Linear Functions and Lines Solutions

March 16, 2019 | Author: Jeanalmira | Category: Algebraic Geometry, Line (Geometry), Elementary Mathematics, Physics & Mathematics, Mathematics
Share Embed Donate


Short Description

Linear functions...

Description

Linear Functions and Lines  T eac h

 y

er

Book  - Ser ie s L  2  -

= m x + c

Mathlecs Instant Workbooks

Copyright ©

Linear functions and lines Topic Test Instructions

PART A This part consists of 12 multiple-choice questions Each question is worth 1 mark Calculators may be used Fill in only ONE CIRCLE for each question

Time allowed: 12 minutes

Total marks = 12

Marks

1

The equation of a line with gradient –1 and y -intercept 2 is A

 2

B  y  = 2 x – 1

 y  =

C

2 – x 

D

none of these

1

D

(1, 1)

1

Which point lies on the line 2 x  + 3 y – 5 = 0? A

3

 y = – x – 2

(–1, 1)

B

(–1, –1)

(1, –1)

C

 y 

The gradient of the line joining A to B is A

−2

5 4

−3

B

3

A 3

2

2

B

C

2

D

3

4

1

2

3

4

1

5  x 

 x  =

3

B

 x  =

–5

C

 y  =

3

D

 y  =

1

–5

0

–1

B

C

1

D

45

D



1

The gradient of any line parallel to 4 x – 2 y   + 3 = 0 is A

7

0

–1

A line passes through the origin and makes an angle of 45 °  with the positive direction of  the x -axis. The gradient of the line is A

6

–1

2

A line, parallel to the  x -axis, passes through the point (3, –5). Its equation is A

5

1

3

2

–2

B

C

1 2

1

1

2

 y 

The shaded region is where

4

4 x  – 6 y  – 3 = 0

3

A

4 x – 6 y – 3 ≤ 0

B

4 x – 6 y – 3 ≥ 0

C

4 x – 6 y – 3 < 0

D

4 x – 6 y – 3 > 0

2

1

1

–2

–1

0

1

2

3

4  x 

–1

8

The gradient of any line perpendicular to A

1 −

3

B

1 3

–2

1  y

=

3

C



+

2  is

–3

D

1

3

Linear functions and lines I I 3P Learning I I Mathletics Instant Workbooks – Series L 2 Copyright ©

I

I I

ii

Linear functions and lines Topic Test

PART A

near unc ons an 9

2 x – 5 y  = 0

5 units

2 x  + 5 y  = 0

C

5 x  + 2 y  = 0

D

5 x – 2 y  = 0

1

B

6 units

C

7 units

D

8 units

1

Which point lies within the region determined by the inequalities 2 x and 3 x – 4 y  + 5 ≥ 0? (–4, 2)

A

12

B

The distance between the points ( –1, 5) and (7, 5) is A

11

Marks

Which line passes through the point ( –2, 5)? A

10

nes

B

(–1, –3)

C

Which diagram shows the region where  y 

A

B

 x 

 x ≤

 y 

(2, 6)

0 and C

D

+ y  <

0 1

(5, 2)

 y  ≥ 0?  y 

 x 

D

 x 

 y 

 x 

1

Total marks achieved for PART A

12

Linear functions and lines Mathletics Instant Workbooks – Series L 2 Copyright © 3P Learning

i

i

i

i

li

li

iii

Linear functions and lines Topic Test Instructions

PART B

This section consists of 18 questions Show all necessary working

Time allowed: 1 hour

Total marks = 88

Marks

13 Draw, on the number plane provided, the graph of: a

 y = – x  +

2

b  y  = 2 x – 3

 y  6

 y  6

5

5

4

4

3

3

2

2

1

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6

c

 x  =

–2

1 0 1 2 3 4

5 6

 x 

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6

d  y  =

 y  6

1

5 6

 x 

0 1 2 3 4

5 6

 x 

 y  6

5

5

4

4

3

3

2

2

1

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6

0 1 2 3 4

1 0 1 2 3 4

5 6

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6

 x 

8

14 Write down the gradient and  y -intercept of each line. a  y  = 2 x – 5

b  y  =

c  x + y  =

–3 x 

_____________________

___________________

___________________

_____________________

___________________

___________________

15 For the line 2 x  + 3 y – 6 = 0 a

c

6 5 4 3 2 1

________________________________

find the y -intercept ______________________________  

6

 y 

find the gradient ________________________________  

b

4

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6  x  –1 –2 –3 –4 –5 –6

______________________________

graph the line on the number plane provided .

6

16 Write the equation: a

 y  = 2 x – 7

in general form

b  x – 3 y  +

9 = 0 in gradient-intercept form

________________________________

__________________________________

________________________________

__________________________________

________________________________

__________________________________

I

I

I

I

I

II

I

I

I

6

I I I I

Linear functions and lines Mathletics Instant Workbooks – Series L 2 Copyright © 3P Learning

iv

Linear functions and lines Topic Test

PART B Marks

17  A line makes an angle of 135 °  with the positive  x -axis and passes through the point (0, 3). Find: a

b

the gradient

  the  y -intercept

c

the equation of the line

_____________________

___________________

___________________

_____________________

___________________

___________________

_____________________

___________________

___________________

18  The line l has gradient

1 2

6

. Find, to the nearest degree, the angle the line makes with the positive

direction of the  x -axis. ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________

2

19 Find the gradient of the line joining (5, 7) to ( –3, 8).

______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________

 20 The gradient of the line joining P(3,

–2) to Q( x , 4) is

1 −

3

4

. Find the value of  x .

______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________

4

Linear functions and lines Mathletics Instant Workbooks – Series L 2 Copyright © 3P Learning i

i

i

i

li

li

v

Linear functions and lines Topic Test

PART B Marks

 21  Find the equation of the line, in general form, which passes through: a

b

the point (–3, 5) with gradient 2

the points (–1, 6) and (2, –3)

________________________________

___________________________________

________________________________

___________________________________

________________________________

___________________________________

________________________________

___________________________________

________________________________

___________________________________

________________________________

___________________________________

________________________________

___________________________________

________________________________

___________________________________

4

 22 Find the equation of the line through ( –1, 4): a

b

parallel to 2 x – 3 y  + 7 = 0

perpendicular to y  = –3 x  + 5

________________________________

__________________________________

________________________________

__________________________________

________________________________

__________________________________

________________________________

__________________________________

________________________________

__________________________________

________________________________

__________________________________

4

 23 Find the point of intersection of the lines y  = 3 x – 2 and  x  + 3 y – 5 = 0

______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ 4

______________________________________________________________________________  24 Find the equation of the line that passes through (0, 8) and through the point of intersection of 

3 x – y + 4 = 0 and 2 x

+ y – 16

=0

______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________

4

Linear functions and lines

vi

Mathletics Instant Workbooks – Series L 2 Copyright © 3P Learning I

I

I

I

I

I

I

I

I

I

I I

I I

Linear functions and lines Topic Test

PART B Marks

 25 The graph shows the lines  x  + 2 y – 8 = 0 and 2 x – y – 1 = 0

 y 

2 x – y – 1 = 0

6 5

Write down the point of intersection of the lines.

a

4 3 2

_________________________________________ b

1

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6

Shade the region where  x  + 2 y – 8 ≤ 0 and 2 x – y – 1 ≥ 0 hold simultaneously.

 x + 2  y – 8 = 0 0 1 2 3 4 5 6

 x 

4

 26 Find the distance between the points (–2, 7) and (6, 1)

______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________

4

 27 Find the perpendicular distance from the point (2, 5) to the line 3 x – 4 y  + 1 = 0

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

4

 28 Find the midpoint of the interval joining (–7, 2) to (3, 9)

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

4

y 1) and Q(1, 4). Find the coordinates of P.  29 (6, –2) is the midpoint of P( x  , 1

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

_____________________________________

4

Linear functions and lines Mathletics Instant Workbooks – Series L 2 Copyright © 3P Learning i

i

i

i

li

li

vii

Linear functions and lines Topic Test 30 a

c

e

PART B arks

b

Find the gradient of the line k : y  = –3 x  + 2

Find the gradient of the line l: 6 x  + 2 y – 9 = 0

________________________________

___________________________________

________________________________

___________________________________

________________________________

___________________________________

What conclusion can be drawn about lines k  and l?

d

P lies on the line  y  = –3 x   + 2 and also on the line  y  = –1. Find the coordinates of P.

________________________________

___________________________________

________________________________

___________________________________

________________________________

___________________________________

________________________________

___________________________________

________________________________

___________________________________

Find the shortest distance between lines k  and l. ________________________________ ________________________________ ________________________________ ________________________________ ________________________________ ________________________________ ________________________________ 10

________________________________

Total marks achieved for PART B

88

Linear functions and lines

viii

Mathletics Instant Workbooks – Series L 2 Copyright © 3P Learning I

II

I

I

I

I

I

I

I

I I

I I

Answers – Linear functions and lines  y 



6 5 4 3 2 1

g

 y  = x 

 y  =

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 –1 –2 –3 –4 –5 –6

c

6 5 4 3 2 1

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6

d

0 1 2 3 4 5 6

 y  =

6 5 4 3 2 1

3 –  x 

3 a

 y  =  x  +

2

6 5 4 3 2 1

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6

 y 

 x  + 2 y  – 5 = 0

PAGE 89 14 1 a 3 units b 3 units

3 a

5  units

 y  = 2 x  – 1

 y 

b

6 5 4 3 2 1

5 5

 y  =

1 2

 x 

0 1 2 3 4 5 6

3

2 17 17

 units

and x  + 3 y  + 6 ≥ 0 and 2 x

– y  +

2 ≥ 0

–1

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6

3 x  –  y  = 2

 y 

d

6 5 4 3 2 1

0 1 2 3 4 5 6

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 –1 –2 –3 –4 –5 –6 2 x  +  y  =

 x  +  y  = 3

5

2 x  + 3 y  + 5 = 0

c 6 units d 7 units e 10 units f  7 units 2 a 5 units b 13 units c 10 units

c

11 26 13

b P is equidistant from Q and R

2 a 1.2 units b 1.5 units c

12 89 89

 units

 units e (2, 21 ) f

(3 21 , −6) 52 73 73

(0, −1 21 )

g

( −1 21 , −1)

h (–6, –1) i

( 4, −5 21 )

2  (11, –14)

 units d 26 units2

b (3, 1) c (1, 0) d − 13

 y  6 5 4 3 2 1

 x  +  y  – 2 = 0

0 1 2 3 4 5 6

73  units b 3 x  + 8 y  + 9 = 0 c

PAGE 93 18 1 a

0 1 2 3 4 5 6

3 x  –  y  – 4 = 0

PAGE 91 16 1 a (5, 3) b (–5, 1) c  (6, –3) d PAGE 92 17 1 a

 x  –  y  =

6 5 4 3 2 1

b 2 2  units c 2 26  units 4 a i 5 2  units ii 5 2  units

 units b

+ y – 5 ≤ 0

 y 

c

15 1 a 5 units b 4 units c 1 unit d 3 units e 15 units PAGE 90

3 a

b 7 x

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6

0

2 x  –  y  + 1 = 0

6 5 4 3 2 1

6 5 4 3 2 1

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6

0 1 2 3 4 5 6

 y > 21 x  + 1  and y  > 3 x – 2

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6



6 5 4 3 2 1

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 –1 –2 –3 –4 –5  x  +  y  – 2 = –6

 y 

b

 x  +  y  – 2 = 0

 y 

 y  = 2 x 

 y 

6 5 4 3 2 1

0 1 2 3 4 5 6

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 –1 –2 –3 –4 –5 –6

e

2 x  –  y  + 1 = 0

 y 

2 a

6 5 4 3 2 1

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 –1 –2  y  = 2 x – 1 –3 –4 –5 –6

2 x  –  y  + 1 = 0

 y 

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6

 x  +  y  – 2 = 0

13 1 a PAGE 88

6 5 4 3 2 1

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 –1 –2 –3 –4 –5 –6

2 x  –  y  + 1 = 0

 y 

3 – x 

 y 

h

 y 

e gradient of DC = − 13

f gradient of BC = 3

A(2,3) B(5,2)

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6  x  –1 –2 C(4,–1) –3 –4 –5 –6

19–20 1 C PAGES 94-95

2 D

PAGES 96-100 21–25 13 a

3 A

4 D

 y 

5 C b

6 5 4 3 2 1

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6  x  –1 –2 –3 –4 –5  y  = – x  + 2 –6

6 A

7 B

 y  6 5 4 3 2 1

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6

8 C

 y  = 2 x  – 3

0 1 2 3 4 5 6  x 

c

9 C

10 D

11 B

 y 

d

6 5 4 3 2 1

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6  x  = –2

0 1 2 3 4 5 6

 x 

12 B 14 a 2, –5 b –3, 0

 y  6 5 4 3 2 1

 y  =

1

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6  x  –1 –2 –3 –4 –5 –6

Linear functions and lines Mathletics Instant Workbooks – Series L 2 Copyright © 3P Learning

x

Answers – Linear functions and lines c –1, 4

15 a

20  x  = –15

− 23

b 2

c see below

16 a 2 x  –  y  – 7 = 0 b

21 a 2 x  –  y  + 11 = 0 b 3 x  +  y  – 3 = 0

25 b

 y  6 5

2

3

x  + 3

17 a –1 b 3 c  y  = – x  + 3

18 27°

19

− 18

23 (1.1, 1.3) 24 4 x  – 3 y  + 24 = 0

29 (11, –8) 30 a –3 b –3 c  parallel d  (1, –1) e

10 4

 units

 x  + 2 y  – 8 = 0

6 4

2 x  + 3 y  – 6 = 0

1

–6 –5 –4 –3 –2 –1 –1 –2 –3 –4 –5 –6

1

5

4 3

 y 

=

22 a 2 x  – 3 y  + 14 = 0 b  x  – 3 y  + 13 = 0

25 a (2, 3) b see below 26 10 units 27 2.6 units 28 ( −2,5 21 ) 15 c

 y

3 2 1

0 1 2 3 4 5 6

 x 

–6 –5 –4 –3 –2 –1 –1 –2 2 x  –  y  – 1 = 0 3 – –4 –5 –6

0 1 2 3 4 5 6

Linear functions and lines I

I

I

I

Mathletics Instant Workbooks – Series L 2 Copyright © 3P Learning

I

I I

xi

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF