5 12/72

18-tf

j

LX-07

LX-07-2

|7. MECHANICAL PROPERTIES

1

I 10.35 f

6.89

1

1

-....^.^^^^^

PR = 0 . 2 7 5



\



o

111

3.45

_ *" •• 1

T

1,

0 200

\

—-^^

fl

250

300

8.27

\

o

1 5.52 1

Initial modulus

_

\ )

2 O

2.76 E

~o

1 ^^^^J,^—•» r

1 58.0 -

322

1

V 1^^^fc^

)

1

1 ^"^^ 1 2000 4000

6000

Strain—*im/m

294K

\^



0

6

i«7K

o

eep corn) O

-

29.0

f 1

1

° 1



-

K^.—-

X

8 C o

y

^

Z

\

1

N.

35C1

Temperature — K

1

12 Time-hr

18

r

24

Creep

Failure envek>pe

NOTES

.i^

12/72

EXPLOSIVE: 2.

LX-08-0

DESIGNATION:

STRUCTURE OR FORMULATION

6. THERMAL PROPERTIES (continued)

wt% PETN

63.7

Sylgard

34.3

Cab-O-Sil

L X - 0 8

Tg ( ° F ( K ) ) :



Cp(cal/g-'>C(kj/kg-K)):

_

2.0 Thermal stability (cm of gas evolved at 120 ° C (393 K^:

4 . PHYSICAL PROPERTIES

0.25 g for 22 hr:

Physical state: p u t t y l i k e s o l i d

1 g for 48 hr:

Color:



blue

A t . comp.: MW:



8. DETONATION PROPERTIES

C^ggH^ggN^gjO^g^Si^j^^^

100

D (mm/Msec ( k m / s ) ) :

6.56

( P=

>1.42

)

3 Density ( g / c m ):

TMD: Nominal:

1.439 >1.42

P^j(kbar(10"^GPa)):

m.p. ( ° C ( K ) ) : 129-135 (402-408) w i t h dec. b.p.(°C(K)): — v . p . (mm Hg (Pa)): —

Meas,:



Calc:



E^y,((mm/Msec)V2

Crystal data:



6 mm:



19 mm:



9.

5.

Susan test:



(p=

)

m)):

12 tool

12B tool



CHEMICAL PROPERTIES

A H^^j ( k c a l / g ( M J / k g ) ) : Calc: Exp: A H^ ( k c a l / m o l ( k j / m o l ) ) :

^2° ( i )

^ 2 ° (g)

1.98 (8.27)

1.77 (7.41)





Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event

- 4 4 (-185.9)

Solubility ( s - s o l . , s i - s i . s o l . , i - Insol.): —

Gap test (mils (mm)):

6 . THERMAL PROPERTIES k:

)

SENSITIVITY

HjQ(cm(10"^

R:

(MJ/kg)):

(p=



CTE:

10. ELECTRICAL PROPERTIES: e:



11.

TOXICITY

a = 104.5 X l O " ^ i n . / i n . - ° F (188 m / m - K ) (3 = 565 m / m - K



12/72

-s

(p=

)

LX-08-0

LX-08 7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

18-

12/72

EXPLOSIVE

LX-09-0

DESIGNATION:

2. STRUCTURE OR FORMULATION

6. THERMAL PROPERTIES (continued)

wt7o LX-09-0

LX-09-1

9J

93,3

HMX pDNPA

4.6

4,4

FEFO

2,4

2,3

L X - 0 9 - 0

T (°F (K))g

- 2 0 (244)

Cp(cal/g-°C(kj/kg-K)): Est.:

0.28 (1.172)

3 Thermal stability (cm of gas evolved at 120 ° C (393 K): 4.

PHYSICAL PROPERTIES

Physical state: Color:

0.25 g for 22 hr:

solid

1 g for 48 hr:



purple

At. comp.: C^^^^B^^^^n^^^^0^.i^V^^^2 MW: 100 L X - 0 9 - 1 Density ( g / c m ' ^ ) -

SIPI'P> labia 4-2)

8.

DETONATION PROPERTIES

D (mm//usee ( k m / s ) ) :

Nominal:

P(-j 'kbar ( 1 0 " ' G P o ) ) :

1.837-1,845

Meas.:

377

Calc:

373

E^y,((mm/A«ec)V2

Crystal data:



6 mm:

1.320

19 mm:

1.675

9.

( p=

1.84

)

(p=

1.837

(p=

1.836 )

CHEMICAL PROPERTIES

Calc: Exp: A H, ( k c a l / m o l ( k j / m o l ) ) :

m)):

12 tool

12B tool

32



Susan test: T h r e s h o l d v e l o c i t y ~ 1 1 0 f t / s e c (~34 m / s ) ; has h i g h p r o b a b i l i t y of r a p i d b u i l d u p to v i o l e n t r e a c t i o n .



A Hj^j (kcal/g ( M J / k g ) ) :

(MJ/kg)):

)

SENSITIVITY

HjQ(cm(10"^

5.

8.81

TMD: 1.867

m.p. ( ° C ( K ) ) : dec, >280 (>553) b.p. ( ° C ( K ) ) : — v . p . (mm Hg (Pa)): —

R:

0.03-0.07

^2°{Jl)

"20^^)

1.60 (6,69)

1,46 (6,11)



Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event



+1.»2 (+7.61) ( L X - 0 9 - 0 ) +2.004 ( + 8.38) ( L X - 0 9 - 1 )

14 (0.24) 45 (0.79)

1.25 (0.38) 5.0 (1.52)

6 6

Solubility (s - s o l . , si - s i . s o l . , I - i n s o l . ) : — Gap test (mils (mm)): 75-105 ( 1 . 9 - 2 . 7 ) 6. THERMAL PROPERTIES k:

0,25 B T U / h r - f t - ° F (0,432 W / m - K )

10. ELECTRICAL PROPERTIES:

CTE: a = 27,1 X 10 m . / m , - ° F at - 6 5 t o - 2 0 ° F (48,8 m / m - K at 219-244 K)

e :



a - 31,0 X 1 0 ' ^ m , / i n , - ° F at - 2 0 to 165°F (55.8 m / m - K at 244-347 K )

11.

TOXICITY

— 12/72

4-9

18-aB

( p = 1.835

)

LX-09-0

LX-09-0

7. MECHANICAL PROPERTIES

c2 O

1

'>

13.801-

\

PR = 0.30

10.35 5.52

' o

6.891-



LU

3.45 -

\

T 9

T 200

1 300

1 250

1 350

Temperature — K Initial modulus

1 o 290

-

X

^ 145 o a. E o

c

1

1

322 K

' -

294 K

0

1 12 Time— hr

4000

Strain — /um/m

267 K 1

2000

1 18

1 24

Creep

Failure envelope

NOTES

18-

iSb

12/72

EXPLOSIVE: 2.

DESIGNATION:

LX-10-0

STRUCTURE OR F O R M U U T I O N wt% LX-10-0 95

HMX Viton A

LX-10

6. THERMAL PROPERTIES (continued) T (°F (K)): g

LX-10-1 94.5

5

4.5

- 1 8 (245)

Cp(cal/g-°C(kj/kg-K)): Est.:

0.28 (1.17) o

4.

Thermal stability (cm of gas evolved at 120 " C (393 K ) ) : LX-10-0 LX-10-1 0.25 g for 22 hr: 0.02 0.04-0.06

PHYSICAL PROPERTIES

Physical state:'soUd Color:

"-'l . 4 1 0 " 2 . 6 6 3 ^ 2 . 5 7 9 ^ 2 . 5 7 9 * 0.156

A t . comp,: L X - 1 0 - 0 : MW:

1 g for 48 hr:



b l u e - g r e e n spots on w h i t e

100

LX-10-0

Density ( g / c m ):

8.

C^.42H2.66^2.57^2.57^0.17

TMD: Nominal:

LX-10-1

1,896

1.895

1,858-1,868

1.870

DETONATION PROPERTIES

D (mm/^isec ( k m / s ) ) : P j - j (kbar ( 1 0 " ' GPa)):

m.p. ( " C ( K ) ) : dec, >250 (>523) b.p. ( ' • C ( K ) ) : — v . p , (mm Hg (Pa)): —

Meas.:

375

Calc:

360

E^y,((mm//isec)^/2

Crystal data:



6 mm:

1.315

19 mm:

1.670

9.

R:



5.

CHEMICAL PROPERTIES

A Hj^^ ( k c a l / g ( M J / k g ) ) : Calc: Exp: A Hj. ( k c a l / m o l $ c J / m o l ) ) :

8.82

(MJ/kg)):

)

(p=

1.860

)

(p=

1.862

)

SENSITIVITY

^2° (Jl)

^ 2 ° (g)

1.55 (6.49)

1.42 (5.94)





Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event 14 (0.24) 45 (0.79)

- 3 . 1 4 (-13.1) —

0.25 B T U / h r - f t - ° F (0.432 W / m - K )

CTE:

10, ELECTRICAL PROPERTIES: e :



11.

TOXICITY

a = 24.8 X l O ' ^ i n . / i n . - ° F at - 6 5 to O'F (44.6 / u m / m - K at 219-255 K) a = 26.2 X l O ' ^ i n . / i n . - ° F at 0 to 165°F (47.0 A i m / m - K at 255-347 K )

0.88 (0.27) 3.5 (1.07)

Gap test (mils (mm)): S m a l l - s c a l e : 80-100 ( 2 . 0 - 2 . 5 )

6. THERAAAL PROPERTIES



7/74

1.86

H j Q ( c m ( 1 0 ' ^ m)): 12 tool 12B tool LX-10-0 5 kg: 35 — L X - 1 0 - 0 2.5 k g : 40 L X - 1 0 - 1 2.5 k g : 35 Susan test: T h r e s h o l d v e l o c i t y ~ 120 f t / s e c (~37 m / s ) ; has h i g h p r o b a b i l i t y of r a p i d buildup to violent reaction.

Solubility ( s - s o l . , si - s i . s o l . , i - i n s o l . ) :

k:

( p=

18- 51

(p=

0 6 1.872

)

LX-10

LX-10-0

7. MECHANICAL PROPERTIES

5.52 250 300 Temperature— K

350

Initial modulus

1

-,^ o

58.0 -

X

29.0

D

1000

1

2000

3000

Strain—jum/m

•_

^

_/^^^

_

(

"5-

1

322 K

^

1 u

1

294 K

E 0

567 K n

-I

1

12

1

1

18

24

Time—hr Creep

Failure envelope

NOTES

18-52

7/74

EXPLOSIVE: 2.

LX-11-0

DESIGNATION:

STRUCTURE OR FORMULATION

6. THERMAL PROPERTIES (continued) Tg ( ° F ( K ) ) :

wt% HMX

80

Viton A

20

LX-11

-18 (245)

Cp(cal/g-°C(kJ/k9-K)): Est.:

0.28 (1.172) o Thermal stability (cm of gas evolved at 120 " C (393 K): 4 . PHYSICAL PROPERTIES

0.25 g for 22 hr:

Physical state:

1 g for 48 hr:

Color:



white

A t . comp.: MW:

solid

0.01-0.04

8 . DETONATION PROPERTIES

C^ gjH2_53N2_^g02 ^ ^ F ^ .^^

100

D (mm/^sec ( k m / s ) ) :

8.32

( P=

1.87

)

(p=

1.87

)

(p=

1.876

)

q

Density ( g / c m ):

TMD: Nominal:

— 1.87-1,876

P(^j (kbar ( 1 0 " ' GPa)):

m.p. ( " C ( K ) ) : dec. >250 (>523) b.p. ( ° C ( K ) ) : — v . p . (mm Hg (Pa)): —

Meas.:



Calc:

310

E^^,((mm/A«ec)^/2

Crystal data:



6 mm:

1.105

19 mm:

1.360

9.

SENSITIVITY

H^Q(cm(10"^

5 . CHEMICAL PROPERTIES ^2° ( i ) 1.38 (5,77)

1,28 (5,36)

Exp:

1,23 (5.15)

1.16 (4.85)



Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event



Gap test (mils (mm)): 45-65 (1,1-1.7)

6 . THERMAL PROPERTIES (est.) 0.21 B T U / h r - f t - ° C (0.363 W / m - K )

CTE:

10. ELECTRICAL PROPERTIES: e: —

a = (est.) 31 X l o ' ^ i n . / i n . - ° F at -65 t o - 1 0 ° F (56 m / m - K at 219-249 K) a = (est.) 46 X l o " ^ i n . / i n . - ° F at 10-165*'F (83 m / m - K at 261-347 K)

12/72

12B tool

59

-30.73 (-128.6)

Solubility ( s - s o l . , s l - s l . s o l . , I -insol . ) :

k:

12 tool

"20(g)

Calc:

A Hj ( k c a l / m o l ( k j / m o l ) ) :

m)):

Susan test: T h r e s h o l d v e l o c i t y ~ 170 f t / s e c (~53 m / s ) ; i s m o d e r a t e l y d i f f i c u l t t o i g n i t e and has v e r y l o w p r o b a b i l i t y of b u i l d u p to violent reaction.

R: —

A Hj^^ ( k c a l / g ( M J / k g ) ) :

(MJ/kg)):

11.



18-1»

TOXICITY

(p=

1,867

)

LX-11

LX-11-0

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

-m

12/72

EXPLOSIVE:

DESIGNATION:

LX-14

2 . STRUCTURE OR FORMULATION

6. THERMAL PROPERTIES (continued) T

wt% HMX

LX-14

(°F(K)):

_

y

95.5

Estane 5 7 0 2 - F l

Cp(cal/g-°C(kJ/kg-K)):

4.5

Est.:

0.27 (1.13)

o Thermal stability (cm of gas evolved at 120 ° C (393 K)): 4 . PHYSICAL PROPERTIES

0.25 g for 22 hr:

Physical state:

1 g for 48 hr:

solid

0.02

0.025

Color: v i o l e t spots on w h i t e A t . comp.: MW: 100

8. DETONATION PROPERTIES

S.521^2.917^2.58702.658

Density ( g / c m ^ ) :

TMD:

1.849

Nominal:

1.833

m.p. (°C ( K ) ) : dec. >270 0 5 4 3 ) b.p. ( ° C ( K ) ) : v . p . (mm Hg (Pa)):

D (mm/Msec ( k m / s ) ) : 8.837

( p=

1.833

)

P ^ j (kbar ( 1 0 " ' G P a ) ) :

(p=

1.833

)

Meas.:

370

Calc: E^y,((mm/A«ec)2/2

(MJ/kg)):

(p=

)

6 mm: 19 mm:

Crystal data:

9.

SENSITIVITY

H . (cm ( 1 0 " ^ mm)): ^" 2.5 k g :

CHEMICAL PROPERTIES

AH^^^(kcal/g(MJ/kg)): Calc:

^2°(£) 1.576 (6.594)

^2°

{g)

(1,432 (5.954) Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event

Exp: A Hj. ( k c a l / m o l ( k j / m o l ) ) :

+1.50 (+6.28)

Solubility ( s - s o l . , si - s i . s o l . , i - i n s o l . ) :

Gap test (mils (mm)): Small-scale:

60-80 ( 1 . 5 - 2 . 0 )

6 . THERMAL PROPERTIES 10, ELECTRICAL PROPERTIES:

k: CTE: a = 27 X 1 0 " ^ i n . / i n . - ° F 30°F (55.8 A239 K )

•7/74

12B tool 51

Susan test: T h r e s h o l d v e l o c i t y ~48 m / s ; i s m o d e r a t e l y easy to i g n i t e . A c c i d e n t a l m e c h a n i c a l i g n i t i o n w o u l d have m o d e r a t e l y l o w p r o b a b i l i t y of b u i l d i n g to v i o l e n t r e a c t i o n o r detonation.

R: 5.

12 tool

11.

18-55

TOXICITY

(p=

1.833

)

LX-14 7. MECHANICAL PROPERTIES

5.52

4.141-

200

250

300

350

Temperature — K

I

Initial modulus

2.76

1.38

0

2000

4000

Strain — jim/m

Creep

Failure envelope

I NOTES

18-56

7/74

EXPLOSIVE: N I T R O C E L L U L O S E (12% N)

DESIGNATION:

1 2 . STRUCTURE OR FORMUU^TION

NC

(12%

N

6. THERMAL PROPERTIES (continued) T (°F(K)):

[CgH,02(ON02)3]^



Cp(cal/g-°C(kj/kg-K)):



3 Thermal stability (cm of gas evolved at 120 ° C (393 K ) ) : 4.

PHYSICAL PROPERTIES 0.25 g for 22 hr:

Physical state: Color:

lgfor48hr:

white

A t . comp.:

5.0

8. DETONATION PROPERTIES

CgH^Ng^^Ogg

MW: 262.6 1

D (mm//usee ( k m / s ) ) : o

Density ( g / c m ):

TMD:



( p=

)



Nominal:

P ( . j ( k b a r ( 1 0 " ' GPa)):

1.58

m.p. ( ° C ( K ) ) : dec. 135 (408) b.p. C C ( K ) ) : — v . p . (mm Hg (Pa)): —

Meas.:



Calc:

200

E^y|((mm/A«ec)V2 Crystal data:

1.0-1.2

solid



6 mm:



19 mm:



9.

(p=

(MJ/kg)):

1.58

(p=

)

)

SENSITIVITY

HjQ(cm(10"^

m)):

12 tool

12B tool

R: — Susan test: [s.



CHEMICAL PROPERTIES

AHj^j(kcal/g(MJ/kg)): Calc:

H2O (^ ) 1.16 (4.85)

Exp: A Hj ( k c a l / m o l ( k J / m o l ) ) :



HjO (^^ 1.02 (4.27) Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event



-216 (-904)

Solubility ( s - s o l . , si - s i . s o l . , i - i n s o l . ) : Gap test (mils (mm)):

s — acetone, ethanol



i — c a r b o n tetrachloride, c h l o r o f o r m , ethyl ether, water 6 . THERMAL PROPERTIES k:

5.5 X 1 0 " ^ c a l / s e c - c m - ° C (0.230 W / m - K )

CTE:

a = 80-120 A^ni/m-K

10, ELECTRICAL PROPERTIES: e:



11.

TOXICITY

None,

7/74

18-57

(p=

)

NC (12% N)

NITROCELLULOSE (12% N)

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

+5 + 4 ' Explosion

10

,- !1 1

9 8

1

+3 +2 +1

NC 1

0

' ""^-^^

-1 1

A

7 6 _ 5>E

\

11

4

\

-2

3 2

-3

1 0

-4

-,—-,--'-'' ,

-5 0

100

200

300

Temperature — " C DTA (-) and p y r o l y s i s (

) curves.

18-58

7/74

EXPLOSIVE: N I T R O C E L L U L O S E (13.35% N,

DESIGNATION:

min)

1 2 . STRUCTURE OR FORMULATION

NC (13.35%

N)

6. THERMAL PROPERTIES (continued) T

[Cga^02(ON02)3]^

y

(°F(K)):



Cp(cal/g-''C(kJ/kg-K)):



3 Thermal stability (cm of gas evolved at 120 ° C (393 K ) ) : 4 . PHYSICAL PROPERTIES 0.25 g for 22 hr: Physical state: Color:

1 5 for 48 hr:

white

A t . comp.:



solid 8.

CgE^Ng^^O^Q

MW: 274.1 Density ( g / c m ):

TMD: Nominal:



DETONATION PROPERTIES

D (mm/Msec ( k m / s ) ) : 7.30

( p=

1.20

)

P ^ j (kbar ( 1 0 " ' G P a ) ) :

(p=

1.58

)

— 1.58

m.p. ( ° C ( K ) ) : dec, 135 (408) b.p. ( ° C ( K ) ) : — v . p . (mm Hg ( P a ) ) : —

Meas.:



Calc:

210

E^y,((mm/Msec)2/2 Crystal data:



6 mm:



19 mm:



9.

)

m)):

12 tool

12B tool

— Susan test:

|5.

(p=

SENSITIVITY

H5Q(cm(10"^

R:

(MJ/kg)):



CHEMICAL PROPERTIES

AHj^^(kcal/g(MJ/kg)): Calc: Exp: A Hj. ( k c a l / m o l ( k J / m o l ) ) :

^2° (Jl) 1.16 (4.85) —

•^2° (g) 1,02 (4.27) Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event



- 2 0 0 (-837)

Solubility ( s - s o l . , si - s i . s o l . , i - i n s o l . ) : Gap test (mils (mm)):

s — acetone, ethanol i — c a r b o n tetrachloride, chloroform, ethyl ether, water 6 . THERMAL PROPERTIES k:

10, ELECTRICAL PROPERTIES:



CTE:

(See T a b l e 9-6)



e:



11.

TOXICITY

None.

12/72

18-59

(p=

)

NC (13.35% N)

NITROCELLULOSE (13.35% N, min)

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

+5

10

;|i

Explosion-^

+4 +3

9 8

NC

+2 +1

7 6 5

0 —^-^_::^-t -1

1 \

-2

1

4

1

-3 -4 -5

3

\

\

2

/ ^^^^ 0

100

200

1 0 300

Temperature — °C DTA (-) and p y r o l y s i s (

) curves.

18-60

7/74

EXPLOSIVE:

1,2.3-PROPANETRIOL

DESIGNATION:

TRINITRATE

1 2 . STRUCTURE OR FORMULATION

6. THERMAL PROPERTIES (continued) Tg(»F(K)):

H,

H

r

1

C OjN — O

C O

N 6 |



H,

|2 C O— NOj

Cp(cal/g-»C(kJAg-K)):



NOj

Thermal stability (cm^ of gas evolved at 120 " C (393 K): 14. PHYSICAL PROPERTIES Physical state: Color:

liquid

1 a for 48 hr: — 8. DETONATION PROPERTIES

CgHgNgOg

227.1

D (mm/psec ( k m / s ) ) :

Density (g/cm"^):

TMD: NomitKil:

P^j(kbar ( 1 0 " ' GPa)):



Meas.:

253

Calc:

251

E^y,((mm/A«ec)2/2 Crystal data:

7.70

(P=

1.60

)

(p=

1.60

)

1.59

m.p. ( • C ( K ) ) : 13.2(286) b.p. ( » € ( < ) ) : — v . p . (mm Hg ( P a ) ) : 0.0015 at 2000 (0.2 at 293 K )



0 nuns

^^

19 mm:



9.

(MJ/kg)):

(p=

)

SENSITIVITY

H2Q(cm(10"2

R:



clear

A t . comp.: MW:

0.25 g for 22 hr:

m)):

12 tool

12B tool

— Susan test: —

{ 5 . CHEMICAL PROPERTIES AH^j(kcol/g(MJ/k9)): 1

Calc: Exp:

A Hj (kcal/mol ( k j / m o l ) ) :

"2° ( i ) 1.59 (6.65) —

^ 2 ° (g) 1.48 (6.19) Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event



- 9 0 . 8 (-380)

Solubility ( s - s o l . , s t ' s l . s o l . , i - l n » l . ) : s—acetone, benzene, c h l o r o f o r m , ethanol, ethyl acetate, ethyl ether, n i t r i c acid, sulfuric acid, pyridine s i — c a r b o n disulfide, carbon tetrachloride, w a t e r

Gap test (mils (mm)): — See Table 9 - 6 .

6 . THERMAL PROPERTIES k:

10, ELECTRICAL PROPERTIES:



CTE:



€:

11.



TOXICITY

V e r y high.

(.1 12/72

IB-^*"

(p=

)

1,2,3-PROPANETRIOL TRINITRATE

N6 7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

^218-«

12/72

EXPLOSIVE:

NITROMETHANE

DESIGNATION:

1 2. STRUCTURE OR FORMULMION

N M

6. THERMAL PROPERTIES (continued) T (°F (K)):



H

1

H

C

Cp(cal/g-°C(kJ/kg-K)):

NO„

l^st.: 0.41 at 30°C (1.715 at 303 K) H

3 Thermal stability (cm of gas evolved at 120 ° C (393 K):

4 . PHYSICAL PROPERTIES 0.25 g for 22 hr: Physical state: Color: MW:

1 g for 48 hr:

clear

A t . comp.:



8. DETONATION PROPERTIES

C^HgN^02

61.0

D (mm/Msec ( k m / s ) ) :

Density ( g / c m ):

TMD: Nominal:

P ^ j (kbar ( 1 0 " ' G P a ) ) :



Meas.:

130

Calc:

144

E^y|((mm//Leec)2/2 6 mm: 19 mm:



9.

0.560 >. 0.745 /

Susan test:



5.

CHEMICAL PROPERTIES

AHj^^(kcal/g(MJ/kg)):

^2° ( i )

1.13

)

(p=

1.135

)

(MJ/kg)):

(p=

1.14

)

^ t 284-288 K

1 m)):

12 tool

128 tool



1

^ 2 ° (g)

Calc:

1.62 (6.78)

1.36 (5.69)

Exp:

1.23 (5.15)

1.06 (4.44)

A Hj ( k c a l / m o l ( k j / m o l ) ) :

( p=

SENSITIVITY

H5Q(cm(10"^

R:

6.32

1.13 at 293 K

m.p. ( ° C ( K ) ) : - 2 9 (244) b.p.(°C(K)): 101-101.5(374-375) v . p . (mm Hg ( P a ) ) : 37 at 25°C (4933 at 298 K )

Crystal data:



liquid

Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event

-27 (-113)

Solubility (s - s o l . , si - s i . s o l . , i - i n s o l . ) : s—DMFA,

DMSO, ethanol, e t h y l e t h e r ,

water

Gap test (mils (mm)): ( m o d i f i e d )

(P=



)

7-17 (0.18-0.43) 2-8 (0.05-0.20) 6. THERMAL PROPERTIES k:



CTE:

See a l s o T a b l e 9 - 6 . 10. ELECTRICAL PROPERTIES:



e :

11.



TOXICITY

Moderate. (f.3 12/72

1

NM

NITROMETHANE

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

, ^

12/72

EXPLOSIVE: N I T R O G U A N I D I N E

DESIGNATION:

2.

6. THERMAL PROPERTIES (continued)

STRUCTURE OR FORMULATION

T

(°F(K)):

N Q



y

H

NO,

H

1 ^C

1N

N

Cp(cal/g-200 (>473) b.p. ( = C ( K ) ) : — v . p . (mm Hg ( P a ) ) : —

R:

0.02-0.04

18-71

6

(p = 1.783) (p = 1.781)

PBX-9010

PBX-9010

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

'

+5

r

^

10

' PBX-9010 j

+4

J9

j

+3

8

1/1

+2

7

+1 '<

0 -1

6 L

^^^ ^^

-2

\

-3

1 '

-4 C

50

150

/

iL—^

5 >s 4

\

3 2

''''--^ 250

1 n

350

Temperature — °C D T A (-) and p y r o l y s i s (

) curves.

18-7-2

7/74

EXPLOSIVE: 2.

DESIGNATION:

PI^X-9011

STRUCTURE OR FORMULATION

6. THERMAL PROPERTIES (continued) T ("F ( K ) ) : 9

wt' 0

HMX

90

Estane

10

PBX-9011

- 3 5 (236)

Cp(cal/g-°C(kJ/kg-K)): Kst,:

0.28 (1.172)

Thermal stability (cm of gas evolved at 120 ° C (393 K): 4.

PHYSICAL PROPERTIES

Physical state: Color:

solid

1 g for 48 hr:

0.024



off-white

A t . comp.: MW:

0.25 g for 22 hr:

8. DETONATION PROPERTIES

Cj_^3H3_^gN2_4502_gi

D (mm/Aisec ( k m / s ) ) :

100

8,50

( p=

1.77

)

(p=

1.767

)

(p=

1.777

)

o Density ( g / c m ):

TMD:

1.795

P(_j (kbar ( 1 0 " ' GPa)):

Nominal: 1.770 m.p. ( ° C ( K ) ) : dec. >250 (>523) b.p.(°C(K)): — v . p . (mm Hg ( P a ) ) : —

Meas.: Calc:

324 ± 5 —

E^y|((mm/psec)2/2

Crystal data:



6 mm:

1.120

19 mm:

1.415

9.

SENSITIVITY

HjQ(cm(10"^

R: 5.

CHEMICAL PROPERTIES ^2°{£) 1.53 (6.40)

1.36 (5.69)

Exp:





12B tool

44

98

Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event 14 (0,24) 45 (0.79)

-4.05 (-17)

Solubility ( s - s o l . , si - s i . s o l . , i - insol.):



Gap test (mils (mm)): 55-70 (1.4-1,8)

6. THERMAL PROPERTIES k: 10.0 X l O ' ^ c a l / s e c - c m - ° C ; 0.25 B T U / h r - f t - ° F (-JE. (0.432 W / m - K )

10, ELECTRICAL PROPERTIES: e:



11,

TOXICITY

a = 28.7 X l O ' ^ i n . / i n . - ° F at - 6 5 to - 4 0 ' ' F (51,7 m / m - K at 219-233 K) a ^ 37.3 X l o " ^ i n , / i n . - ° F a t - 3 0 to IGS^F (67,1 m / m - K at 243-347 K)



1i 12'72

12 tool

" j O (^^

Calc:

A H^ ( k c a l / m o l ( k j / m o l ) ) :

m)):

Susan test: T h r e s h o l d v e l o c i t y ~ 165 f t / s e c (~ 50 m / s ) ; i s m o d e r a t e l y d i f f i c u l t t o i g n i t e and has v e r y low p r o b a b i l i t y of b u i l d u p to a violent reaction.



AH^^^(kcal/g(MJ/kg)):

(MJ/kg)):

18-»-

20.0 (6.10) 20.0 (6.10) (p=

2 0 1,783

)

PBX-9011

PBX-9011

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

-U

12/72

EXPLOSIVE: 2,

DESIGNATION:

PBX-9205

STRUCTURE OR FORMULATION

6. THERMAL PROPERTIES (continued)

wt% RDX

PBX-9205

Tg(°F(K)):



92

Polystyrene

6

Di-2-ethylhexylphthalate

2

C

(cal/g-°C(kJ/kg-K)): E s t . : 0.28 (1.17) 0

Thermal stability (cm of gas evolved at 120 ° C (393 K ) ) : 4,

PHYSICAL PROPERTIES

Physical state: Color:

solid

1 Q for 48 hr:

0,025 —

white

A t . comp.: MW:

0,25 g for 22 hr:

8. DETONATION PROPERTIES

C^^^^H^^^^N^^^^O^^^^

100

D (mm/Msec ( k m / s ) ) :

Density ( g / c m ^ ) :

TMD:

1,72

Nominal:

1.68

P ^ j (kbar ( 1 0 " ' G P a ) ) :

m.p. ( ° C ( K ) ) : dec. >200 (>473) b.p, ( ° C ( K ) ) : — v , p . (mm Hg (Pa)): —

Meas.:



Calc:

288

E^y|((mm/Msec)2/2

Crystal data:



6 mm:



19 mm:



9.



5,

CHEMICAL PROPERTIES

AH^^^(kcal/g(MJ/kg)): Calc:

(MJ/kg)):

( p=

1.67

)

(p=

1.69

)

(p=

)

SENSITIVITY

HjQ(cm(10"^

R:

8.17

m)):

12 tool

12B tool

42

36

Susan test: T h r e s h o l d v e l o c i t y ~ 120 f t / s e c (~37 m / s ) ; has m o d e r a t e p r o b a b i l i t y of buildup to a violent reaction. H2O (^ )

HjO ( g )

1,46 (6,11)

1,41 (5.90) Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event

A Hj (kcal/rtiol

ficj/mol)):

+5.81 (+24.30)

Solubility ( s - s o l . , s i - s i . s o l . , i - i n s o l . ) :

14 (0.24) 45 (0.79)

1.25 (0.38) 2,5 (0.76)

2 4

Gap test (mils (mm)): (p= S m a l l - s c a l e : 25-35 (0.64-0.89)

1.682



6 . THERMAL PROPERTIES k:

10, ELECTRICAL PROPERTIES:



CTE:



e :



11.

TOXICITY

— 7/74

18-75

)

PBX-9205

PBX-9205

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES -\

1

r

+3 PBX - 9205

'

+2 +1

5 0 -1 -2 -3 1 - —

50

I ^

1

I

I

L

.-^

\'-1

]

100 150 200 250 300 350 400 450 500 Temperature — "C

DTA (-) and p y r o l y s i s (

) curves.

18-76

7/74

EXPLOSIVE:

DESIGNATION:

PBX-9404-03

2 , STRUCTURE OR FORMULATION

PBX-9404

6, THERMAL PROPERTIES (continued) T ( ° F ( K ) ) : - 2 9 (239) g

wt% HMX

94

NC

3

Tris-|3-chloroethylphosphate

3

C„(cal/g-''C(kJ/kg-K)): P Est.: 0.27 (1.13) Thermal stability (cm of gas evolved at 120 ° C (393 K ) ) :

4 , PHYSICAL PROPERTIES

0.25 g for 22 hr:

Physical state:

lgfor48hr:

Color:

3.2-4.9

white o r blue

A t . comp,: MW:

solid

0.36-0.40

8. DETONATION PROPERTIES

C^_4oH2^^5N2 57O2 ggClQ^OgP^O^

D (mm/A«ec ( k m / s ) ) :

100

Density ( g / c m ^ ) :

TMD: Nominal:

P ^ j (kbar (10"^ G P a ) ) : Meas.:

375

Calc:

354

E^y,((mm/Aisec)2/2



6 mm:

1.295

19 mm:

1.620

9.



5.

CHEMICAL PROPERTIES

AHj^^(kcal/g(MJ/kg)):

)

(p=

1.840

)

(MJ/kg)):

(p=

1.843

)

m)):

12 tool

12B tool

34

35

Susan test: T h r e s h o l d v e l o c i t y 105 f t / s e c (32 m / s ) ; has v e r y l a r g e p r o b a b i l i t y of b u i l d u p to v i o l e n t r e a c t i o n . ^2^ (£)

" j O (^^

Calc:

1.56 (6.53)

1.42 (5.94)

Exp:

1.38 (5.77)

1.28 (5.36)

A H^ ( k c a l / m o l ( k J / m o l ) ) :

1.84

SENSITIVITY

H2Q(cm(10"^

R:

( p=

1.865 1.831-1.844

m.p. ( ° C ( K ) ) : dec, >250 (>523) b.p. ( ° C ( K ) ) : — v . p , (mm Hg ( P a ) ) : —

Crystal data:

8,80

Skid test: Impact angle (deg (rod)) Drop h t , ( f t (m)) Event 14 (0.24) 45 (0.79)

40.08 (40.331)

Solubility ( s - s o l . , s i - s i . s o l . , i - i n s o l . ) :



1.25 (0.38) 3.5 (1.07)

6 6

Gap test (mils (mm)): S m a l l - s c a l e : 85-105 (2.2-2.7) L a r g e - s c a l e : 2.268 (57.6)

(p - 1.850) (p = 1.841)

6 . THERMAL PROPERTIES k: 10.1 X 1 0 " * c a l / s e c - c m - ° C ; 0.25 B T U / h r - f t - ° F ^j^^ (0.432 W / m - K )

10, ELECTRICAL PROPERTIES: c:

3.52

a = 28.1 X 10~^ i n . / i n . - ^ F at - 6 5 t o - 3 0 ° F (50,6 lum/m-K at 219-239 K ) a = 32.2 X 10~^ i n . / i n . - ' F a t - 1 0 t o l e S ^ F (58,0 , u m / m - K at 250-347 K)

11,



7/74

18-77

TOXICITY

(p = 1,84)

PBX-9404

PBX-9404-03

7. MECHANICAL PROPERTIES

i

i

1

10.35

\

o

^

\

o LU

V

3.45 1 250

0 2()0

5 52

-

\

6.89

1

^ .

_"

1 300

-

4.14

1 35C)

^

S.

Temperature — K Initial modulus

1

^

/

1 2.76 0)

. 116 -

^^^"^222^:.

1.38

OcN^ -^ E EO

8T^ a. ^ 100



— Susan test:

5.

7,76

1.938

Nominal: 1.88 m.p. ( ° C ( K ) ) : dec. >325 (>598) b.p. ( ° C ( K ) ) : — v . p . (mm Hg ( P a ) ) : —

R:





CHEMICAL PROPERTIES

AHj^^(kcal/g(MJ/kg)):

" j O (i)

"20(g)

Calc:

1.20 (5.02)

1.08 (4.52)

Exp:



A Hf ( k c a l / m o l ( k j / m o l ) ) :



Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event

- 3 6 . 8 5 (-154.2)

Solubility ( s - s o l . , sl - s l . s o l . , i - i n s o l . ) : s l — D M F A , DMSO, H2SO4 i —acetone, benzene, c a r b o n d i s u l f i d e , c a r b o n t e t r a c h l o r i d e , c h l o r o f o r m , ethanol, ethyl acetate, e t h y l e t h e r , w a t e r

Gap test (mils (mm)): Small-scale:

2-8 ( 0 . 0 5 - 0 . 2 )

6 , THERMAL PROPERTIES k:

10, ELECTRICAL PROPERTIES:



CTE:



e:



11,

TOXICITY



7/74

18-95

(p=

1.872

)

TATB

l,3,5-TRIAMINO-2,4,6-TRINITROBENZENE

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

+5 +3 +2 +1 0 -1

10 9

TATB

+4

"8 7

--_J-

6 4

-2

3

-3

(' ' 2 / \ 1 1 ==1^ I 0 250 350

-4 -5

L50

__j

1

150

1

Temperature — °C DTA (-) and p y r o l y s i s (

) curves.

18-96

7/74

MATERIAL:

TRIS-(3-CHLOROETHYLPHOSPHATE

DESIGNATION :

TEF

(Plasticizer) SUPPLIER : 2. STRUCTURAL FORMULATION

0 =

p _ ( o - C H 2

-^"2^1)3

4 . PHYSICAL PROPERTIES Physical state : l i q u i d Color :

Crystal data :

clear

A t . comp. : C g H ^ g C l g O ^ P MW:

285.5

Density (g/cm"^) :

TMD:

1.425

Nominal : R:

m.p. ( ° C ( K ) ) : b.p. (°C (K)) : 203 (476) v . p . (mm Hg (Pa) ) : Brittle point (°C (K) ) : -60 (213 K ) f . p . (°C (K) ) :

n : Shore hardness :

5. CHEMICAL PROPERTIES

7. MECHANICAL PROPERTIES

A H f (kcal/mol (kJ/mol) ) : -300 (-1255)

Tensile strength (psi (kPa) ):

Solubility ( s - s o l . , s l - s l . s o l . , i-insol.) : s — a l c o h o l s , benzene, c a r b o n t e t r a c h l o r i d e , c h l o r o f o r m , e s t e r s , e t h e r s , ketones, t o l u e n e , xylene i — aliphatic hydrocarbons 6. THERMAL PROPERTIES

Elongation (°/^ :

10. ELECTRICAL PROPERTIES

k:

(p =

CTE : 3 = 840 M m / m - K

I I . TOXICITY Low.

T ("F (K) ) : y

C

P

(cal/g-°C(kJ/kg-K)):

NOTES

7/74

18-97

•v^

EXPLOSIVE: 2 , 4 , 6 - T R I N I T R O P H E N Y L M E T H Y L NITRAMINE 2 . STRUCTURE OR FORMULATION H3C

N

DESIGNATION: 6. THERMAL PROPERTIES (continued) T (°F(K)):

N02

OjN

T e t r y i

N02



Cp(cal/g-°C(kJ/kg-K)):

0

N02 4.

Thermal stability (cm of gas evolved at 120 °C (393 K ) ) :

PHYSICAL PROPERTIES

Physical state: Color:

0.25 g for 22 hr:

solid

1 g for 48 hr:

0.036 —

yellow

A t . comp,:

8. DETONATION PROPERTIES

C^H^NgOg

MW: 287,0

D (mm//usec ( k m / s ) ) :

Density ( g / c m ^ ) : m.p. ( ° C ( K ) ) :

TMD:

1.73

Nominal:

1.71

P^j(kbar (10"' GPa)):

130 (403)

b.p. ( ° C ( K ) ) :



v . p . (mm Hg (Pa)):



Meas.:



Calc:

260

E^y,((mm//:isec)2/2 Crystal data:

m o n o c l i n i c (P2 / c )

a = 14.13 b = 7.37 c = 10.61

6 mm:



19 mm:



9.

1.71

(p=

1,71

(p=

m)):

12 tool

12B tool

28





CHEMICAL PROPERTIES

AHj^^(kcal/g(MJ/kg)):

^2° (£)

^ 2 ° (g)

Calc:

1.51 (6.32)

1.45 (6.07)

Exp:

1.14 (4.77)

1.09 (4.56)

A H^ ( k c a l / m o l ( k j / m o l ) ) :

Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event

+1.67 (+19,1)

Solubility ( s - s o l . , sl - s l . s o l . , i - i n s o l , ) : s — acetone, benzene, e t h y l acetate, n i t r i c a c i d sl — c h l o r o f o r m , ethanol, ethyl ether i — c a r b o n disulfide, carbon tetrachloride, water

Gap test (mils (mm)): Small-scale:

135-165 ( 3 . 4 - 4 . 2 )

(p = 1.684)

Large-scale:

2,386(60.6)

( p = 1.666)

6 , THERMAL PROPERTIES k:

6.83 X 10"* c a l / s e c - c m - ° C (0.286 W / m - K )

CTE:



10, ELECTRICAL PROPERTIES: e:

11.

2.728 (p = 1.4) 2.905 (p = 1.5) TOXICITY

High.

7/74

18-99

) )

)

— Susan test:

5.

(MJ/kg)):

( p=

SENSITIVITY

H5Q(cm(10"^

R:

7.85

3.097 (p = 1.6) 3.304 (p = 1.7)

Tetryi

2,4,6 - TRINITROPHEN YLMETHYLNITRAMINE

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

10 9 8 7 6 ^5 •

u

^3 12

1'

^0 0

100 200 300 Temperature — °C

DTA (-) and pyrolysis (

) curves.

18-100

7/74

EXPLOSIVE:

TLTRANITROMETHANE

DESIGNATION:

2. STRUCTURE OR FORMULATION

T N M

6. THERMAL PROPERTIES (continued) T (°F(K)):



NO„

1 2 OpN —

C—

1

Cp(cal/g-''C(kJ/kg-K)):

NO,

NOj

o TherrTKil stability (cm of gas evolved at 120 " C (393 K):

4 . PHYSICAL PROPERTIES

0.25 g for 22 hr:

Physical state:

1 g for 48 hr:

Color:

liquid



8. DETONATION PROPERTIES

C i^^Og

D (mm/jjsec ( k m / s ) ) :

MW: 196.0 Density ( g / c m ^ ) :

TMD: Nominal:

P ^ j ( k b a r (10"^ G P a ) ) :



Meas.:



Calc:

144

E^y,((mm/Msec)2/2

Crystal data:

6.4

( P= 1.6

)

( p - 1.65

)

(p=

)

1.650 at 286 K

m.p. (°C ( K ) ) : 14.2 (287) b . p . ( " C ( K ) ) : 125.7 (399) v . p . (mm Hg (Pa)): 13 at 25''C (1733 at 298 K)



6 mm:



19 mm:



9.

Susan test:



(MJ/kg)):

SENSITIVITY

H^Q(cm(10"^

5.



clear

A t . comp.:

R:



^

m)):

12 tool

12B tool



CHEMICAL PROPERTIES

A Hj^^ ( k c a l / g ( M J / k g ) ) : Calc: Exp: A Hf ( k c a l / m o l ( k j / m o l ) ) :

^2^ ( i )

^2° (g)

0.55 (2,30)

0,55 (2,30)





Skid test: Impact angle (deg (rod)) Drop ht. (ft (m)) Event

+13.0 (+54.4)

Solubility (s - s o l . , sl - s l . s o l . , i - i n s o l . ) : s — benzene, ethanol, e t h y l ether sl — w a t e r

Gap test (mils (mm)): — (See T a b l e 9-6.)

6. THERMAL PROPERTIES k:

10, ELECTRICAL PROPERTIES:



CTE:



e:



11.

TOXICITY

Very high.

12/72

18--m

(p=

)

TNM

TETRANITROMETHANE

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Fa ilure envelope

NOTES

16212/73

EXPLOSIVE:

2.4,6-TRINITROTOLUENE

DESIGNATION:

1 2 . STRUCTURE OR FORMULATION

TNT

6. THERMAL PROPERTIES (continued) T CF(K)):

|



^ H g

1

OjN

jNOj

Cp(cal/g-°C(kJ/kg-K)):

NO2

Thermal stability (cm of gas evolved at 120 ° C (393 K ) ) :

1 4 . PHYSICAL PROPERTIES Physical state: Color:

0,25 g for 22 hr:

solid

lgfor48hr: 8.

C.HgNgOg

MW: 227.1 3 Density ( g / c m ):

TMD:

b.p. ( ° C ( K ) ) :

1.5-1,6 (cast) 1-63-1.64 (pressed)



v . p . (mm Hg ( P a ) ) : 0.106 at 100°C (14.13 at 373 K ) P

cm

DETONATION PROPERTIES

D (mm/Msec ( k m / s ) ) : 6,93

( P= 1,64

)

P ^ j ( k b a r ( 1 0 " ' GPo)):

( p = 1,630

)

( p = 1,630

)

1.654

Nominal: m.p. ( ° C ( K ) ) : 80.9 (354)

10

~ 0.005

buff t o b r o w n

A t . comp.:

log

0,00-0.012

= 9.11 - [ 3 8 5 0 / T (K)] f r o m 200 t o 350°C (473.623 R )

Crystal data: a = 14.99 b = 40.00 c = 6.10

Meas,:

190

Calc:

207

E^y|((mm/Msec)2/2 6 mm:

0.735

19 mm:

0.975

9.

(MJ/kg)):

SENSITIVITY

H5Q(cm(10"^

m)):

12 tool 80

R:

44.3 ( c a l c ) , 49.6 (obs.)

n:

16

5.

" j O in

"20(g)

Calc:

1.41 (5.90)

1.29 (5.40)

Exp:

1.09 (4.56)

1.02 (4.27)

A Hj. (kcal/rrK)l ( k j / m o l ) ) :

>177

Susan test: T h r e s h o l d v e l o c i t y ~ 2 3 5 f t / s e c (~72 m / s ) ; v e r y d i f f i c u l t t o i g n i t e a c c i d e n t a l l y , and has v e r y l o w p r o b a b i l i t y of b u i l d u p t o v i o l e n t r e a c t i o n .

CHEMICAL PROPERTIES

A Hj^^ ( k c a l / g ( M J / k g ) ) :

12B tool

Skid test: Impact angle (deg (rod)) Drop h t . (ft (m)) Event

- 1 5 (-64.4)

Solubility ( s - s o l . , sl - s l , s o l . , i - i n s o l . ) : s — acetone, benzene, c h l o r o f o r m , D M F A , e t h y l acetate, n i t r i c a c i d , s u l f u r i c a c i d , p y r i d i n e s l — c a r b o n disulfide, carbon t e t r a c h l o r i d e , ethanol, ethyl ether; i — w a t e r

Gap test (mils (mm)): Small-scale:

8-16 ( 0 . 2 0 - 0 . 4 1 )

(p = 1.624)

Large-scale:

1.944 (49.4)

(p = 1.626)

6 . THERMAL PROPERTIES k:

6.22 X l O " ^ c a l / s e c - c m - ° C (0.260 W / m - K )

CTE:

10, ELECTRICAL PROPERTIES: e:

a = 50.0 + 0.007T / u m / m - K at below m . p . 11.

2.629 2.795 TOXICITY

Moderate.

7/74

18-103

(p = 1.4) (p = 1.5)

TNT

2,4,6- TRINITROTOLUENE

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

+5 -^4 +3 -^2 +1

10 9 8 7

TNT (purified)

i\

c

-1 -2 -3 -4 —1-— -5 50

• • • 7U /I /

/ 150

1

' 1

\ 250

6 5 >E 4 3 2 0

350

Tsmperature — °C DTA (-) and p y r o l y s i s (

) curves.

18-104

7/74

MATERIAL:

HEXAFLUOROPROPYLENE/

V I N Y L I D I N E F L U O R I D E 1:2

DESIGNATION :

VitOn

(Binder) SUPPLIER : DuPont

2. STRUCTURAL FORMULATION

C

c— c —

C

I 4. PHYSICAL PROPERTIES Physical state : Color :

Crystal data :

white

A t . comp. : MW:

rubbery solid

(C5H3 ^^Fg^^)^

(187.08)jj

Density fe/cm^) :

TMD : Nominal :

1.815 R:

m.p. i'C(K)): b.p. ( ° C ( K ) ) : v . p . (mm Hg (Pa) ) : Brittle point (°C (K) ) : f.p. ( ° C ( K ) ) :

n : Shore hardness : A 4 0 - 6 0 (71 c u r e d )

5. CHEMICAL PROPERTIES

7. MECHANICAL PROPERTIES

AHf (kcal/mol (kJ/mol) ) : -332.7 (-1392)

Tensile strength (psi (kPa) ):

Solubility ( s - s o l . , s l - s l . s o l . , i - i n s o l . ) : s - acetone, M E K , M I B K , n - b u t y l acetate,

Elongation (°/^ : THF

6. THERMAL PROPERTIES

10. ELECTRICAL PROPERTIES

k:

(p =

CTE : a = 65.0 X l O " ^ m./m.-'F at 0.02 at 100°C (373)

-m

(p=

1.53

)

XTX-8003

XTX-8003

7. MECHANICAL PROPERTIES

Initial modulus

Creep

Failure envelope

NOTES

IS-K

12/72

V. Bibliography

CHEMIGAL ANALYSIS Anderson, D. M . , F. B. Kistner, and M, J. Schwarz, The M a s s Spectra of Volatile Constituents in Military E x p l o s i v e s , Cold Regions R e s e a r c h and Engineering L a b . , Hanover, N, H . , Final Rept. AD-699325 (1969). Ghasan, D. E . , and G. Norwitz, Qualitative A n a l y s i s of P r i m e r s . T r a c e r s . Igniters, Incendiaries. B o o s t e r s , and Delay Compositions on a Micro Scale by U s e of Infrared Spectroscopy. Department of the Army, Frankford Arsenal,

Philadelphia,

P a . , Rept. T - 7 1 - 6 - 1 (AD-729337) (1971). G r o s s m a n , G. L . , and W. Selig, A Rapid D e t e r m i n a t i o n of Tris(chloroethylphthalate) in P B X - 9 4 0 4 E x p l o s i v e . L a w r e n c e L i v e r m o r e Laboratory, Rept. UCID-15444 (1969). Doali, J . O. and A. A. J u h a s z , High Speed Liquid C h r o m a t o g r a p h i c S e p a r a t i o n s of T h e r m a l l y L a b i l e High E n e r g y C o m p o u n d s . P a r t I. A p p l i c a t i o n of High Speed Liquid C h r o m a t o g r a p h y to t h e Q u a l i t a t i v e A n a l y s i s of C o m p o u n d s of P r o p e l l a n t and E x p l o s i v e s I n t e r e s t , B a l l i s t i c R e s e a r c h L a b o r a t o r i e s , A b e r d e e n ,

Md.,

R e p t . B R L - 1 6 4 4 (1973). Hoffsommer, J. C . , and J. M. Rosen, U l t r a m i c r o a n a l y s i s of E x p l o s i v e s in Seawater. U . S . Naval Ordnance L a b . , White Oak, Md., N O L - T R - 7 1 - 1 5 1 ,

AD-730444

(1971). Jenkins, R . , and H. J. Gallop, "The Identification of E x p l o s i v e s in T r a c e Quantities on Objects near an Explosion," Explosivstoffe 18, 139-141 (1970). Kegler, W . , and D. Grune, Determining the Synthetic Content of E x p l o s i v e Synthetic Mixtures, Institut F r a n c o - A l l e m a n d de R e c h e r c h e s , St. L o u i s , Fraince, Rept, I S L - N - 8 / 6 7 (1967),

(In German.)

Norwitz, G., Spectrophotometric D e t e r m i n a t i o n of Sulfate in P r o p e l l a n t s and N i t r o c e l l u l o s e . U . S . Dept of the A r m y , Frankford A r s e n a l , Philadelphia, P a . , Rept. F A - T R - T - 7 0 - 1 0 - 1 (1970). P r i s t e r a , F . and W . E . F r e d e r i c k s , C o m p i l a t i o n of I n f r a r e d S p e c t r a of I n g r e d i e n t s of P r o p e l l a n t s and E x p l o s i v e s , P i c a t i n n y A r s e n a l , D o v e r , N . J . , R e p t .

PA-TM-1887

(AD-859846) (1969). Schubert, H . , F. Volk, and H. R o s z i n s k i . "Analytical Study of RDX-HMX Mixtures," Explosivstoffe 14. 265-273 (1966). Selig, W . , Some Analytical Methods for E x p l o s i v e s and E x p l o s i v e Simulants, Lawrence L i v e r m o r e Laboratory, Rept. U C R L - 7 8 7 3 (1964); Pt. 2 (1965); Pt.3 (1969); Pt. 4 (1973). Selig, W . , The A n a l y s i s of F E F O in P l a s t i c - B o n d e d E x p l o s i v e s . L a w r e n c e L i v e r m o r e Laboratory, Rept. UCID-5118 (1966).

7/74

19-1

Selig, W., Fluorine Analysis of Plastic-Bonded Explosives and P l a s t i c s , F r e s e n i u s Z . Anal. Chem. 234. 261-269 (1968). Selig, W., The Semimicro Determination of Fluorine in Plastic-Bonded Explosives. Lawrence Livermore Laboratory, Rept. UCID-15074 (1967). Selig, W., The Analysis of Cyclomethylenetetranitramine (HMX) amd Ammonium Perchlorate in Plastic-Bonded Explosives. Lawrence L i v e r m o r e Laboratory, Rept. UCID-15173 (1967). Selig, W., The Infrared Determination of Poly(2,2,-dinitropropyl Acrylate) in LX-09, Lawrence L i v e r m o r e Laboratory, Rept. UCID-15202 (1967). Selig, W., The Analysis of 1. 3. 5. 7 - T e t r a n i t r o - l . 3. 5. 7-tetrazacyclooctane (HMX) and Potassium Perchlorate in Plastic-Bonded Explosives. Lawrence Livermore Laboratory, Rept. UCID-15208 (1967). Selig, W., The Analysis of the Explosive LX-09-0. Lawrence Livermore Laboratory, Rept. UCID-15330 (1968). Selig, W., The Analysis of Bis(2. 2-dinitro-2-fluoroethyl) F o r m a l (FEFO) in LX-09-0. Lawrence Livermore Laboratory, Rept. UCID-15452 (1969). Selig, W., "Microdetermination of Chloride and Azide by Sequential Titration,' Mikrochim. Acta 1971, 46-53(1971). Snell, F . D., and L. S. Ehre, Eds., Encyclopedia of Industrial Chemical Analysis (Interscience, New York, 1971), Vol. 12, pp. 405-471. Wright, I., "The Rapid Micro Combustion Determination of Carbon, Hydrogen, and Nitrogen in High Explosives," Explosivstoffe 16, 176-178 (1968).

19-2

12/72

GENERAL REFERENCE WORKS Agard Combustion and Combustion Panel, The Chemistry of Propellants (Pergamon P r e s s , London, 1959). Alder, B , , S. Fernbach, and M. Rotenberg, Methods in Computational Physics. Vol. 3 of Ftindamental Methods in Hydrodynamics. Academic P r e s s , New York, 1964). Altshuler, L. V., "Use of Shock Waves in H i g h - P r e s s u r e Physics." Sov. Phys.-Uspekhi 8^ 52-91 (1965). Andreev, K. K., and A. F . Belyaev, Theory of Explosive Substances, T r a n s l . AD-643597 (1966). Army Materiel Command, Principles of Explosives Behavior, U . S . Army Materiel Command, Rept. AMCP-706-180 (1972). Army Materiel Command, P r o p e r t i e s of Explosives of Military Interest. U. S. Army Materiel Command, Rept. AMCP-706-177 (1967). (Supersedes W. R. Tomlinson, J r . , Picatinny Arsenal Rept. PA-TR-1740 (1958)). Ascani, D. C., "Literature of Explosives," in Advances in Chemistry S e r . . No. 78, pp. 565-580 (1968). Avanesov, D. S., Manual of Physical and Chemical Testing of Explosives, Gosndarstvennoe Izdatel. Oboron. Promyshl. (Transl. by H. G. Condor, U. K. Atomic Energy Authority, Rept. AWRE-TRANS-30 (1962)). Beach, N. E . , M. C. St. Cyr, and V. K. Canfield, Compatibility of Explosives with Polymers I. Picatinny Arsenal, Dover, N. J., Rept, PA-TR-2595 (AD-207076, PB-168175, 1959). Beach, N. E . , M. C. St. Cyr, and V. K. Canfield, Compatibility of Explosives with Polymers II. Picatinny Arsenal, Dover, N. J., P l a s t e c Rept. 33 (AD-672061) (1968). Beach, N. E . , M. C. St. Cyr, and V. K. Canfield, Compatibility of Explosives with Polymers III. Picatinny Arsenal, Dover, N. J., P l a s t e c Rept. 40 (AD-721004) (1971). Bebie, J . , Manual of Explosives. Militsiry Pyrotechnics, and Chemical Warfare Agents. (MacMillan, New York, 1943). Berger, J . , and J. Viard, Physics of Solid Explosives (Dunod, P a r i s , 1962). (In French.) Bowden, F . P . , and A. D. Yoffe, F a s t Reactions in Solids (Butterworths, London, 1858). Bradley, J. N., Flame and Combustion Phenomena (Methuen. London, 1969). Bradley, J. N . , Shock Waves in Chemistry and Physics (Wiley. London, 1962), Bradley, R. S., High P r e s s u r e Physics and Chemistry. Vols. 1 and 2 (Academic P r e s s , New York, 1963). Coates, A. D . , E. Freedman, and L. P . Kuhn, C h a r a c t e r i s t i c s of Certain Military Explosives. Bsillistic R e s e a r c h Laboratories, Aberdeen Proving Ground, Md., Rept. BRL-1507 (1970), Cook, M. A., The Science of High Explosives (Reinhold. New York, 1958). 7/74

19-3

Cook, S. G., J. M. Rosen, and C. N. Bernstein, Manual for Ammunition Quality Evaluation Surveillance Laboratories (U. S. Naval Powder Factory, Indian Head, Md., 1964). Combustion Institute, Symposium on Combustion, Vols. 1- (Academic P r e s s , New York, 1929-). Davis, T. L . , The Chemistry of Powder and Explosives (Wiley, New York, 1953). Department of the Army, Military Explosives. Dept. of the Army, Rept. TM-9-1910 (1955). (Identical to Dept. of Air F o r c e Rept. T O - l l - A - 1 - 3 4 ) . Dunston, I., "Chemistry in the Technology of Explosives and Propellants," Chem. in Britain 7. 62-79 (1971). DuPont De Nemours, E. I., and Company, B l a s t e r s Handbook. 15th ed., (E. I. DuPont De Nemours and Company, Wilmington, Del., 1967). Elban, W. L . , Development of Inert Simulants for Castable Plastic Bonded Explosives. U.S. Naval Ordnance Laboratory, White Oak, Md., Rept. NOL-TR-71-192 (1971). Ellern, H., Military and Civilian Pyrotechnics (Chemical Publishing Company, New York, 1968). Ellern, H., Modern Pyrotechnics (Chemical Publishing Company, New York, 1961). Evans, B. L . , A. D. Yoffe, and P . Gray, "Physics and Chemistry of the Organic Azides," Chem. Rev. 59, 515-568 (1959). Fedoroff, B. T . , Encyclopedia of Explosives and Related Items. Vols. 1- (Picatinny Arsenal, Dover, N. J., I960-). Fordham, S., High Explosives and Propellants (Pergamon P r e s s , New York, 1966). Frank-Kamenetskii, D. A., Diffusion and Heat Exchange in Chemical Kinetics (Plenum P r e s s , New York, 1969). Hammann, S. D . , "The Use of Explosions in High P r e s s u r e Research," Rev. P u r e Appl. Chem. m, 139-168 (1960). Hammer, W., Explosions and Explosives. Norton Air F o r c e Base, Calif., Rept. AD-839310 (1968). Hayes, T. J . , Elements of Ordnance — A Textbook for Use of Cadets of the United States Military Academy (Wiley, New York, 1938), Jacobs, S, J . , "Recent Advauices in Condensed Media Detonations," Am. Rocket Soc. J. 30, 151-158 (1960). Jaffe, B . , A P r i m e r on F e r r o e l e c t r i c i t y and Piezoelectric C e r a m i c s (Clevite Corporation, Cleveland, Ohio, 1960). Johansson, C. H., and P. A. P e r s s o n , Detonics of High Explosives (Academic P r e s s , New York, 1970). Kantz, M. R., Pentaerythritol T e t r a n i t r a t e : A Bibliography. Mound Laboratory, Miamisburg, Ohio, Rept. MLM-1252 (196 5). Khitrin, L. N., Physics of Combustion and Explosion (National Science Foundation, Washington, D. C., 1962). Kirk-Othmer Encyclopedia of Chemical Technology, 2nd e d . , Vol. 8, pp. 581-719 (Interscience, New York, 1965). 19-4

12/72

Levich, V. G., Physicochemical Hydrodynamics (Prentice-Hall. Englewood Cliffs, N. J., 1962). Lewis, B. T . , and G. Von Elbe, Combustion, F l a m e s , and Explosions of Gases. 2nd ed. (Academic P r e s s , New York, 1961). Arthur D. Little, Inc., Punch Card Recording of Data on Explosives. Final Report 1961, AD-275022, AD-275023, AD-275024, AD-329073, Vols. 1-4 (1961). (Vol. 2 GDI). Mason, C. M., and E. G. Aiken, Methods for Evaluating Explosives and Hazardous Materials. Pittsburgh Mining and Safety R e s e a r c h Center, Bureau of Mines, Pittsburgh, Pa., Rept. BM-IC-8541 (1972). McGarry, W. F . , and T. W. Stevens, Detonation Rates of the More Important Military Explosives at Several Different T e m p e r a t u r e s (Picatinny Arsenal, Dover, N. J., 1956). Marshall, A., Explosives, Vols. 1-3 (Churchill, London, Vols. 1, 2, 1917, Vol. 3, 1932). Muraour, H., Poudres et Explosifs ( P r e s s e s Universitaires de F r a n c e . 1947). (In French.) Office of Naval Research, Symposium on Detonation. No. 1-, Office of Naval Research, Arlington, Va. (1951, 1955, 1960, 1965, 1970-). (Some volumes a r e classified.) Ordnauice Technical Intelligence Agency, Encyclopedia of Explosives. Ordnance Technical Intelligence Agency, D\arham, N. C , Rept. AD-274026 (1960). Orlova, Y. Y., The Chemistry and Technology of High Explosives (Moscow. 1960). Paushkin, Y. M., The Chemistry of Reaction Fuels. T r a n s l . , Foreign Technology Division Air F o r c e Systems Command, W r i g h t - P a t t e r s o n Air F o r c e Base, Ohio (1962). Pokrovskiy, G. L , The Explosion and Its Utilization (Moscow. 1910; Joint Publications R e s e a r c h Service, Washington, D. C., 1960). Porzel, F . B . , A.Unified Theory of Explosions (UTE), U . S . Naval Ordnance Laboratory, White Oak, Md., Rept. NOL-TR-72-209 (AD-758000) (1972), Ribaud, G., Detonation Waves (Centre National des Recherches Scientifiques, P a r i s , France, 1962). (In French.) Rogers, J. T . , Physical and Chemical P r o p e r t i e s of RDX and HMX. Holston Defense Corporation, Kingston, Tenn., Rept. HD-20-P-26 (1962). Rosen, J. M., and C. Dickenson, Vapor P r e s s u r e s and Heats of Sublimation of Some High Melting Organic Explosives. U. S. Naval Ordnance Laboratory, White Oak, Md., Rept. NOL-TR-69-67 (1969). Tavernier, P . , Powders and Explosives ( P r e s s e s Universitaires de F r a n c e , 1969). (In French.) Urbanski, T . , Chemistry and Technology of Explosives, Vols, 1-3 (McMillan, New York, 1964-1967).

7/74

19-5

Urbanski, T . , ed., Nitro Compounds (McMillan, New York, 1964). Walbrecht, E. E . , Dielectric P r o p e r t i e s of Some Common High Explosives, Picatinny Arsenal, Dover, N . J . , Rept. PA-TM-1170 (1963). Warren, F . A., Rocket Propellants (Reinhold, New York, 1958). Welch, R. E . , Fundamentals of Rocket Propulsion (Reinhold. New York, 1960). Zaehringer, A. J . , "Solid Propellant Bibliography," Jet Propulsion 27, 900-927(1957). Zeldovich, Ya. B . , "On the Theory of Combustion of Powder amd Explosives," Zh. Eksper. Teoret. Fiz. 12. 498-524 (1942); t r a n s l . PA-TM-1597, AD-486286.

19-6

12-72

HEALTH AND SAFETY Armed Services Explosives Safety Board, Explosives Safety Seminars. Minutes (Armed Services Explosives Safety Board, Washington, D. C., 1958-). Cohen, E . , Ed., "Prevention of and Protection against Accidental Explosion of Munitions, Fuels and Other Hazardous Materials," Ann. N. Y. Acad. Sci. 152, 1-913 (1968). Cook, M. A., "Explosives and the Hazards and Testing of Explosives," Ind. Eng. Chem. 56 (2), 31-35 (1964). Deichmajin, W. B . , and H. W. Gerarde, Toxicity of Drugs and Chemicals (Academic P r e s s , New York, 1969), Dodrill, J, P , , C, E. Green, J, F, Hester, and C, R, Wells, An Evaluation of Safety Devices for Laboratories Handling Explosive Compounds, Redstone Arsenal Branch, Rohm and Haas, Huntsville, Ala, (1961), Hallam, J, S,, and K, J. Scribner, Explosion during P r e s s i n g of LX-04-1 at Site 300 on October 17. 1968. Lawrence L i v e r m o r e Laboratory, Rept, UCRL-50567 (1969). Hanna, H. A., and J. R. Poison, Investigation of Static Electrical Phenomena in Lead Azide Handling. Mason and Hanger, Silas Mason Co., Inc. Burlington AEC Plant, Burlington, Iowa, Rept. IAAP-TR-98-A (1967). Mason and Hanger, Silas Mason Co., Inc., Recommended Safe Handling Methods for Plastic Bonded Explosives 9010 and 9404 (1961). McGill, R., Explosives. Propellants. and Pyrotechnic Safety Covering Laboratory. Pilot Plant and Production Operations. U. S. Naval Ordnance L a b . , White Oak, Md., Rept. NOL-TR-61-138 (AD-272424) (1962). McNamara, B. P . , H. P. Averill, E. J, Owens, J. F, Callaghan, D, G, Fairchild, H. P. Ciuchta, R. H. Rengstorff, and R. K. Biskup, The Toxicology of Cyclotrimethylenetrinitramine (RDX) and Cyclotetramethylenetetranitramine (HMX) Solutions in Dimethylsulfoxide (DMSO). Cyclohexanone. and Acetone. Edgewood Arsenal, Md. (1970), Picatinny Arsenal, Manual for Design of Protective Structures Used in Explosive Processing and Storage Facilities. Picatinny Arsenal, Dover, N. J., Rept. AD-834465 (1968). Pryde, A. W., and I. Dunston, "Processing of Dangerous Chemicals," Chem. Ind. (London) 1972 (2). 67-69 (1972), Sax, N. I,, Dangerous Properties of Industrial Materials (Reinhold Publishing Company, 1968), Sensitiveness Collaboration Committee, Explosives Hazard Assessment. U. K. Explosives Research and Development Establishment, Weiltham Abbey, Essex, Rept. SCC-3 (1969).

12 '72

19-7

Skaar, K. S., Fundamentals of Safety for Processing. Handling, and Storage of HighEnergy Materials. U.S. Naval Ordnance Testing Station, China Lake, Calif., Rept. NOTS-TP-2866 (1962). Sunshine, I., Ed., Handbook of Analytical Toxicology (The Chemical Rubber Company, Cleveland, Ohio, 1969).

19-8

12/72

INITIATION AND SENSITIVITY Africano, A., Maximum Rate Theory of Impact Sensitivity (Space Technology Laborat o r i e s , Inc., Los Angeles, 1959). Barbarisi, M. J . , and E. G. Kessler, Initiation of Secondary Explosives by Means of L a s e r Radiation. Picatinny Arsenal, Dover, N.J., Rept. PA-TR-3861 (AD-688585) (1969), Bowden, F, P . , discussion leader, "A Discussion of the Initiation and Growth of Explosions in Solids," P r o c . Roy. Soc. (London) A246. 145-297 (1958). Bowden, F . P . , and A. D. Yoffe, Initiation and Growth of Explosions in Liquids and Solids (Cambridge University P r e s s , Cambridge, 1952). Brownlee, K. A., J. L. Hodges, and M. Rosenblatt, "The Up-and-Down Method with Small Samples," J. Am. Statist. Assoc. 43, 262-277 (1953). Campbell, A. W., W. C. Davis, and J. R. Travis, "Shock Initiation of Detonation in Liquid Explosives," Phys. Fluids 4. 498-510 (1961). Campbell, A. W., W. C. Davis, J. B. Ramsey, and J. R. T r a v i s , "Shock Initiation of Solid Explosives," Phys. Fluids 4. 511-521 (1961). Chaiken, R. F . , "Comments on Hypervelocity Wave Phenomena in Condensed Explosives," J. Chem. Phys. 33, 760-761 (1960). Chase, W. E . , and H. K. Moore, e d s . . Exploding W i r e s . Vols. 1- (Plenum P r e s s , New York, 1959-). Clear, A. J . , Standard Laboratory P r o c e d u r e s for Determining Sensitivity. Brisance. and Stability of Explosives. Picatinny Arsenal, Dover, N. J., Rept. PA-TR-3278 (1965). Dixon, W. J . , and F . J. Massey, Introduction to Statistical Analysis. 2nd e d . , (McGrawHill, New York, 1957). Dorough, G. D . , L. G. Green, and D. T. Gray, The Susan Test for Evaluating the Impact Safety of Explosive Materials. Lawrence L i v e r m o r e Laboratory, Rept. UCRL-7394 (1965). Enig, J. W,, and F . T. Metcalf, Theoretical Calculations on the Shock Initiation of Liquid TNT. U.S. Naval Ordnance Laboratory, White Oak, Md.. Rept. NOLTR-62-159 (1962). Evans, M. W., "Detonation Sensitivity and F a i l u r e Diameter in Homogeneous Condensed Materials," J. Chem. Phys. 36, 193-200 (1962), Grant, R. L . , A Combination Statistical Design for Sensitivity Testing, U. S. Bureau of Mines, Pittsburgh, Pa., Rept. BM-IC-8324 (1967). Green, L. G., and G. D. Dorough, " F u r t h e r Studies on the Ignition of Explosives," in P r o c . 4th Symp. (Intern.) on Detonation, U. S. Office of Naval Research, Washington, D.C., Rept. ACR-126 (1965), pp. 477-486.

12/72

19-9

Green, L. G., R. J. Wasley, and P . E. Kramer, Shock Initiation of LX-04-1 and LX-09-0, Lawrence L i v e r m o r e Laboratory, Rept. UCRL-50672 (1969). Green, L. G., R. J. Wasley, and P. E. Kramer, Shock Initiation of LX-07-2 and LX-10-0. Lawrence L i v e r m o r e Laboratory, Rept. UCRL-50851 (1970). Green, L. G., and A. M. Weston, Data Analysis of the Reaction Behavior of Explosive Materials Subjected to Susan Test Impacts. Lawrence L i v e r m o r e Laboratory, Rept. UCRL-13480 (1970). Green, L. G., A. M. Weston, and J. H. Van Velkinburg, Mechanical Behavior of Hemispherical Billets of Plastic-Bonded Explosives Vertically Dropped on a Smooth. Rigid. Steel Target Surface, Lawrence L i v e r m o r e Laboratory, Rept. UCRL-51022 (1971). Green, L. G., A. M. Weston, and J. H. Van Velkinb\irg, Mechanical and Frictional Behavior of Skid Test Hemispherical Billets, Lawrence Livermore Laboratory, Rept. UCRL-5108 5 (1971). Hubbard, H. W., and M. H. Johnson, "Initiation of Detonation," J. Appl. Phys. 30. 765-769 (1959). Jaffe, I., G. Roberson, and J. Toscana, Calibration for the Gap Test with a Pentolite Donor. U.S. Naval Ordnance Laboratory, White Oak, Md., Rept. NOL-TR-63-19 (1963). Jones, M. M., and H. J. Jackson, "Heat Sensitization of Explosives," Explosivstoffe 7, 177-183 (1959). Liddiard, T. P . , and D. P r i c e , Recalibration of the Standard Card-Gap Test. U. S. Naval Ordnance Laboratory, White Oak, Md., Rept. NOL-TR-65-43 (1965). Lindstrom, I. E . , "The Planar Shock Initiation of Porous Tetryl,: J. Appl. Phys. 41. 337-350 (1970). Macek, A., "Sensitivity of Explosives," Chem. Rev. 62, 41-63 (1962). Mader, C., A Hydrodynamic Hot Spot Calculation. Los Alamos Scientific Laboratory, N. Mex., Rept. LA-2703 (1962). Mason, C. M., R. W. Van Dolah, and M. L. Weiss, Drop Weight Testing of Explosive Liquids, Explosives R e s e a r c h Center, U. S. Bureau of Mines, Pittsburgh, P a . , Rept. BM-RI-6799 (1966). Napadensky, H., Experimental Studies of the Effects of Impact Loading on P l a s t i c Bonded Explosive Materials. Armour R e s e a r c h Foundation, Illinois Institute of Technology, Chicago, 111.. Rept. DASA-1391 (1963). P r i c e , D . , and T. P. Liddiard, J r . , The Small Scale Gap Test—Calibration and Comparison with the Large Scale Gap Test. U. S. Naval Ordnance Laboratory, White Oak, Md,, Rept. NOL-TR-66-87 (AD-487353) (1966).

19-10

7/74

Schimmel, M. L . , QUEST—Quantitative Understanding of Explosive Stimulus Transfer, Summary Report—Task 1 through 6. McDonnell Aircraft Compsuiy, St. Louis, Mo„ Rept. MDC-A-1021 (1971). Sensitiveness Collaboration Committee, Mamual of Explosive Safety Certificate Sensitiveness Tests. U. K. Explosives Resesu-ch and Development Establishment, Waltham Abbey, Essex, Rept. WAC-158-06 with suppl., WAE-325-03 with suppl. (1963). Slade, D. C., and J. Dewey, High Order Initiation of Two Military Explosives. Ballistic Research Laboratories. Aberdeen Proving Ground, Md., Rept. BRL-1021 (1957). Statistical Research Group, Princeton University, Statistical Analysis for a New P r o cedure in Sensitivity Experiments. Naval Defense Research Committee, Office of Scientific Research and Development, Washington, Rept. OSRD-4040 (1944). Tucker, T. J . , "Spark Initiation Requirements of a Secondary Explosive," Ann. N. Y. Acad. Sci. 152. 643-653 (1968). Walker, F . E . , and R. J. Wasley, "Critical Energy for Shock Initiation of Heterogeneous Explosives," Explosivstoffe 17^ 9-13 (1969). Walker, F . E . , and R. J. Wasley, "Initiation of Nltromethane with Relatively LongDm-atlon, Low-Amplitude Shock Waves." Combust. Flame 15. 233-246 (1970).

12/72

19-11

N

I 05

MECHANICAL AND PHYSICAL PROPERTIES

Archibald, P. B., "isostatic Solvent Pressing," Ind, Eng, Chem. 53^, 737-738(1961). Bryden, J, H,, The Density of Crystalline Cyclotetramethylenetetranitramine (HMX). U, S, Naval Ordnance Test Station, China Lake, Calif., Rept. NOTS-1652, (NAVORD-5398) (1957), Goldsmith, W., and T. A. Reitter, Static and Dynamic P r o p e r t i e s of Two Explosive Materials. U.S. Naval Weapons Center, China Lake, Calif., Rept. NWC-TP4805, (AD-864750) (1970), Hamstad, M. A., Complex Shear Modulus of a High Explosive, Lawrence Livermore Laboratory, Rept. UCRL-50357 (1967). Hoge, K. G., Friction and Wear of Explosive Materials. Lawrence Livermore Laboratory, Rept. UCRL-50134 (1966). Hoge, K. G., "The Behavior of Plastic-Bonded Explosives under Dynamic Compressive Loads," in Appl. Polymer Symp. 5^, 19-40 (1967). Hoge, K. G., "Friction and Viscoelastic P r o p e r t i e s of Highly Filled Polymers — P l a s t i c Bonded Explosives," 4th Southeastern Conf. on Theoretical and Applied Mechanics, New Orleans, Feb. 29-Mar. 1, 1968. Murray, R. C., and W. G. Moen, The Linear Viscoelastic Response of LX-07-1. Lawrence Livermore Laboratory, Rept. UCRL-50751 (1969), Murray, R, C,, and R, Jaeger, Mechanical P r o p e r t i e s Testing of High Explosives. Lawrence Livermore Laboratory, Rept. (16-mm color sound film (1969)). Scribner, K., A Physical P r o p e r t i e s Mock for LX-04-1. Lawrence Livermore Laboratory, Rept. UCID-15495 (1965). Wasley, R . J . , and F. E. Walker, "Dynamic Compressive Rheological Behavior of a Brittle, Strain Rate Sensitive, Polycrystalline, Organic Solid," J. Appl Phys. 40, 2639-2648 (1969). Wasley, R. J., and F. E. Walker, A Method for the Numerical Analysis of P r e s s u r e Transducer Records, Lawrence Livermore Laboratory, Rept. UCRL-50233 (1967), Wasley, R, J . , K, G. Hoge, and J, C, Cast, "Combined Strain Gauge-Quartz Crystal Instrumented Hopkinson Split Bar," Rev, Sci, Instr, 40, 889-894 (1969), Wilkins, M. L . , and R. Giroux, The Calculation of Stress Waves in Solids. Lawrence Livermore Laboratory, Rept. UCRL-7 271 (1963),

12/72

19-13

CJJ

PERFORMANCE Adler, J . , and J. W. Enig, The Critical Conditions in Thermal Explosions Theory for Nth Order Reactions. U.S. Naval Ordnance Laboratory, White Oak, Md., Rept, NOL-TR-64-180 (1964), Brinkley, S, R., and E. B. Wilson, Revised Method of Predicting the Detonation Velocities in Solid Explosives. Office of Scientific R e s e a r c h and Development, National Defense Research Committee, Washington, D. C . , Rept. OSRD-905 (1942). Burnham, M. W., Investigation of Flow Kinematics of Detonating Explosive Slabs. Falcon Research Corp., Denver, Colo., Rept. AFATL-TR-67-33 (1967). Burnham, M. W., Research on Detonation Wave Mechanics, Falcon Research Corp., Denver, Colo., Rept. ARL-TR-66-2 (1966). Campbell, A. W., M. E. Malin, T . J . Boyd, J r . , and J. A. Hull, "Precision Measurement of Detonation Velocities in Liquid and Solid Explosives," Rev. Sci. Instr. 27, 567-574 (1956). Catalano, E . , and H. C. Hornig, Time-Resolved Emission Spectra of the Detonation Products of PETN. Lawrence L i v e r m o r e Laboratory, Rept. UCRL 50328 (1967). Christian, E. A., and H. G. Snay, Analysis of Experimental Data on Detonation Velocities. U.S. Naval Ordnance Laboratory, White Oak, Md., Rept, NAVORD-1508 (1956), Cole, R,, Underwater Explosions. Princeton University P r e s s , Princeton, NJ (1948), Cole burn, N. L . , Chapman-Jouguet P r e s s u r e s of Several P u r e and Mixed Explosives. U.S. Naval Ordnance Laboratory, White Oak, Md., Rept. NOL-TR-64-58 (1964). Cook, M. A., Detonation Velocities of "Ideal" Explosives with Inert Additives. University of Utah, Salt Lake City, Rept. AD-16380 (1953). Cook, M. A., Velocity-Diameter Measurements and Reaction Rates of PETN. RDX, and EDNA. University of Utah, Salt Lake City, Rept. AD-44634 (1954). Cook, M. A . , R. I. Keyes, and W. O. Ursenbach, Measurements of Shock and Detonation P r e s s u r e s . University of Utah, Salt Lake City, Rept. AD-258201 (1961). Cook, M. A., R.I. Keyes, and W. O. Ursenbach, "Measurement of Detonation P r e s sure," J. Appl. Phys. 33, 3413-3421 (1962), Cowperthwaite, M., Theoretical Studies of Detonation. Final Report. F e b r u a r y 1966 — F e b r u a r y 1971. Stanford R e s e a r c h Institute, Menlo Park, Calif., Rept. AD-730642 (1971). Courant, R., and K. O. F r i e d r i c h s , Supersonic Flow and Shock Waves (Interscience, New York, 1948). Cowan, R. D . , and W. Fickett, "Calculation of the Detonation P r o p e r t i e s of Solid Explosives with the Kistiakowsky-Wilson Equation of State," J. Chem. Phys. 24. 932-939 (1956). Crouch, M. R., and N, E. Hoskin, "Detonation of Explosive Slabs of Finite Dimensions," J, Appl. Phys. 42, 264-267 (1971). 12/72

19-15

Deal, W. E . , "Measurement of Chapman-Jouguet P r e s s u r e for Explosives," J. Chem. Phys. 27, 796-800 (1957). Deal, W. E . , "Measurement of Reflected Shock Hugoniot and Isentrope for Explosive Reaction Products." Phys. Fluids 1. 523-527 (1958). Derzhavets, A. S., "Increased Susceptibility of Explosives to a Detonation Impulse," in Termostoikie Vzryvchatye Veshchestva ikh Deistvie v Glubokikh Skavzhinakh. F . A. Baum, Ed. (1969), pp. 37-52 (Transl. by H. J. Dahlby, Los Alamos Scientific Laboratory, N. Max., Rept. LA-TR-71-32 (1971)). Dremln, A. N . , and K. K. Shvedov, "Determination of the Chapman-Jouguet P r e s s u r e and the Reaction Duration in a Shock Wave of High Power Explosives," Zh. Prlklad. Mekh. Tekh. Fiz, 3, 139-144 (1964). (TransL P A - T T - 1 5 (AD-688247).) Duff, R. E . , and E. Houston, "Measurement of the Chapman-Jouguet P r e s s u r e and Reaction Zone Length in a Detonating High Explosive," J. Chem. Phys. 23, 1268-1273 (1955). Enig, J. W., and F . J. Petrone, On Equations of State in Shock Initiation P r o b l e m s . U.S. Naval Ordnance Laboratory, White Oak, Md., Informal Rept, (1964). Evans. M.W., and C. M. Ablow, "Theories of Detonation," Chem. Rev. 61, 129-178 (1961). Evans, M. W., C. M. Ablow, B. O. Reese, and A. B. Amster, Shock Sensitivity of Low Density Granular Explosives, Stsmford R e s e a r c h Institute, Menlo Park, Calif., Rept. AD-417863 (1963). Eyring. H., R. E. Powell, G. H. Duffy, and R. B. Parlin, "The Stability of Detonation," Chem. Rev. 45, 69-181 (1949). Fickett, W., Detonation P r o p e r t i e s of Condensed Explosives Calculated with an Equation of State Based on Intermolecular Potentials. Los Alamos Scientific Laboratory, N. Mex., Rept. LA-2712 (1962). Fickett. W., and W. W. Wood, "A Detonation-Product Equation of State Obtained from Hydrodynamic Data," Phys. Fluids 1. 528-534(1958). Finger, M., H. C. Hornig, E. L. Lee, and J. W. Kury, "Metal Acceleration by Composite Explosives," In P r o c . 5th Symp. (Intern.) on Detonation, Office of Naval Research, Arlington, Va., Rept, ACR-184 (1970), pp. 137-151. Garn. W. B . , "Detonation P r e s s u r e of Liquid TNT," J. Chem. Phys. 32, 653-655 (1960). Gipson, R. W., and A. Macek, Transition from Slow Burning to Detonation—Flame Fronts and Compression Waves during Growth of Detonation. U. S. Naval Ordnance Laboratory, White Oak, Md., Rept, NAVORD-6759 (1959), Goodman, H. J . , Compiled F r e e - A i r Blast Data on Bare Spherical Pentolite. Ballistic R e s e a r c h Laboratories, Aberdeen Proving Ground, Md., Rept. BRL-1092 (1960). Goodman, H. J . , and R. E. Shear, P r e s s u r e , Density and Internal Energy of Pentolite Explosion Products. Ballistic Research L a b o r a t o r i e s , Aberdeen Proving Gromid, Md., Rept. BRL-1212 (1963). 19-16

12/72

Gruschka, H. D . , and F, Wecken, Gas dynamic Theory of Detonation (Gordon and Breach Science Publishers, New York, 1971), Hauver, G. E , , suid P, H. Netherwood, P r e s s u r e Profiles of Detonating Baratol Measured with Sulphur Gauges. Ballistic Research Laboratories, Aberdeen Proving Ground, Md., Rept. BRL-TN-1452 (AD-276986) (1962). Howe, P . M . , Detonation Structure in Condensed Phase Explosives. Ballistic Research Laboratories, Aberdeen Proving Ground, Md., Rept. AD-713541 (1969). Hurwitz, H., Calculation of Detonation P a r a m e t e r s with the RUBY Code, U. S. Naval Ordnance Laboratory, White Oak, Md., Rept. NOL-TR-63-205 (1965). Hurwitz, H., and M. J. Kamlet, "The Chemistry of Detonations. V. A Simplified Method for Calculation of P r e s s u r e s of C-H-N-O Explosives on K-W Isentrope," Israel J. Technol. 7, 431-430 (1969). Jacobs, S. J . , On the Equation of State of Compressed Liquids and Solids. U. S. Naval Ordnance Laboratory, White Oak, Md., Rept. NOL-TR-68-214 (1968). Jacobs, S. J . , "Equation of State for Detonation Products at High Density," 12th Symp. (Intern.) on Combustion, The Combustion Institute, Philadelphia, Pa. (1969), pp. 501-510. Jacobs, S. J . , T. P. Liddiard, J r . , a n d B . E. Drimmer, "The Shock-to-Detonation Transition in Solid Explosives," 9th Symp. (Intern.) on Combustion, The Combustion Institute, Philadelphia, P a . (1963), pp. 499-516. Jameson, R. L . , and A, L. Hawkins, Detonation P r e s s u r e Measurements in TNT and Octol. Ballistic Research Laboratories, Aberdeen Proving Ground, Md., Rept. AD-713547 (1970). Kamlet, M. J . , and S. J. Jacobs, "The Chemistry of Detonations. I. A Simple Method for Calculating Detonation P r o p e r t i e s of C-H-N-O Explosives," J. Chem. Phys. 48, 23-35 (1968). Kamlet, M. J . , and J. E. Ablard, "The Chemistry of Detonations. H, Buffered Equilibria," J. Chem. Phys. 48, 36-42 (1968). Kamlet, M . J . , and C. Dickinson, "The Chemistry of Detonations. III. Evaluation of the Simplified Calculational Method for Chapman-Jouguet Detonation P r e s s u r e s on the Basis of Available Experimental Information," J. Chem. Phys. 48. 43-50, (1968). Kamlet, M. J . , "The Chemistry of Detonation. IV. Evaluation of a Simple Predictional Method for Detonation Velocities of C-H-N-O Explosives," J. Chem. Phys. 48, 3685-3692 (1968). Kamlet, M, J,, see also H, Hurwitz, Kandiner, H, J . , and S. R. Brinkley, "Calculation of Complex Equilibrium Relations," Ind. Eng. Chem. 42, 850-855 (1949). Klrkwood, K. G., and W.W. Wood, "Structure of a Steady-State Plane Detonation Wave with Finite Reaction Rate," J. Chem. Phys. 22^ 1915-1919 (1954).

12 '72

19-17

Kury, J. W., H. C. Hornig, E. L, Lee, J, M, McDonnel, D, L. Ornellas, M, Finger, F, M, Strange, and M. L. Wilkins, "Metal Acceleration by Chemical Explosives," in 4th Symp, (Intern.) on Detonation. U. S. Naval Ordnance Laboratory, White Oak, Md., Rept. ACR-126 (1965), pp. 3-13, Lee, E. L , , H, C, Hornig, and J, W. Kury, Adiabatic Expansion of High Explosive Detonation Products, Lawrence Livermore Laboratory, Rept, UCRL-50422 (1968), Lee, E, L , , and H, C. Hornig, "Equation of State of Detonation Product Gases," in 12th Symp. (Intern.) on Combustion. The Combustion Institute, Philadelphia, Pa. (1969), pp. 493-499. Leger, E. G., and K. Park, A Zig-Zag Oscilloscope Presentation for Detonation Velocity Measurements in Explosives. Canadian Armament R e s e a r c h and Development Establishment, Rept. CARDE-TM-170-58 (1958). Leopold, H. S., The Growth of Low Density Explosive Mixtures, U. S. Naval Ordnance Laboratory, White Oak, Md., Rept. NOL-TR-62-89 (1962). Los Alamos Scientific Laboratory, Studies on Binders and Desensitizers (Los Alamos Scientific Laboratory, N. Mex., 1962). Lutzky, M., The Flow Field behind a Spherical Detonation in TNT Using the LandauerStanyvikovich Equation of State for Detonation Products. U. S. Naval Ordnance Laboratory, White Oak, Md., Rept. NOL-TR-64-40 (1964). McGarry, W. F . , and T. W. Stevens, Detonation Rates of the More Important Military Explosives at Several Different T e m p e r a t u r e s . Picatinny Arsenal, Dover, N. J., Rept. PA-TR-2383 (1956). Mader, C. L . , Detonation P r o p e r t i e s of Condensed Explosives Computed Using the Becker-Kistiakowsky-Wilson Equation of State, Los Alamos Scientific Laboratory, N. Mex., Rept. LA-2900 (1963). Mader, C. L . , FORTRAN BKW—A Code for Computing the Detonation P r o p e r t i e s of Explosives. Los Alamos Scientific Laboratory, N. Mex,, Rept, LA-3704 (1967), Mader, C. L . , The Time-Dependent Reaction Zone of Ideal Gases. Nltromethsuie. and Liquid TNT. Los Alamos Scientific Laboratory, N. Mex., Rept. LA-3764 (1967). Melton, C. E . , D. F . Strenzwilk, and P. D. Yedinak, Microscopic Theory of Detonation in Solids. Ballistic R e s e a r c h Laboratories, Aberdeen Proving Ground, Md., Rept. BRL-TN-1715 (AD-688869) (1969). Minshall, D . , " P r o p e r t i e s of Elastic and Plastic Waves Determined by Pin Contactors and Crystals," J. Appl. Phys. 26, 463-469 (1955), Ornellas, D. L . , "Detonation Calorimeter and Results Obtained with Pentaerjrthritol Tetranitrate (PETN)," Rev. Sci. Instr. 37, 907-912 (1966). Ornellas, D. L . , "The Heat and Products of Detonation of Cyclotetramethylene Tetranitramine (HMX), 2,4,6-Trinitrotoluene (TNT), Nltromethane (NM), and Bis-(2, 2-dlnitro-2-fluoroethyl)-formal (FEFO)," J. Phys. Chem. 72, 2390-2391 (1968).

19-18

12/72

Pack, D. C., "The Reflection of a Detonation Wave at a Boundary," Phil. Mag. 2, 182-188 (1957). Palmer, R., Initiation of Detonation. I. Simple "Hubbard and Johnson" Model. U. K. Atomic Weapons Research Establishment, Rept. SSPD-USA-56 (1962). Piacesi, D., J r . , Numerical Hydrodynamic Calculations of the Flow of the Detonation Products from a Point-Initiated Explosive Cylinder. U. S. Naval Ordnance Laboratory, White Oak, Md., Rept. NOL-TR-66-150 (AD-810470) (1967). Price, D., "Dependence of Damage Effects on Detonation P a r a m e t e r s of Organic High Explosives," Chem. Rev. 59, 801-825 (1959). Price, D., and F . J. Petrone, Detonation Initiated by High P r e s s u r e Loading of a Solid Explosive, U.S. Naval Ordnance, White Oak, Md., Rept. NOL-TR-63-103 (1963), Price, D,, J. F. Wehner, and G. E. Roberson, Transition from Slow Burning to Detonation—Further Studies of the F r e e Volume and the Low Velocity Regime in Cast Pentolite. U. S. Naval Ordnance Laboratory, White Oak, Md., Rept. NOL-TR-63-18 (1963). Strange, F . M., Equations of State for Six Explosives. Wm. Brobeck and Associates, Berkeley, Calif., Rept. WMBA-4500-95-2-R8 (1964). Taylor, J . , Detonation in Condensed Explosives (Oxford University P r e s s , Oxford, 1952). Taylor, J., "The Dynamics of the Combustion Products behind Plane and Spherical Detonation Fronts in Explosives," P r o c . Roy. Soc. (London) Ser. A A200, 235-247 (1950). Taylor, J., Solid Propellent and Exothermic Compositions (George Newnes, Ltd., London, 1959). Taylor J., and P . F. Gay, British Coal Mining Explosives (George Newnes, Ltd., London, 1958). Urizar, M. J., E. James, and L. C. Smith, "Detonation Velocity of P r e s s e d TNT," Phys. Fluids 4, 262-274 (1961). Villars, D. S., A Method of Successive Approximations for Computing Combustion Equilibria on a High Speed Digital Computer," J. Am. Chem. Soc. 63, 521-525 (1959). Von Neumann, J., and R. D. Richtmyer, " A Method for the Numerical Calculation of Hydrodynamic Shocks," J. Appl. Phys. 2i_, 232-237 (1950). Walsh, J. M., and M. H. Rice, "Dynamic Compression of Liquids from Measurements on Strong Shock Waves," J. Chem. Phys. 26, 815-823 (1957). Wasley, R. J . , auid R. H. Valentine, Shock Pulse Attenuation and Hugoniot Studies of One Explosive and Three Mock Explosives. Lawrence L i v e r m o r e Laboratory, Livermore, Rept. UCRL-50950 (1970). White, W. B . , S. M. Johnston, and G. B. Dantzig, "Chemical Equilibrium in Cdmplex Mixtures," J. Chem. Phys. 28, 751-755 (1958).

12^72

19-19

WQkins, M.L., J. French, and R. Giroux, A Computer P r o g r a m for Calculating OneDlmenslonal Hydrodynamic Flow — KO Code. Lawrence Livermore Laboratory, Rept. UCRL-6919 (1962). Wilkins, M. L., B. Squier, and B. Halperin, The Equation of State of PBX-9404 and LX-04-1, Lawrence Livermore Laboratory, Rept. UCRL-7797 (1964). Wilson, D. H., Hydrodynamics (Edward Arnold. P u b l . , London, 1959). Wood, W. W., "Existence of Detonations for Small Values of the Rate P a r a m e t e r , " Phys. Fluids 4. 46-60 (1961). Wood, W. W., "Existence of Detonations for Large Values of the Rate P a r a m e t e r . " Phys. Fluids 6. 1081-1090 (1963). Wood, W. W., and J. G. Klrkwood, "Diameter Effect in Condensed Explosives—The Relation between Velocity and Radius of Curvature of the Detonation Wave," J. Chem. Phys. 22, 1920-1924 (1954). Zeldovich, I. B . , Theory of Detonation (Academic P r e s s . New York, 1960). Zovko, C, T . , The Mechanism of the Transition from Deflagration to Detonation In High Explosives. U. S. Naval Ordnance Laboratory, White Oak, Md., Rept. NAVWEPS-7393 (1961).

19-20

12/72

RADIATION EFFECTS Bolt, R. O., and G. J. Carroll, E d s . , Radiation Effects on Organic Materials (Academic P r e s s , New York, 1963). Bowden, F . P . , and H. M. Montagu-Pollock, "Slow Decomposition of Explosive Crystals and Their Damage by Fission Fragments," Nature 191, 556-559 (1961). Cerny, J . , M. S. Kirshenbaum, and R. C. Nichols, "Range-Energy Relations for P r o tons and Alpha-Particles in Various Explosives," Nature 198, 371-372 (1963). Clark, D . , and M. J. Daniels, The Proton Irradiation of High Explosives. U. K. Atomic Weapons R e s e a r c h Establishment, Aldermaston, B e r k s . , U. K., Rept. ERN-25-64 (1964). Dobratz, B. M,, Bibliography on Radiation Effects on P r i m a r y and Secondary Explosives and on Propellants. Lawrence Livermore Laboratory, Rept. UCID-16087 (1972). Paitchel, J., J . E , Cockayne, R , S , Alger, R . T , E l s b e r r y , W , B , Thomas, J. M. McSwain, J, P, Noonan, H. M, Shupp, and D, Wasler, Source Book of Radiation Effects on Propellants, Explosives and Pyrotechnics, Vol, 1, Picatinny Arsenal, Dover, N . J . , Rept. DNA-2881F-1 (1974). Ribaudo, C., J. Mallay, and H. J. Matsuguma, The Effects of Reactor Irradiation on the Chemical Characteristics of Solid Explosives, Picatinny Arsenal, Dover, N. J., Rept. PA-TR-3893 (1970). Urizar, M. J . , E. D. Loughran, and L. C. Smith, "The Effects of Nuclear Radiation on Organic Explosives," Explosivstoffe 4, 55-64 (1962).

7/74

19-21

05

(M (M

THERMAL PROPERTIES Andreev, K. K., Thermal Decomposition and Combustion of Explosives, 1st ed. (Moscow, 1960) (Transl. into German in Explosivstoffe (1960-1962); 2nd ed. (Moscow, 1966), Transl., Foreign Technology Div., W r i g h t - P a t t e r s o n AFB, Ohio, T r a n s l . AD-693600 (1969)). Aubertein, P . , "Stability of Explosives," Mem. Poudr. 4J^, 111-125 (1959); in F r e n c h (Transl. by F . E, Wallwork, U. K. Atomic Weapons R e s e a r c h Establishment, Aldermaston, Berks. U.K., T r a n s l . AWRE-TRANS-24 (1961)). B a r r e t t , E . J . , H.W. Hoyer, a n d A . V . Santoro, "Differential Thermal Analysis of • Rapid High P r e s s u r e Decompositions," Anal. Lett. 1_, 285-289 (1968). Buxton, R. J . , and T. M. Massio, Compatibility of Explosives with Structural Materials of Interest. Sandia Laboratories, Albuquerque, N. Mex., Rept. SC-TM-70-3 55 (1970). Cady, H. H., and W. H. Rogers, Enthalpy, Density and Thermal Coefficient of Cubical Expansion of TNT, Los Alamos Scientific Laboratory, N. Mex., Rept. LA-2696 (1962). Clink, G. L . , Corrosion Effects of the Interaction of 6061 Aluminum with Aqueous Mixtures and Solutions of Selected HE's, Mason and Hanger — Silas Mason Company, Inc., Pantex R a n t , Amarillo, Texas. Rept. MHSMP-71-58 (1971). Cook, M. A., and M. T. Abegg, "Isothermal Decomposition of Explosives," Ind. Eng. Chem. 48, 1090-1095 (1956). F r a z e r , J. W., and K. Ernst, Chemical Reactivity Testing of Explosives, Lawrence Livermore Laboratory, Rept. UCRL-7438 (1963). Hansson, J . , Ed., Symposium on Chemical P r o b l e m s Connected with Stability of Explosives, 1st. Swedish Detonic R e s e a r c h Foundation, Stockholm (1967); 2nd (1970); 3rd (1973). Lee, E. L . , R. H. Sanborn, and H. D. Stromberg, "Thermal Decomposition of High Explosives at Static P r e s s u r e s 10-50 Kilobars," in P r o c . 5th Symp. (Intern.) on Detonation, Office of Naval Research, Arlington, Va., Rept. ACR-184 (1970), pp. 331-337. Maycock, J. N . , Applications of Thermal Analysis—Explosives and Solid Propellant Ingredients (Martin-Marie1;ta Corp,/Mettler Instrument C o r p . , Baltimore, Md.. 1969), Maycock, J . N . , "Application of Thermal Analysis Methods to the Study of Unstable and Metastable Materials," Thermochim. Acta 4, 309-320 (1972). Maycock, J. M., and V. R. Pai Verneker, "Characterization of T h e r m a l and Photosublimation of Organic Explosives by T h e r m o b a r o g r a v i m e t r i c Techniques," Thermochim, Acta 1, 191-198 (1970). Murray, R, C., and T. E. Cooper, A Method of Measuring Thermal Diffusivitv of High Explosive Materials, Lawrence L i v e r m o r e Laboratory, Rept. UCRL-50827 (1970).

7/74

19-23

Rogers, R. N . , "The Simple Microscale Differential Thermal Analysis of Explosives," Microchem. J. 5, 91-99 (1961). Rogers, R. N . , S. K. Yasada, and J. Zinn, "Pyrolysis as an Analytical Tool," Anal. Chem. 32, 672-678 (1960), Schuldt, H, S,, and L, C. Myers, Time-to-Explosion Thermal Initiation Test for Explosives. Mason and Hamger—Silas Mason Company, Inc,, Pantex Plant, Amarillo, Texas (1964). Simmons, H, T . , S r . , The Vacuum Thermal Stability Test for Explosives, U. S. Naval Ordnance Laboratory, White Oak, Md., Rept. NOL-TR-70-142 (1970). Zinn, J . , and C. L. Mader, "Thermal Initiation of Explosives," J. Appl. Phys. 31, 323-328 (1960).

19-24

12/72

Distribution LLL Internal Distribution Roger E. Batzel R. W. Anderson C. G, Andre P. B. Archibald W. F. Arnold/E. R. McClure R. H. Barlett G, R. Baxter C. F. Bender W. P. Bennett C. W. Berndt E, R. Bissell R. M. Boat G. R, Bokanich W. G. Boyle R. D. Breithaupt G. A, Broadman/C. R. Henry W. L, Burden R. I. Bystroff R. B. Carr J. C. Cast E. Catalano H. Cheung W. E. Clements J. P. Cramer D, F, Cruff V, E. Culler J. D. Deligans H. X, DiGrazia G, L, Dittman B, M. Dobratz R. G. Dong F. S. Eby A. L. Edwards R, E. Elson R. B, Engle K, Ernst J. T. Ewing D. B. Fields M. Finger P . G. Fleming 12/72

K. V. Fordyce H. C. Forsberg J. W. F r a z e r J, L. Freiling S. J. French K, E. Froeschner M. M. Fulk R. Fyfe B. L. Garner L. S. Germain E. Goldberg H. A. Golopol G. L, Goudreau W. C. Grayson L. G. Green R. P. Guarienti M. W. Guinan W. A. Gummer W. H. Gust M. R. Gustavson J. S. Hallam H. G. Hammon R, L, Heckman

10

F . H, Helm G. H, Higgins R. Henry K. G. Hoge B, E. Holder A. C. Holt A. C. Honodel B. L, Hord H. C. Hornig J. R. Humphrey W. S. Inouye W. M. Isbell E, James F. W. Jessen F. P, Johansen C. V. Johnson III M. Kamegai V. N. Karpenko/C.

25

5

20-1

H. L . Reynolds F. Rienecker

L L L I n t e r n a l D i s t r i b u t i o n (continued) R. N. K e e l e r

K. H, Ristad J. B, Rob is on

J. E. K e l l e r H. K. K r u g e r

J. W, Routh S. Sack

J. W. Kury A. Kusubov

K. J. S c r i b n e r D, L. Seaton

J. K. L a n d a u e r E . L. L e e W. A. Lokke

R. W. Seldon W. Selig

J. W. Lyle

L. L . Shaw

A. Maimoni

B. L . S h r o y e r

L. L . M a r i n o

D. R. Speck

R. L . M c C l e s k e y

G. G. Staehle D. J. Steinberg

J. K, L e p p e r

C. A. McDonald

J. S. Steller E. A. S t i s s e r

J. L. McDonnel L. M. McGrew G, L, Moody

R. G. Stone J. R. Stroud

J. L. M o r s e

C. A. T a t r o

R. L . Morton

C. L . T e e v a n

P . H. Moulthrop

W. R, McKinley

J. H, Moyer

J. F . Tinney A. F , T o d a r o

R. K, Mull ins

O. A. T v e i t m o e

R. C. M u r r a y

P . A. Urtiew R. E . V a r o s h

R. C. M y e r s W, B, M y e r s

O. T. Vik K. W, Volkman

W. E . Nelson P , C. Newcomb

R. L . Wagner R. L, Waldron

E. J. Nidick D. C. Oakley

F . E . Walker

R. S. P a i g e

D. H, W a r n e r

H. G. P a l m e r J. M. P a r k e r

R. J. W a s l e y R. C. W e i n g a r t

R. K. P e a r s o n

H. W e i s s

L. E. P e c k H, N, P e r l

M. L . Wilkins J. R. Wilson

T. P e r l m a n / G , B. Sabine

F . R. Wondolowsky

K, A. P e t e r m a n

C. D. Wood

H. E .

R. J . Woodworth D. L . Woods D. L . W o o s t e r

Pfeifer

R. L, R e m i l l a r d G. W. Repp JO-2

12/72

J. C. Drummond J. Adams I. Akst R. Bailey A. Duncan R. Dunham J, Higgins L. Myers G. Osborn M. Ott E. Poynor J. Rigdon A. Wilson Mason & Hanger - Silas Mason Co.. Inc. Amarillo. Texas

LLL Internal Distribution (continued) C. L. Wraith M. Zaslaw.-^ky TID File Kxternal Distribution J, Choromokos. Jr. Defense Nuclear Agency Washington. U. C. E. L. Brawley Defense Nuclear Agency Albuquerque, New Mexico P. E. Koentap G, P r a s s i n o s Defense Nuclear Agency Livermore. California

R. Brinkman D. Colman L. Haws P . J. Kiefer Monsanto Research Corporation Miamisburg, Ohio

J. Bearden S. Wright Holston Army Ammunition Plant Kingsport. Tennessee J. Aragon M. Brooks A. W. Campbell W, Deal E. Eyster W. Meyers A. Popolato R. H. Rogers L. C. Smith R. Spaulding J. Travis W. C. Davis B. Craig P. G. Salgado B. Hayes T. Benziger M. Urizer W. Fickett C. L. Mader J. F . Barnes Library Los Alamos Scientific Laboratory Los Alamos, New Mexico R. Holmberg J. Poison C. Poole J. Kurrlee J. Tash Mason & Hanger - Silas Mason Co., Inc. Burlington, Iowa

12/72

D. Anderson H. Barnett W. Benedict B. Grumley J. C. King E. Kjelgaard J. Marron C. H. Mauldin C. McCampbell T. Tucker J. Weber Library Sandia Laboratories Albuquerque, New Mexico G. Anderson C. R. Barncord C. Schoenfelder B. Worden D. Gregson L. Guiterrez R. Meinken Library Sandia Laboratories Livermore, California D. M. Z i m m e r V. Calbi Air Force Systems Command Eglin Air Force Base Florida H. F r a z i e r Ammunition P r o c u r e m e n t and Supply Agency Joliet, Illinois

20-3

External Distribution (continued) S. Taylor R. Eichelberger R. Karpp P. Howe Ballistic Research Laboratories Aberdeen Proving Ground Maryland

J. Bell U, S, Atomic Energy Commission Berkeley. California C. H. Smith Bendix Corporation Kansas City, Missouri H. Kite Union Carbide Corporation Oak Ridge, Tennessee

A. M. Weston William M, Brobeck and Associates Berkeley, California

Manager U. S. Atomic Energy Commission Albuquerque. New Mexico

G. Dorough R. Thorkelsen Department of Defense, Research & Engineering Washington, D. C.

L G. Gwillim Atomic Weapons Research Establishment Aldermaston, Reading England

R. Roberts Office of Naval Research Washington, D. C.

C. A. Beck Explosives R e s e a r c h and Development Establishment Waltham Abbey, E s s e x England

J . Hershkowitz H. Matsaguma L . Saffian R. Walker N. Slagg H. F a i r P i catinny Arsenal

N. Griffiths Royal Armament R e s e a r c h & Development Establishment Fort Halstead, Kent England

Dover, New Jersey J. Ablard H. Heller M., Kamlet C. Misener Li b r a r y U. S. Naval Ordnance Laboratory Sil ver Spring, Maryland

J. A. Bell Defense R e s e a r c h & Development Staff British Embassy Washington, D. C.

H. D. N. R. B. U.

Gryting Lind Rumpp Sewall Stott S. Naval Ordnance Test Station China Lake, California

D, B. Janisch Atomic Coordinating Office British Embassy Washington, D. C. Teclinical Information Center Oak Ridge, Tennessee

A. Amster B. D r i m m e r R. Beauregard Naval Ordnance Systems Command Washington, D. C.

NOTICb "This report was prepared as an account of work sponsored by the United States Government Neither the United States nor the United States Atomic Inergy Commission, nor any ot their employees, nor any of their contractors, subcontractors or their employees, makes any warranty express or implied or assumes any legal liability or responsibility lor the accuracy, completeness or usefulness of any inlorniation, apparatus, product or process disclosed, or represents that its use would not intringe privatelyowned rights'"

J. Osborne Air Force Weapons Laboratory Kirtland AFB, New Mexico VJE/md/lc

W GPO 790-202

20-4

12/72

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF