LIMS Workout

November 12, 2016 | Author: Shamim Sarwar Pappu | Category: N/A
Share Embed Donate


Short Description

LIMS Workout...

Description

http://en.wikipedia.org/wiki/List_of_LIMS_software_packages

Document Link: http://www.limswiki.org/index.php?title=LIMS_feature

Sample login and management Sample accessioning and management is one of the core functions a modern LIMS is tasked with, whether it's in a manufacturing, water treatment, or pharmaceutical laboratory.[2] As such, researchers who work in these types of labs are unable to complete their experiment-based goals without an effective method of managing samples. The process of sample management for experiments includes, but is not limited to[2]: 

storing related sample information, including aliquot numbers, dates, and external links



setting user alerts for sample status



creating and documenting viewable sample container schemas with name and status



assigning sample access rights



assigning custom sample ID numbers based on a specification

Additional functionality that could potentially fall under this feature: 

utilizing a unique ID system



barcoding of samples



defining sample points and series



creating data associations for samples - such as pedigree for sample/aliquot relationships or relationships based on experiment, etc.



issuing sample receipts

Sample tracking

Where's sample 20110512_122GJH? Sample tracking functionality will let you know which lab oven it's in.

For most laboratory personnel, knowing that a sample has arrived to the lab isn't good enough; they need to know where it's located and what is being done with it. Enter the sample tracking feature. Without it, many problems arise. In the forensic world, for example, many samples are linked to a criminal investigation. In this case, misidentification, contamination, or duplication can become significant issues: a lost sample is essentially missing evidence, while a duplicated sample can render it useless as evidence. [3]

After sample reception and its initial handling procedures, many LIMS can then track sample location as well as chain of custody. Location tracking usually involves assigning the sample to a particular freezer location, often down to the granular level of shelf, rack, box, row, and column. The process of tracking a sample has become more streamlined with increasing support of 2-D barcode technology. While handwritten labels were the norm, now barcode support in a LIMS can "tie together a vast amount of information, clearly relating each sample to a specific case." [3] Other event tracking such as freeze and thaw cycles that a sample undergoes in the laboratory may also be required. As each laboratory's needs for tracking additional data points can vary widely, many modern LIMS have implemented extensive configurability to compensate for varying environments.[4] The functionality of sample tracking strongly ties into the audit trail and chain of custody features of a LIMS.

Sample and result batching What is batching? The United States Environmental Protection Agency (EPA) defines a batch as "a group of samples which behave similarly with respect to the sampling or testing procedures being employed and which are processed as a unit."[5] This definition can be applied to many laboratories which handle large quantities of samples for some form of analysis or processing. A LIMS that has the ability to check in, link, and track groups of samples across one or multiple facilities is valuable to such laboratories. Additionally, batching the analysis results of multiple samples or groups of samples gives laboratories more flexibility

with how they manage their data. Batching also offers the benefit of mimicking the production groups of samples while also capturing quality control data for the entire group.

Task and event scheduling Within the context of a LIMS, the ability to schedule a task or event is a natural extension of how work was done in a laboratory before the advent of data management systems. Workloads are assigned to technicians, maintenance schedules are created and followed, and research deadlines must be observed. While these tasks have in the past been performed without LIMS, a modern data management system can now optimize those tasks and provide additional scheduling functionality to streamline the operation of a lab. Autoscribe Ltd., for example, offers a scheduling module for its LIMS that allows users to automatically schedule multiple jobs, data backups, alarms, and reports. [6] Some LIMS like LabWare, Inc.'s LabWare LIMS offer multiple types of schedulers that match to the particular functions of a research laboratory.[7] Additional functionality within this feature includes the ability to configure automated assignments of analysis requests, establish recurring events, and in most cases, create printable schedules. Examples of tasks and events that can feasibly be scheduled in a LIMS include: 

registration of received samples into the system



production of reports



creation and sending of e-mails and alerts



maintenance of equipment



assignment of workloads to personnel

Option for manual result entry While many LIMS vendors tout the ability of their product to automate the entry of results into the LIMS database, the need for manual data entry of analysis results still exists. This feature is important to laboratories obtaining analysis results from multiple sources, including non-digital paper-based results and instruments that can't be connected to the LIMS. Additional functionality associated with this feature includes a customizable spell check dictionary and the ability to add comments, notes, and narratives to most anything in the LIMS.

Multiple data viewing methods Laboratories produce data, and LIMS exist to help manage that data. Additionally, even before the existence of LIMS, scientists have had a corresponding need for visually representing data. Today a LIMS can not only collect and analyze data from samples, but it also can represent that data in reports, graphs,

gradients, and spreadsheets. Depending on the LIMS, more than one way to visually represent the data may exist. Some laboratory information management systems take a very specialized approach to data views. For example, Biomatters Ltd.'s Geneious and Geneious Pro offer multiple methods of viewing complicated sequence analysis data, including 3-D structuring and representations of plasmid vectors.[8]

Data and trend analysis

Some LIMS allow users to analyze sample data directly from the software.

Sample experimentation and analysis plays an important part of laboratory informatics, helping laboratories make better sense of their experiments and reach valuable conclusions about them. While this important phase of laboratory work has often been done externally from the LIMS, it's now more common to see basic analysis tools being included. Such tools allow raw data to be imported directly to the LIMS, which then can store, process, and report information about it. Additionally, calculations and functions used in the analysis are typically definable and editable for further flexibility. As with the feature "multiple data viewing methods," data and trend analysis is also increasingly important in laboratories that have very specialized data management needs. When even in 2009 genetic scientists in large- and medium-sized sequencing and core centers were voicing concerns about "a lack of adequate vendor-supported software and laboratory information management systems (LIMS)," [9], today data management options like the previously mentioned Geneious Pro are starting to emerge, offering the ability to perform specialized analytical tasks for the sequencing industry.[8] As sample experimentation and data analysis are important parts of most if not all laboratories, such functionality — which has often come in the form of a separate application or analysis device — will likely continue to merge into LIMS and other data management solutions. [2]

Data and equipment sharing Aside from data storage and sample registration, a modern LIMS' major contribution to the laboratory is aiding in the sharing of experiment results, reports, and other data types with those who need it most. Rather than pieces of information becoming misplaced or forgotten in laboratory notebooks, the LIMS makes it easier to share sample test results and increase the efficiency of collaboration inside and outside the laboratory. Yet data is more than just sample test results; it also can come in the form of charts,

reports, policy and procedure, and other documents. Additionally, the need for controlling who has access to those types of data is also an important consideration. As such, this feature is at least partially tied to other features like document management and configurable security.

Customizable fields and/or interface As thorough as some user interface (UI) developers may be in adding relevant fields and interface options for LIMS end users, there are at times options that are either omitted or unanticipated. This has traditionally required the end user to contact the vendor and ask if the needed option(s) can be added in the next release. However, some modern LIMS vendors have responded instead by adding functionality that gives end users and/or LIMS administrators more control over the user interface. Aspects of the LIMS' user interface that are becoming more customizable by the end user include: [10][11][12] 

system nomenclature



equations used in calculations



data and universal fields



appearance of the interface and/or menus



primary system language



the LIMS source code, especially if in a non-proprietary format

Query capability

Advanced query tools allow researchers to better complete project objectives.

As was the case before the advent of databases and electronic data management solutions, today researchers must search through sample results, experiment notes, and other types of data to better draw conclusions about their research. Whereas this used to mean browsing through laboratory notebooks, Excel spreadsheets, or Access databases, now powerful query tools exists within data management tools like a LIMS. Not only can data be searched for based on name, number, or vendor, LIMSs like eBioSys' eLab and Mountain States Consulting's MSC-LIMS allow for queries of attached meta-data

like user ID, project number, task number, sample type, location, and collection date. [13][14] Finally, as LIMS continue to include both sample management and experimental data management functionality, queries become more powerful in general as now sample and experiment can be matched together in one database.[2] Query functionality often includes the ability to: 

search both transactional data and archived data tables



search multiple databases via an application programming interface (API) or open database connectivity (ODBC) connection



filter and sort data



create ad-hoc queries

Import data Data can originate from numerous places in the laboratory. The ability to import that data into a LIMS can be beneficial, especially when an instrument can't be connected or an external client provides a data feed independent of the LIMS. Some LIMS like Bridge-Soft's QMS even allow to cross-reference laboratory nomenclature from received data sources with the recipient's. [15] And of course instrument interfacing allows for even more importation options. Additional data validation procedures may be applied to the imported data to guarantee information homogeneity. Additionally, some LIMS may allow for the import and integration of non-normalized legacy data tables with LIMS data tables into a single database.

Internal file or data linking This feature allows LIMS users to link together reports, protocols, sample results, and more, providing greater contextual clarity to projects. Examples include: 

linking a sample batch to a test or sample preparation methodology



linking a test process to a particular customer



linking a report to a sample batch



linking a group of test results to a raw data file



linking an image to a work order



linking all lab results with the correct reporting test method

External file or data linking

This feature allows LIMS users to link together data and files in the LIMS with data, files, and customers outside the scope of the LIMS. Examples include: 

linking data files from chromatography equipment to synthesis data [16]



linking equipment ID with an external annotation database [17]



linking external standard operating procedure documents with an internal test specification [18]

ELN support or integration As a software replacement for more traditional paper laboratory notebooks, the electronic laboratory notebook (ELN) has been important to laboratory functions. Yet the lines between ELN and LIMS began to blur in the 2000s, with both types of software incorporating features from the other. [19][20] The result today is some LIMS either include traditional ELN functionality or link physical laboratory notebook references to data in the LIMS.[21]

Export to MS Excel While Microsoft Excel has long been used within the laboratory setting, a slow shift towards relational databases and LIMS occurred in the late 1990s and early 2000s. [22] Additional concerns with the difficulties of Excel's validation and compliance with FDA 21 CFR Part 11 and other regulations have led many labs to turn to data management solutions that are easier to validate. [23] Nevertheless, laboratories continue to use Excel in some fashion, and thus Excel integration or data exportation in Excel format is a real need for LIMS customers. LIMS with this feature allow raw, processed, or imported data to be exported in the Excel format for further analysis and dissemination.

Raw data management While not described as a feature on most LIMS vendor websites, a few indicate that their LIMS is capable of managing (import, export, editing, etc.) data in its raw format for future analysis.

Data warehouse A LIMS' data warehouse serves the important function of storing, extracting, and managing the data that laboratories crank out for the purposes or analysis, reporting, and process management, typically separate from the primary storage database. Data warehouses also offer the benefit of speeding up queries, making queries and data mining more user-friendly, and smoothing out data gaps. [24]

Deadline control Deadline control is functionality within a LIMS that allows users to manage and be notified of events that occur within the laboratory. With this functionality users can also be notified of upcoming deadlines on anything from sample analysis to license renewal.

Note that this functionality may also feasibly fall under the task and event scheduling or alarms features. As deadline control seems to be advertised as a notable feature by only a few vendors, it seems even more likely that this functionality is considered part of scheduling or alarms.

Production control There are many types of businesses that produce goods, and in most cases there is a research laboratory involved at some point in the process. This is especially true in the pharmaceutical and chemical industries, where production measurements such as yield, volume, activity, and impurity are vital. As LIMSs have already recorded such information during tests and analysis, the addition of production control functionality seems natural. Some LIMS take a very active approach to this. For example, 2nd Sight Solutions' OhNo! features production control as major functionality for the synthesis ofradiopharmaceuticals.[25] Other LIMS may have less pronounced production functionality, while still offering the ability to track the production process in and out of the lab. And yet other LIMSs like dialog'sdiaLIMS offer robust production-based functionality but as a module or add-on to the base LIMS software.[26] The types of functionality that may fall under this feature include: 

recipe management



consumable tracking



batch traceability



production planning



enterprise resource planning

Project and/or task management Project and task management within a LIMS typically involves the scheduling of tasks to workers and organizing associated tasks into a more cohesive unit for better tracking and management. While the functionality of task and event scheduling can also be found in project and task management, many LIMS include functionality beyond scheduling that warrants the addition of the project and/or task management feature. This functionality includes: 

job allocation and rescheduling



instrument workload tracking



time tracking



pending workload verification



priority setting



project-based workflow management



sample, batch, and document linking



work list sharing



recurring event management

Inventory management

LIMS can help laboratories keep track of their stock of reagents and even streamline reordering of them.

Laboratories use a wide array of inventory, from reagents to glassware, from radiopharmaceuticals to laboratory baths. With that comes the need to know how much/many and the frequency of use. For this, most LIMS products now include some sort of inventory management functionality. 

register origin, demographics of incoming materials



track used and in-use items via barcodes



track inventory reduction based on usage and shipping out of the lab



create alerts for when items reach a certain stock level



calculate inventory cost and fluctuation



manage transportation and routing



manual incrementing/decrementing of items



track location and usage of laboratory equipment



assign storage locations



track forensic evidence

It should be noted that samples and electronic equipment may also be considered inventory, and thus there is likely some functionality crossover with thesample management and instrument management features.

Document creation and management Standard operation procedures, (SOPs), specifications, reports, graphs, images, and receipts are all collected and used in the average laboratory. With a LIMS already designed to manage and store sample and experiment data, it makes sense to include functionality to create, import, export, and manage other sorts of data files. As sample and experimental data can be indexed, queried, and linked, so too can document data. Functionality of a typical document management system includes the ability to: 

upload and index documents



enforce version control



provide full text search



export to PDF or other relevant format



add documents as attachments

Case management The laboratory information system (LIS) has played an important role in the case management tasks of patient-centric and clinical laboratories. However, some LIMS have gained case management functionality, effectively blurring the lines between LIS and LIMS. [27]. Self-proclaimed LIMS products have emerged in the clinical, public health, and veterinary industries, areas that have historically been served by LIS software. When also considering the fields of law enforcement and forensic science, case management has an increasingly important role in some LIMS. Functionality seen in the case management feature includes: 

case accessioning and assignment



disease tracking



trend analysis



clinical history follow-up



out-of-range result alerts



document and result association



evidence control



study management

Workflow management

Capturing workflow in the lab is becoming more commonplace for the LIMS.

Workflow management is common in the laboratory, acting as a graphical representation of planned sequential steps to either fully or partially automate a process within the lab. Separate standards-based workflow management systems (in the form of a software component) have traditionally performed this task.[28] However, in the 2000s LIMS vendors began incorporating workflow management functionality into their LIMS software, reducing the headaches that customization of a LIMS often brought. [29]

Modern commercial and open-source LIMS solutions often feature workflow management functionality, including[30][31][29]: 

attribute definition of activities



definition of inputs and outputs of activities



assignment of documentation to activities



setting of quality control limits



dynamically modify workflow in case of future changes



receive notification of changes to the workflow



sending user-defined messages during the process

Specification management Specification (spec) management is vital to not only the manufacturing and research industries but also to a host of other laboratories requiring precise measurements and infallible test methods. Just as theASTM offers standards and specs for LIMS[32], so too do LIMS users have standards and specs for their laboratory. With spec management in place within the LIMS, laboratories can then: 

enforce standard operating procedures and business rules



create specs down to a project or sample level



validate recipes and procedures



accept or reject sample batches



document internal and external spec history

Note that some of the functionality of spec management may cross over into the realm of quality control and data validation.

Customer and supplier management Unless a laboratory is conducting internalized independent research, in most cases it will do business with external entities such as contract labs, sample providers, equipment providers, and reagent suppliers. In some cases, even internal employees may be considered a customer, necessitating documentation of who is using the system and in what ways. For a veterinary lab, the customer may be the animal and handler. For a forensic lab the customer may be more complex: internal staff, university staff, police departments, and maintainers of nationwide crime databases may all at some point act as customers. In these cases, documenting these various points of contact and linking them to samples, equipment, and tests becomes vital. Managing demographics, complaints, correspondence, and history are all feasible with customer management functionality. This process is often made simpler through the use of a more context-neutral entity creation system, which allows for more flexible management of contacts. This feature may also be referred to as contact management, an address book module, or a customer service module.

Billing management While the finances of a laboratory are important, they've typically been handled separately as a business process. However, some LIMS include additional functionality to make handling financial transactions and documentation of all sorts possible within the LIMS. In theory, such functionality brings the possibility of keeping more of a laboratory's data centrally located and queryable. This feature may include:



payment processing



expense reporting



price quotes



revenue management



workload tracking of billable hours



bill of materials



grant management

Quality, security, and compliance To hide the contents of this section for easier reading of other sections, click the "Collapse" link to the right. [Collapse]

Regulatory compliance The topic of whether or not a LIMS meets regulatory compliance is often a complex one. While Title 21 CFR Part 11 has arguably had the largest influence on a electronic data management system's compliance, other influential standards have shaped the way LIMS and other systems handle and store data. Other compliance-based codes, standards, and regulations include: 

ASTM



ASCLD/LAB



Classified data



Freedom of information legislation (various)



GALP and GAMP



HIPAA



Health Level 7



ICD



ISO/IEC 17025



ISO 9000/9001



ISO/TS 16949



ODBC



TNI and NELAP



Title 40 CFR Part 3

With so many codes, standards, and regulations, LIMS consumers are advised to contact vendors with their user requirements and ask how the vendor's software meets and/or exceeds those requirements.

QA/QC functions The quality management functions of a LIMS allow users to maintain a level of necessary quality across many of the functions in a laboratory. From running quality assurance tests to ensuring employed researchers are proficient at certain tasks, the QA/QC functionality of a LIMS is largely responsible for the output of consistent data and manufactured products in and out of the lab. Common functionality includes[33][34]: 

single or batch QA/QC tests



quality control charts and reports



proficiency testing



document management



instrument maintenance



data acceptance/rejection



certificates of analysis (COA)



data types defined by QC analysis

Performance evaluation As document management becomes increasingly prevalent in LIMS, it only makes sense to also collate and store all the documentation associated with employee training and certification. Changes to laboratory techniques, scientific understanding, and business practices force researchers to learn,

reevaluate, and demonstrate competency in order to maintain quality levels in the laboratory. Evaluations can frequently extend beyond staff members, however. Clinics, visit types, vendors, or test species can also be tracked and evaluated based on custom criteria. The performance evaluation functionality of a LIMS makes this possible. That functionality typically includes the ability to maintain training records and history, and also to link that training to a technique or piece of equipment. Afterwards, the staff member, vendor, etc. can be marked as competent or certified in the equipment, knowledge, or process. Periodical assessment of the training and its practical effectiveness can later be performed. Productivity of an entity or process can also be gauged over a certain date range based on tracked time, pre-determined milestones, or some other criteria.

Audit trail

Whether validating sample data or an entire LIMS, maintaining an audit trail is an important part of 21 CFR Part 11 compliance.

As codes and regulations like Title 21 CFR Part 11 mandate "computer systems (including hardware and software), controls, and attendant documentation" utilize electronic signatures and audit trails[35], LIMS developers must put serious thought into how their software handles audit trail functionality. The audit trail — documentation of the sequence of activities that have affected an action — must be thorough and seamlessly integrated into the software. Information recorded in the audit trail typically includes: 

operator code



time stamp



location



case number



transaction type



amount and quantity prior to change



user notes

Chain of custody The chain of custody (COC) of an item is of varying importance, depending on the type of laboratory. A highly regulated laboratory that works under Code of Federal Regulation or other guidelines makes tracking COC a vital part of its operations. This is especially true in forensic labs, which depend on continuous accountability of their evidence collection, retention, and disposal procedures. [36] As with anaudit trail, a laboratory depends on recorded information like user ID, time stamp, and location ID to maintain a robust and accurate COC. Barcodes, inventory management, and configurable security rolesall play an important part in maintaining chain of custody.

Configurable roles and security Many roles exist within the laboratory setting, each with its own set of responsibilities. And just as the role an individual plays within the laboratory may change, so may the responsibilities associated with each role. This sort of change necessitates a flexible and configurable security system, one that allows for the placement of individual LIMS users into standardized security roles which provide role-specific access to certain LIMS functionality. Additionally, as responsibilities change within roles, that same flexible configuration is necessary for assigning or restricting access to certain LIMS functionality for each existing or newly created role. Of course, roles aren't always assigned on an individual level. Often large groups of individuals may need to be assigned to roles, necessitating group assignments for security purposes. For example, a group of laboratory trainees may only be given read-only access to the sample login and sample tracking functionality of the system through a custom "Trainees" group role, while the head researcher of the lab may be given the "Administrator" role, which allows that individual to access most if not all of the LIMS' functionality.

Data normalization For the purposes of describing LIMS functionality, "data normalization" specifically refers to the process of ensuring incoming/imported data into the LIMS is standardized to the same format of existing LIMS data. Here's an example to better explain this issue. When a LIMS is initially configured, in most if not all cases a clear standard can be set for how logged samples and their associated measurements pre- and postanalysis are recorded in the system. Perhaps all temperatures will be recorded in Celsius to two decimal places. If temperature data imported from a spreadsheet or a lab instrument is not in this format, the LIMS can normalize the incoming data to match the standard already set for existing LIMS temperature data.

This ensures consistency within the LIMS database and typically leads to better data validation efforts later on. Note: Some LIMS developers may include data normalization functionality within what they may refer to as data validation functionality. The line between these two may be blurred or not exist at all.

Data validation For the purposes of describing LIMS functionality, "data validation" specifically refers to the process of ensuring existing data in the LIMS — either pre-analysis or post-analysis — sufficiently meets any number of standards or thresholds set for sample login, sample analysis, or any other data management process in the LIMS. This validation process may be completely automatic and system-based, or it may also include additional steps on the part of the user base utilizing additional LIMS functionality, including verification of standard operating procedures (SOPs), QC samples, and QA approval. [37][38] Note: This functionality shouldn't be confused with the process of validating the LIMS itself, which is an entirely different process partially falling under regulatory compliance and involves the process of ensuring "the software is performing in a manner for which it was designed." [39]

Data encryption The existence of this functionality in LIMS software generally indicates the LIMS has the ability to protect the integrity and authenticity of its housed data through the use of a variety of technologies which makes data unreadable except to those possessing a key/right/etc. to unlock/read the data. This functionality is especially vital to the Web-enabled LIMS, which transfers information over the Internet in a client-server relationship. As a wide variety of encryption technologies exist, it's generally a good idea to consult with the developers of a LIMS to determine the strengths and weaknesses of their employed encryption methods.

Version control Version control is a form of safeguard which helps preserve data integrity. This is typically done by creating a modifiable new version of a piece of information rather than allowing the original to be modified. Such versioning may be applied to a wide variety of digital information housed in the LIMS, including test methods, training certifications, instrument logs, specifications, and process and procedure (P&P) documentation. In LIMS like LabWare LIMS, reference data can also be versioned while also retaining the original relationship between samples and test results, including the version of reference data current at the time lab testing is performed.[40] Information tracked with such revisions includes attributes like user name, time the edit was made, and what exactly was edited. This also benefits those managing audit trails and chains of custody.

The temperature of an open cryopreservation container may be monitored on a computer via a connection to a LIMS with environmental monitoring functionality.

Other LIMS may employ a different form of version control called file locking, which simply puts the affected information into a read-only mode for users while someone else is busy editing it. Another popular strategy is to, rather than locking the file, allow multiple people edit to a piece of information, later merging the various edits. Potential LIMS buyers may need to inquire with developers to determine what type of versioning scheme is used in the vendor's software.

Automatic data backup The existence of this piece of functionality in a LIMS usually means information contained in one or more associated databases or data warehouses can be automatically preserved in an additional backup file. The save location for that file as well as the scheduled backup time is configurable, typically through the administrative module of the LIMS.

Environmental monitoring Some LIMS like Core LIMS and Oracle Health Sciences LabPas allow users to monitor the environmental conditions of not only sample storage containers but also the entire laboratory itself. [41][42] Attributes like humidity, air quality, and temperature may be monitored to ensure sample storage units and experiments maintain desired conditions. Alarms may be able to be configured to notify staff if a storage container's environmental attributes go beyond a certain threshold. Manufacturers utilizing a LIMS like NOVALIMS may also be able to employ more advanced environmental tracking features in the plant to guarantee a more consistent, higher quality product is created. [43]

Reporting, barcoding, and printing To hide the contents of this section for easier reading of other sections, click the "Collapse" link to the right. [Collapse]

Custom reporting

Reporting is a vital part of a LIMS, as it allows users to gain a clearer picture of collected data and potential trends. At a minimum a number of pre-configured report styles come standard with a LIMS. However, some LIMS are more flexible than others, offering the ability to customize reports in numerous ways. The most popular attributes of custom reporting include custom headers, custom information placement, charts, pivot tables, and multiple output formats. Note: Some LIMS vendors will offer custom reporting as an option as an added cost, depending on the level of customization required.

Report printing Today's LIMS software almost universally offers the ability to print reports and other materials, so this feature may seem a bit redundant to list. Nonetheless, printer support is a feature worth confirming when considering a piece of LIMS software.

Label support The label — typically affixed to a sample container — is a vital part of the sample tracking process. [44]

Identifying information such as sample number, batch number, and barcodes are printed on such

labels to ensure optimized sample management and more precise sample data. As such, some LIMS allow users to design and print labels directly from the software.

The word "Wikipedia" encoded in Code 128 and Code 39

Barcode support Barcodes offer many advantages to laboratory techs handling samples, including more accurate data input, tighter sample/instrument associations, tighter sample/study associations, and more room for human-readable information on a label.[44] Given such advantages, many LIMS developers have integrated barcode support into their laboratory information management systems, including support for symbologies like Code 128, Code 39, and Interleaved 2 of 5. Aside from printing options, a LIMS may also offer support for a variety of bar code readers.

Barcode support and label support are typically found together in LIMS software, but not always, thus their separation into two features of a LIMS.

Export to PDF A LIMS with this feature is able to collect and save information into a Portable Document Format (PDF).

Export to MS Word A LIMS with this feature is able to collect and save information into a Microsoft Office Word format.

Export to HTML or XML A LIMS with this feature is able to collect and save information into a HyperText Markup Language (HTML) and/or Extensible Markup Language (XML) format.

Fax integration A LIMS with this feature is able to connect with a fax machine and send information to it via manual input, automatically, and/or at scheduled intervals.

Email integration A LIMS with this feature is able to integrate with and use the electronic mail information exchange method to send reports, alerts, and more via manual input, automatically, and/or at scheduled intervals.

Base functionality To hide the contents of this section for easier reading of other sections, click the "Collapse" link to the right. [Collapse]

Administrator management The administrator management tools of a LIMS allow lab technicians to set up the LIMS most optimally for the laboratory. Through the administrator management interface of a LIMS, other features may be accessed like setting up user roles and scheduling automatic data backups. Like report printing, administrator management is nearly ubiquitous in LIMS software, generally considered a mandatory feature. However, for the purposes of being thorough, it's important to point out its existence.

Modular This feature indicates that a LIMS has an intentional modular design, which separates some functionality into manageable components of the overall system. Generally speaking, a modular design allows for 1.

the structured addition of new functionality to a LIMS and 2. the limiting of overall effects on the system design as new functionality is added.

Instrument interfacing and management

An entire room of gas chromatographyinstruments could potentially be connected to a LIMS via instrument interfacing.

In laboratories there are instruments, and with those instruments comes scientific measurements which produce data. It's therefor natural a lab technician would want to connect those instruments to a laboratory information management system, which is already organizing and storing laboratory data. This sort of interfacing is typically handled with instrument-to-LIMS interfaces, which started out as merely data-transfer mechanisms. Later that interface mechanism became much more robust as a data management tool, though often at great expense with heavy involvement from third parties. [45] Today, "many LIMS vendors can act as single source providers of the entire instrument interfacing solution," [46], providing a cheaper and smoother solution to LIMS customers. The ability to calibrate and schedule maintenance for interfaced instruments may also be included in this category.

Mobile device integration While not incredibly common, a few LIMS developers are including support for mobile devices in their laboratory information management system.LabCollector, for example, extends its LIMS' functionality to Pocket PC or Windows CE devices equipped with wireless barcode scanners, allowing users to read or collect sample information while on the move.[47] Future Technologies' DNA LIMS, designed for labs performing DNA analysis, has its own mobile version for technicians who need access but can't be in the lab.[48]

Alarms and/or alerts Alarms and alerts are an integral part of a LIMS. They can be automatic or scheduled, and they can come in the form of an e-mail, a pop-up message, or a mobile text message. When the results for a sample analysis go out out of range, an automatic warning message can appear on the screen of the technician responsible for the analysis. A scheduled alert can be e-mailed to a lab technician every month indicating a piece of laboratory equipment needs routine maintenance. If the LIMS is equipped with environmental monitoring, an alert can be sent in the form of an SMS text message to the head researcher if the

temperature inside a freezer unexpectedly rises. All of these scenarios represent a tiny fraction of the possible implementation of alarms and alerts in a LIMS, highlighting how powerful (yet easy to take for granted) this feature is.

Work-related time tracking This feature specifically refers to a LIMS' ability to track the amount of time an employee spends at work in general (for payroll purposes) or on more specific projects and tasks (as part of an employee work evaluation program).

Voice recognition system A LIMS with this feature allows some functions of the LIMS (for example, accessing sample analysis results) to be accessed via voice commands.

External monitoring This feature allows clients outside the laboratory to monitor the status of sample batches, test results, and more via an online Web portal or, less commonly, as activity alerts sent via e-mail, fax, or SMS.

Messaging

Instant messaging clients built into a LIMS often make it easier to collaborate.

The messaging feature of a LIMS may refer to one (or both) of two things: 

a built-in instant messaging system that allows users to converse with each other through text messages real-time



an SMS text messaging integration that allows the users or the LIMS itself to send messages or alerts to a user's mobile or smart phone

Multilingual

If a LIMS is listed as multilingual, its an indication the LIMS interface can be configured to display more than one language depending on the preference a user or administrator chooses. Some LIMS interfaces can only be displayed in one of two languages (English or German, for example), while others come configured with support for dozens of languages.

Network-capable This feature is perhaps archaic and/or obvious, but it is mentioned nonetheless. It's generally applied to a non-Web-based LIMS installed over a local or wide-area computer network, essentially indicating the LIMS is not an isolated application, but rather one that can interface with other instances of the LIMS or other networked instruments.

Web client or portal A LIMS with a Web client or portal is either a Web-based LIMS (one that is not installed on every computer, but rather is hosted on a server and accessed via a Web browser) or a non-Web-based LIMS with an included portal to access it via the Internet.

Online or integrated help This indicates a LIMS has help infrastructure integrated into the software, support documentation via the LIMS vendor's website, or both.

Software as a service delivery model This indicates the software can be licensed and utilized via the software as a service (SaaS) delivery model.

Usage-based cost While rare, some LIMS vendors allow potential clients to license and utilize the vendor's software under a usage-based cost model. An example of this model in use is Bytewize AB's O3 LimsXpress, which has a cost directly related to the amount of samples processed each month. [49]

Core functionality for the pharmaceutical industry SQL*LIMS Software integrates the following core functions into a commercial-off-the-shelf configuration tailored to pharmaceutical QA/QC. 1. Lot and batch management 2. Quality assurance 3.

Stability studies

4.

Core analytical laboratory management

5.

Environmental monitoring

6.

Connectivity to laboratory instrumentation

How SQL*LIMS can benefit your laboratory workflow processes See how SQL*LIMS Software can make you more productive throughout your laboratory processes. Select the image below and see how you can use SQL*LIMS Software in the workflow of a regulated laboratory. For a more in depth demonstration, you can also select Take a Tour.

click to enlarge

Key features & benefits Flexible, Cost-Efficient Architecture 100% Web-based system is easy to deploy, maintain, upgrade, and integrate into enterprise business systems  Scalable, flexible, open architecture



Easily tailored to meet the needs of both small and large multi-site global operations



Multi-site deployments are simplified with this flexible, configurable system



Enables you to build and extend functionality to meet your complete needs for e-commerce and Web messaging

Easy Navigation  Laboratory processes are simplified using easy-to-configure workflows and reporting tools  Streamline, one-mouse click navigation for easy access to LIMS functions 

Information is immediately available



No need to click through icons or folders to find information



Enhanced fill-down, pop-ups for data entry and approvals

Validation Support  Validation-ready implementation. The existing rich functionality and feature set reduces the time





need to configure, test, and deploy the system. Little to no custom code needs to be developed for the typical implementation. This lowers the overall project timeline and dramatically reduces the validation requirements. A full set Structural Validation documentation is made available with every release of SQL*LIMS. This documentation set provides a comprehensive software test suite and full electronic documentation. The SQL*LIMS Professional Services team also offers validation services to make validation easier than ever

Regulatory Support  Assists with FDA 21 CFR Part 11 ERES/EDIG compliance requirements  Manufactured in strict accordance with ISO 9001:2000 quality system guidelines 

Designed, tested, and manufactured for use in Good Manufacturing Procedures (GMP), Good Laboratory Procedures (GLP), and GxP environments.



Independent auditors from BSI certify and document processes for customers in regulated industries.



Internal teams audit the LabVantage Solutions Quality Program regularly

Systems Integration  Certified integration with ERP/MRP (manufacturing resource planning) systems  IDM-LimsLink™ is integrated into SQL*LIMS to provide instrument connectivity 

Industry-standard SSL and PKI encryption methods available for secure intranet/Internet deployment

More Functionality  Analyst training and qualification tracking  Glassware and reagent inventory tracking 

Ability to save and distribute commonly used queries



Fully configurable, grid-based result entry



Instrument calibration management



Analyst training and qualification tracking



Reagent/glassware inventory tracking



Ability to save and distribute commonly used queries



Expanded portability of our Web-based software enables customers torapidly deploy global systems and access their LIMS functions securely from remote locations or by using portable devices such as PDAs or tablet PCs

Security  Secure single-user passwords for users of multiple databases  Industry standard encryption for secure intranet/internet deployment Solid, Proven Technology  Built on the industry standard technology including the Oracle® Application Server 10g and 

Oracle10gi™ database Supports the extensible Java 2 Platform, enterprise Edition (J2EE) standards-based application

Cleaning Validation Process Scenario" in SAP QM/PM for Pharma Industry The scenario is that the company is making medicines (tablets/capsules). Whenever, there is a changeover of the product, there are certain regulatory requirements which the client needs to adhere to. For example, a shutdown of machinery for 10-12 days may be planned during which the machines are cleaned with soap/cleaning agents. Now, during this cleaning process, the QA department would take samples of the soap water recovered after cleaning process. These samples would be inspected for residues of the previous product that was being run on the line. If everything is ok, then the approval is given by QA to start the next product. This process has to be mapped in SAP, maybe in QM or PM. I thought over the following process. Please let me know your inputs to fine tune the below process 1. As the shutdown for changeover will be a planned one, we can create a Maintenance Plan in IP42.

2. Schedule the Mantenance Plan by IP10. 3. Release the maintenance plan in IP10. 4. Preventive Maintenance order will be created. (Also assign an Inspection Type in config to this maintenance order so that inspection lot also is triggered. The doubt here is that the inspection lot would be triggered for all preventive maintenance orders which may not be required. How to control this?) 5. Carry out Result Recording in QA32. 6. Confirm Preventive Maintenance order in IW41. 7. Carry out Usage Decision in QA32. The status of order will now become TECO. 8. Order Settlement in KO88. 9. Business Completion of Order in IW32

1. Cleaning is done by maintenance before change over 2. Inspection is done to ensure that cleaning is acceptable 3. Records of inspection are to be maintained 4. Information is to be sent to concern regarding quality testing and its status 5. Change over performed

You can MAP this by Notifications also. Follow the steps 1. Create a new notification type ( config) 2. Ensure you have following mapped in the action box (config) a. Send a mail b. Create a inspection lot c. Create a QM order d. Close Notification The process will be as follows 1. Create a dummy material and activate insp type 08 in the QM set up.

2. PM creates the notification (t-code QM01) (New notification & triggers a mail (Action box) which is delivered to QC as information regarding the start of process . 3. QC on looking at the information creates the inspection lot through the notification (action box) the QTY specified in the notification is moved from unrestricted to Quality . 3. Perform RR & UD and post stock to unrestricted 4. Close the notification giving your remarks or set the notification for further processing if required . Note : 1. The material is a dummy material 2. The intial stock can be one qty which is posted to quality from unrestricted and then again to unrestricted.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF