Limits of Function (1)
Short Description
Calculus lovers,beware....
Description
LIMITS # 1
DEFINITIONS 1.
AND
R E S U LT S
Limit of a function f(x) is said to exist as , x a when , Left hand limit = Right hand limit Limit f (a h) = Limit f (a + h) = some finite value M . h0 h0
Note that we are not interested in knowing about what happens at x = a . Also note that if L.H.L. & R.H.L. are both tending towards ' ' then it is said to be infinite limit . Remember , Limit x a x a 2.
Fundamental Theorems On Limits : Let Limit x a f (x) = l &
Limit g (x) = m . If l & m exists then : x a
(i)
Limit f (x) ± g (x) = l ± m x a
(iii)
Limit f ( x)
(iv)
Limit k f(x) = k Limit f(x) ; where k is a constant . x a x a
(v)
Limit f [g(x)] = f Limit g (x) = f (m) ; provided f is continuous at g (x) = m . x a xa
x a
g ( x)
=
Limit f(x) . g(x) = l . m x a
(ii)
l , provided m 0 m
For example let us assume that g (x) = sgn (x) & f (x) = c . Then Limit x 0 f [ g (x) ] = c even if ' g ' is discontinuous at x = 0 . 3. (a)
Standard Limits : 1 1 Limit sinx = 1 = Limit tan x = Limit tan x = Limit sin x x 0 x 0 x 0 x 0
x
x
x
x
[ Where x is measured in radians ] (b)
Limit (1 + x) 1/x = e = Limit 1 1 x 0 x x
x n note however that Limit n (1 h) = 0 &
Limit (1 + h)n , where h > 0 . n Limit f(x) = 1 & x a
Limit (x) = , then ; x a
Limit f ( x ) ( x ) e Limit xa x a
(c)
If
(d)
Limit (x) = B (a finite quantity) then ; If Limit x a f(x) = A > 0 & x a
( x )[ f ( x ) 1]
Limit [f(x)] (x) = ez where z = Limit (x) . ln[f(x)] = e BlnA = AB x a x a
(e)
x x Limit a 1 = 1n a (a > 0). In particular Limit e 1 = 1 x 0 x 0
(f)
n n Limit x a n a n 1 . x a
x
x
xa
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
LIMITS # 2
General Note : All the above standard limits can be generalized if ' x ' is replaced by f (x) . sin f ( x) e.g. Limit = 1 provided Limit xa x a f (x) = 0 & so & so on . f ( x)
4.
Sandwich Theorem or Squeeze Play Theorem : Limit h(x) If f(x) g(x) h(x) x & Limit x a f(x) = l = x a
5.
then Limit x a g(x) = l .
Indeterminant Forms : 0 , , 0 x , 0 , , and 1 . 0
Note : (i) Note here that ' 0 ' doesn't means exact zero but represent a value approaching towards zero similary fo ' 1 ' and infinity . (ii) += (iii) x = (iv) (a/) = 0 if a is finite (v)
a 0
(vi)
a b = 0 , if & only if a = 0 or b = 0 and a & b are finite .
6.
(a)
To evaluate a limit, we must always put the value where ' x ' is approaching to in the function . If we get a deterninate form, than that value becomes the limit otherwise if an indeterminant form comes . This apply one of the following methods : Factorisation (b) Rationalisation or double rationalisation
(c)
Substitution
(e)
Expansions of functions . The following expansions must be remembered :
(i)
a x 1
(iii)
ln (1+x) = x
(v)
cos x 1
(vii)
tan -1x = x
x3 x5 x7 ....... 3 5 7
(ix)
sec-1x = 1
x 2 5x 4 61x 6 ...... 2! 4! 6!
is not defined for any a R .
(d)
x 1n a x 2 1n 2 a x 3 1n 3a ......... a 0 1! 2! 3! x2 x3 x 4 ......... for 1 x 1 2 3 4
x2 x4 x6 ...... 2! 4! 6!
EXERCISE 1.
Limit x 2 x x 2
(A) e4 2.
(viii)
x x2 x3 ............ 1! 2! 3!
(ii)
ex 1
(iv)
sin x x
(vi)
tan x = x
sin -1x = x
x3 x5 x7 ....... 3! 5! 7! x 3 2x 5 ........ 3 15
12 3 12 .32 5 12 .32 .52 7 x x x ....... 3! 5! 7!
I
x 1
= (B) e 4
(C) e2
(D) none
Limit (1 x + [x 1] + [1 x]) = where [x] denotes greatest integer function . x1
(A) 0 3.
Using standard limits
(B) 1
(C) 1
(D) does not exist
If , are the roots of the quadratic equation ax 2 + bx + c = 0 then
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
LIMITS # 3
x
(x )
(A) 0 4.
=
1 cos ax 2 bx c
Limit
2
(B)
6.
(B) 3
Limit
(A)
ab
x
a2 2 ( ) 2
(C) 1
(D) zero
(C) ab
(D) none
(B) 1/2
(C) 1
(D) none
(B) 2 cos 2
(C) 2 sin 2
(D) 2 sin 2
(B) 1/3
(C) 0
(D) 3
(B)
5 x 2
Limit x 1
2x 1
ab 2
=
Limit cos 2 cos 2x = x 1 x2 x
x2 2 = 3x 6
Limit x
(A) 1/3 9.
(D)
(A) 2 cos 2 8.
a2 2 ( ) 2
(x a ) (x b) x =
(A) 2 7.
(C)
n 1 n 2n Limit 5 3 2 = n 5 n 2 n 32 n 3
(A) 5 5.
1 2 ( ) 2
sin[x ] if [x] 0 where [x] denotes the greatest integer less than or equal 0 if [x] 0
If f(x) = [x]
to x, then Limit x 0 f(x) equals : (A) 1 10.
Limit
x
x0
sin x
(D) none
(B) 1
(C) 1
(D) none of these
(C) 0
(D) none
(B) e2
(C) e
(D) none
(B) 1/6
(C) 1/12
(D) 1/8
1 The value of Limit x0
1 cos 2x is : 2
x
(A) 1 12.
(C) 1
=
(A) 0 11.
(B) 0
Limit
x 0
(B) 1
1 tan x 2
5/ x
(A) e5
=
2
13.
Limit x0
e x / 2 cos x = x 3 . sin x
(A) 1/4 14.
Limit cos mx x0 2
(A) e m n / 4
n / x2
= 2
(B) e m n / 2
(C) e mn
2
/2
(D) e mn
2
/4
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
LIMITS # 4
15.
1 13 x 2 3 x ...... n 3 x equals If [x] denotes the greatest integer x, then Limit 4 n n
(A) x/2 16.
x 3 . sin x1 x 1
Limit
x2 x 1
x
(A) 0 18.
If Limit x0
Limit tan x x0 x
(C) 1
(D) none
(C) 1
(D) none
=
(B) 2
(C) 1
(B) e2/3
(C) e1/3
x0
(D) none
(B) 1/2
(C) 1/3
(D) none
(B)
(C) 1
(D) 0
(C) 9
(D) 9
1 Limit cos (1 x) = x0 x
1
Limit x3
2
2
(x 3 27) log (x 2) (x 2 9)
=
(B) 8
n Limit x = 0 (n integer) for : x ex
(A) no value of n (C) only negative values of n 24.
(D) 2
is :
(A) 8 23.
(B) 0
2 (tan x sin x) x3 = x5
Limit
(A)
22.
(D) x/4
1/ x 2
(A) 1/4 21.
(C) x/6
sin 2x a sin x is finite, then the value of a is : x3
(A) e 20.
(B) x/3
(B) 1/2
(A) 1 19.
tan x ex Limit e = x0 tan x x
(A) 1/2 17.
(B) all values of n (D) only positive values of n
Limit sin 1 (sec x) . x0
(A) is equal to /2
(B) is equal to 1
(C) is equal to zero
(D) none of these
2
25.
Limit x5
x 9x 20 where [x] is the greatest integer not greater than x : x [x]
(A) is equal to 1 26.
(B) 0
(D) none
2 2/x 3 If Limit x 0 (1 + a x + b x ) = e , then :
(A) a = 3 , b = 0 1
27.
(C) 4
(B) a = 3/2 , b = 1
(C) a = 3/2 , b = 4
(D) a = 2 , b = 3
1
Limit sin x tan x = x0 x3
(A) 0
(B) 1/2
(C) 1
(D) none
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
LIMITS # 5 x
28.
2 Limit x 2x 1 = x 2 x 4x 2
(A) 1 29.
31.
(x a )
3 (a + 2)2/3 5
(B)
(B) 1/11
Limit ( n 2) ! ( n 1) ! , n ( n 3) !
Limit n
sin 2 x 6 sin x 2 is equal to :
(C) 1/12
(D) 1/8
(C) 1/4
(D) 1/2
(C) 2
(D) 1
sin has the value equal to : 4 n 4 n
n cos
Limit x x sin x
(B) /4
(C) /6
(D) none
(B) is equal to 1
(C) is equal to
(D) does not exist
(B) 0
(C) 1
(D) none of these
(C) e 2
(D) e1
(C) 12 p (log 4)3
(D) 27 p (log 4)2
:
x x Limit 3 5 = x 7x 11x
Limit cot x0
x 4
cos ec x
(A) e 1 38.
(D) none of these
nN=
(B) 1
(A) 1 37.
3 (a + 2)3/2 5
x
(B) 1/6
(A) is equal to 1 36.
(D)
cos (sin x) cos x The value of Limit is equal to : x0 4
(A) /3 35.
5 (a + 2)2/3 3
(A) 0 34.
(C)
2 2 The value of Limit x / 2 tan x 2 sin x 3 sin x 4
(A) 1/5 33.
5 (a + 2)3/2 3
The limiting value of (cos x) 1/sin x as x 0 is : (A) 1 (B) e (C) 0
(A) 1/10 32.
(D) e
(x 2)5/ 3 (a 2)5/ 3 If Limit = xa
(A)
30.
(C) e2
(B) 2
Limit x0
= (B) e2
(4x 1)3 2 sin xp log 1 x 3
(A) 9 p (log 4)
=
(B) 3 p (log 4)3
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
LIMITS # 6
39.
ay by exp x n 1 x exp x n 1 x Limit Limit = y0 y x
(A) a + b 40.
(B) a b
Limit
1 sin 2 x
x /4
4x
(A) 2 41.
(D) does not exist
(B)
(C) 1
(D) none of these
(C) 4550
(D) 5050
(C) 2
(D) 2
(C) 2
(D) 1
(B) 5050
Limit log (2 x) log 0.5 = x0 x
(B) 1/2
Limit x2
=
sin e x 2 1 log (x 1)
(B) 1
(A) 0 45.
(C) 0
100 x k 100 Limit k 1 = x 1 x 1
(A) 1/2 44.
(B) 2
=
x cos 2 x
(A) 0 43.
(D) (a + b)
x sin x
Limit x
(A) 0
42.
(C) b a
2 Limit x0
3
3 sin x cos x 6 6 x
(A) 1/3
EXERCISE
3 cos x sin x
(B) 2/3
=
(D) 4/3
(C) 4/3
II
Level I Evaluate the following limits : x 3 7 x 2 15 x 9
1.
Limit
3.
Limit (x y ) sec (x y ) x sec x y0 y
4.
x
5.
x x x Limit 10 2 5 1 x0 x tan x
6.
x
x3
x 4 5 x 3 27 x 27
2.
Limit xa
a 2x
3a x 2 x
Limit x tan 1 Limit
3x
x 1 x 4 4
x x x
x
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
LIMITS # 7
7.
2 cosx 1 x /2 x x 2
9.
Limit
10.
x2 1 a x b = 2 , find values of a & b . If xLimit x 1
Limit
x0
Limit
8.
x
cos
x 1 cos
x
1 x sin x cos 2 x tan 2 x 2
Level II Evaluate the following limits : 31
x2 4 1 2 x
11.
Limit
13.
Limit
15.
x2 Limit e cos x x0 x2
16.
Limit x 3 x 2 1 x 4 x 2
18.
17.
x0
x0
x x2 31
tan 1 3 x 3 1 sin 1 3 x
1 sin 1 2 x
1/ x Limit e (1 x ) x0 tan x
12.
x 3 x 6 Limit 2 2
14.
1 tan 1 2 x
x
x2
x x x Limit 27 9 3 1 x0 5 4 cos x
Limit
(1n(1 x) 1n2)(3.4 x 1 3x )
x1
[(7 x) 3 (1 3x ) 2 ].sin(x 1)
19.
Limit n n2 ( n 1) n 1 n 1 ....... n 1 n 2 22 2n 1
20.
Limit
21.
Limit cos x cos x cos x ........ cos x n 2 4 8 2n
22.
2 x 21 x
1
1
n
x2 x2 x2 x2 1 cos cos cos cos x0 2 4 2 4 x 8
Limit
8
2 x 5 tan 1 2 3 x 7 x
x
x
3
23.
7 x 8
Limit
log sec(x / 2) cos x
x0
logsec x cos (x / 2)
cos 2 1 cos 2 1 cos2 ....... cos2 (x ) ....... x0 x 4 2 sin x
24.
Limit
25.
Limit
[ x ] [ 22 . x ] [32 . x ]
n
n3
....... [ n 2 . x ]
, where [ ] denotes greatest integer
function . IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
LIMITS # 8
26.
(x h ) x h x x Show that Limit = x x . (1 + l n x) . h 0
27.
2 x 2 x 2 x Limit Limit [1 (sin x) ] [2 (sin x) ] ....... [n (sin x) ] Evaluate x 0 n , n3
h
where [ . ] denotes the greatest integer function . x n f (x ) g(x ) Limit 28. n xR n x 1
29.
Limit log (x).log (x 1).log (x 2).log (x 3).....log (x 5 ) ; where k = x 5 1 . x 1 x x 1 x2 k
30.
Limit 1 tan x + 1 tan x + 1 tan x + ...... + 1 tan x . n 2 2 22 22 2n 23 23 2n
31.
Find the values of a & b so that :
(i)
Limit
(ii)
x
(1 a x sin x) (b cos x)
x0
x4
may find to a definite limit .
Limit x 2 x 1 a x b = 0 .
x
Evaluate the following limits : sin x
32.
34.
Limit sin x x sin x x 0 x Limit x 7/ 2
2 x
2
9x 8
36.
Limit x 1 cos x x 0 x
38.
2 Limit 3 x 4 2 x 3x 6
40.
1/ x Limit 1 x x0 e
33. cot (2 x 7)
1 2 log (1 x)
Limit
1 x
Limit
x m (log x)n
x 1
37.
x 0
39.
x 2
m, n N
9 x2 4
Limit
(sec x)cot x
1/ x
41.
42.
Limit (1 + tan 2 x)cot 3 x x0
44.
Limit tan log x log x x 1 4
46.
x Limit x a 2 a
x 2a
Limit log x x
1/ x
x sec 2 2 bx
43.
Limit sin 2 x0 2 a x
45.
Limit tan 1 (x) . 4 x2 1 x 1
1
tan
2 x
35.
1/ x
2x
Limit x x
1
47.
2/ x x x x Limit a b c , where a , b , c > 0 x0 3
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
LIMITS # 9
48.
1/ x 1/ x 1/ x 1/ x Limit a 1 a 2 a 3 ....... a n x
nx
, where a1 , a2 , a3 , ....... , an > 0 .
n
From Q. Nos. 49 61 , evaluate the following limits without using L` Hospital rule and series expansion . 49.
Limit tan x sin x x0 x3
50.
2 2 Limit tan x x x0 x 2 tan 2 x
51.
(1 x ) 1 Limit n 1 x x0 x x2
52.
1 1 Limit tan x sin x x0 sin 3 x
53.
Limit x sin x x0 x3
54.
x Limit e 1 x x0 x2
55.
x x cos x Limit e e x0 x sin x
56.
57.
Limit
4 2 cos x sin x
x /4
1 sin 2 x
x 1
cos 1 x x1
5
58.
x x Limit (cos ) (sin ) cos 2 , x 4 x4
59.
x x Limit e e 2 x x0 x sin x
61.
Limit
2
a 0 , 60.
Limit x x 2 l n x
1 1 x
x n 1 x 2 x Limit x0 3 x
62.
Through a point A on a circle, a chord AP is drawn & on the tangent at A a point T is taken such that AT = AP . If TP produced meet the diameter through A at Q, prove that the limiting value of AQ when P moves upto A is double the diameter of the circle .
63.
If s n be the sum of n terms of the series, sin x + sin 2x + sin 3x + ..... + sin nx then show s1 s 2 ...... s n 1 x that Limit = cot (x 2 k , k I) n n
64.
Let f(x) =
2
sin 1 (1 {x}).cos 1 (1 {x}) 2{x} . (1 {x})
2
Limit then find Limit x 0 f(x) and x 0 f(x) ,
where {.} denotes the fractional part function . 65.
2m (n ! x where x R . Prove that Let f (x) = mLimit Limit cos n
1 if x is rational . 0 if x is irrational
f (x) =
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
LIMITS # 10
23 1
2 . Prove that Limit . n Pn =
A sequence of numbers x n is determined by the equality x n
3 1
3
4 1
. ........ .
n3 1
67.
2 1
3
.
43 1
Let Pn =
3
.
33 1
66.
3
n 1
3
x n 1 x n 2 & the values 2
x 2 x1 x 0 and x 1 Prove that nLimit x = 0 . n 3
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
LIMITS # 11
ANSWER EXERCISE
SHEET
I
1. A
2. C
3. C
4. D
5. B
6. B
7. C
8. B
9. D
10. B
11. D
12. A
13. C
14. B
15. D
16. C
17. C
18. D
19. C
20. A
21. B
22. C
23. B
24. D
25. D
26. BC
27. B
28. C
29. C
30. A
31. C
32. B
33. A
34. B
35. D
36. B
37. C
38. B
39. B
40. D
41. C
42. B
43. A
44. D
45. C
EXERCISE 1.
2 9
2.
6.
1 2
7.
12.
e 2
18. 25.
II
2 3 3
2 n 2
13. 1
9 4 1n 4 e
x 3
19. e2 27.
3. x tan x sec x + sec x 8. zero
9. 6
14. 8 20.
1 32
33. e 4
34. e5/2
10. a = 1 , b = 3
3 2
16. 8 5 (log 3)2
21.
sin x x
22.
1
1 2
11. 17.
23. 16
1 4 2
24.
2
1 3
1 cot x x
30.
5. log5 log 2
15.
28. f (x) when x> 1 ; g(x) when x < 1 ; 29. 5
3 2
4.
31. (i) a = 35. e1
g(x) f (x) when x = 1 & not defined when x = 1 2
1 , b=1 2
36. e 1/2
(ii) a = 1 , b =
1 2
32. e 1
38. e 6
37. 0
39. 1
2 a
40. e
1/2
46. e2/ 52.
1 2
41. 1
42. e
2/3
43. e
b2
47. (a b c)2/3 48. (a1 a2 a3 ....... an) 53.
1 6
54.
1 2
58. cos 4 l n (cos ) sin 4 l n (sin )
55. 0 59. 2
44. e2 49. 56. 60.
1 2
45. e1/ 50.
1 2
1 2
2 3
51.
1 2
57. 5 2 61.
1 6
64. ,
2 2 2
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
LIMITS # 12
EXERCISE
III
A 1 1. A= h 2 rh h 2 , Limit 3 h0 P 128r
2. e5
3. D
6. D
10. C
11
7. C
8. C
9. B
4. e² C
12
5. e² 1
2
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
View more...
Comments