Limit (Practice Question)

Share Embed Donate


Short Description

IITIans Pace question papers....

Description

IIT – ian’s

P A C E

216 - 217 ,2nd floor , Shopper’s point , S. V. Road. Andheri (West) Mumbai – 400058 . Tel: 26245223 / 09

Practice Question Question based on

LEVEL-1 Q.7

Existence of limit

Limit Which of the following limits does not exist(A) lim

Q.1

 4x, x  0  If f(x) =  1, x  0 , then lim f(x) equalsx 0  3x 2 , x  0 

(A) 0 (C) 3

Q.2

x 0

(B) 1 (D) Does not exist

x  1   1,  3 1  x  1  x , If f(x) =  then1  x , 1 x  2   3  x 2 , x2

(A) f(x) = 1 x 2

Q.3

x 2

Q.8

 x, 

x0 x  0 then, lim f(x) x 0 x 2 , x  0 

Q.9

Q.4

Q.5

Q.6

lim x – [x] equals -

x3/ 2

(A) 0 (C) 1/2 Q.10

(B) 1 (D) 3/2

Which of the following limits exists(A) lim x |x| (B) lim [x] x 1 / 4

(C) lim x sin 1/x

(D) Does not exist

(D) All the above

x 0

Q.11

1 lim sin equalsx 0 x

lim

x a

1 ( x  a ) 2 n 1

(A)  (C) 0

(A) 0

(B) 1

(C) 

(D) Does not exist

1 lim x sin equalsx 0 x

Q.12

(A) 1

(B) 0

(C) 

(D) None of these

(n  N) equals(B) –  (D) Does not exist

 e1 / x  e 1/ x  If f(x) =  e1 / x  e 1/ x , x  0 then  0, x 0 lim f(x) equals-

x 0

(A) 1 (C) 3

Let f(x) = x (–1)[1/x], x  0 where [ ] represent greatest integer function then lim f(x) is x 0

(A) 2 (C) –1

(B) 1 (D) does not exist

x 0

(C) 

x 0

(A) 0 (C) 2

lim sin x equals-

(B) 0

(D) lim {x –|x|}

If f (x) =  1,

x 

(A) 1

x 0

x 0

(B) lim f(x) =1 (D) lim f(x) = 0

(B) lim {x + |x|}

(C) lim |x|

x 1

(C) lim f(x) = –1

|x| x

(B) 0 (D) Does not exist

Q.13

(B) 2 (D) Does not exist

If f is a odd function and lim f(x) exists then x 0

lim f(x) equals-

x 0

(A) 0 (C) –1

(B) 1 (D) None of these

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

1

Q.14

If [x] = greatest integer  x, then lim (–1)[x] is

Q.22

x 2

equal to (A) 1 (C) ±1 Question based on

Q.15

Q.23

n 2  n 1 equals1  3  5  .....  (2 n  1)

lim

(A) 1 (C) 3/4

(B) 4/3 (D) 

The value of lim

x 

Q.17

2x 3  4x  7 3x 3  5x 2  4

(A) 2/3

(B) –7/4

(C) –4/5

(D) 

The value of lim

n 

(A)

Q.24

x  sin x

lim

x  cos 2 x

1 ( 3– 2) 4

(B)

(A) 0

(B) 1

(C) 

(D) None of these

2 n   1   .....  lim   is equal to1 n 2  1  n 2 1  n 2

is-

(A) 1 (C) –1/2

Q.25

Q.26

(2x  3) (3x  4) = (4x  5) (5x  6)

lim

(A) 0 (C) 1/5

1  e1 / x

x 0

1 ( 3+ 2) 4

(D) None of these

xe1/ x

lim

Q.27

equals(B) 1

(C) 

(D) None of these

lim

(n  2)!(n  3)! equals(n  4)!

(A) 0 (C) 1

(B) 1/10 (D) 3/10

(B) 2 (D) 1/2

(A) 0

n 

x 

equals-

n 

3n 2  1  2 n 2  1 is4n  3

(C) ( 3 – 2 ) Q.18

(B) 5 (D) None of these

x 

n 

Q.16

(A) 4 (C) e

(B) –1 (D) None of these

x 

lim (4n + 5n)1/n equals-

n 

(B)  (D) None of these

2 3 n   1 lim  2  2  2  .....  2  equalsn n n  n

n 

Q.19

sin 5x equalsx

lim

x 

(A) 5 (C) 0

Q.20

(B) 1/5 (D) 1

Q.28

(A) 0

(B) 1/100

(C) 

(D) None of these

lim

1  5  5  .....  5

n 

1  25 n

The value of

(A) 1 (C) –1/4

Q.29

n 1

(B) 1/2 (D) 2n

 1 8 n3   .....  lim  n  1  n 4 1 n 4 1 n 4 

1 3 n  1   ... 2 2 2 isThe value of lim n  25n 2  n  3

2

Q.21

(A) 0 (C) 2n

  is  

(B) 0 (D) None of these

1 1  1 1 lim   2  3  ....  n  equals3 3  3 3

n 

equals-

(A) 0

(B) –1

(C) 1

(D) 

(A) 1/2 (C) 1

(B) 1/3 (D) 0

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

2

Question based on

Q.30

The value of lim

1  sin 3 x cos 2 x

x  / 2

(A) –

3 2



4

x 1

x 1 2x  7 x  5

lim

x 1

1  x 1 / 3 1  x 2/ 3

(B) 1/2 (D) – 2/3

equals(B) 1 (D) –1/3

The value of lim

xb  a b x2  a2

x a

(A)

Q.40

1 4a

(B) 1

(A) 1 (C) 0 Q.41

1 x  1  x

lim

1 x 2  1  x 2

equals-

Q.42

2  1  cos x

lim

equals-

sin 2 x

2 8

(B)

2

x2  4x

(A) 0 (C) 1/4

lim  (a 2 x 2  ax  1)  (a 2 x 2  1)   x   

(C)

Question based on

Q.43

Q.44 lim

x 0

1  (1  x )

x 2  4a 2 1 a 1

1 2 a

(D)

3 a

lim

1 4 a

e x  e  x equalssin x  sin  x

(A) 0

(B)  – 

(C) –1

(D) 1

lim

x cos x  sin x

x 0

equals-

(B)

equals-

Expansion method

x 0

(B) 2 (D) 1/2 sin 4 x

x  2a  x  2a

lim

(A)

equals(B) 3/2 (D) None of these

equals(A) 1 (C) 0

(D) None of these

x 2a

(B) 1/2 (D) Does not exist x 3

lim

x 3

Q.37

4a a  b

Rationalisation method

(A) 1 (C) 0

Q.36

1

(B) –1 (D) None of these

x 0

(A)

x 0

Q.35

a a b

The value of lim x3/2 ( x 3  1 – x 3  1 ) is-

(C) 0 Q.34

1

(D)

2a a  b

(a > b) is -

x 

equals-

(A) 1/3 (C) 2/3 Question based on

Q.39

equals(B) –1/3 (D) – 1/2

1 5  x

(A) 0 (C) 1/3

(C)

2

(B) 8 (D) None of these

3 5 x

lim

x 4

(B) 108 (D) None of these

(A) 1/3 (C) 1/2 Q.33



x  81  The value of lim  is  x 3  x 3 

lim

Q.38

(D) 0

(A) –27 (C) undefined Q.32

is-

3 2

(B)

(C) 1

Q.31

(A) 4 (C) 10

Factorisation method

(A) 1/3

x 2 cos x

(B) 0

equals(C) 3

(D) –3

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

3

Q.45

1  sin x  cos x  log (1  x )

lim

x3

x 0

Q.46

equals-

(A) 1/2

(B) – 1/2

(C) 0

(D) None of these sin 1 x  tan 1 x

lim

x

x 0

Q.47

Q.53

3

Q.54

equals-

(A) 1

(B) –1

(C) 1/2

(D) –3/2

(B) 2

(C) –1

(A) a

(B) logea

(C) 1

(D) None of these

Let f(x) =

lim

x 3

1 18  x 2

(D) –2

Q.55

(B) –1/9 (D) None of these

The value of lim

x a

Q.48

lim

x 0

x.2 x  x is equal to 1  cos x

(A) log 2

(B) log 4

(C) 0

(D) None of these

a x  xa xx  aa

(A) 0 (C) e

Q.56 lim

x 0

x tan x x

(e  1)

3/ 2

The value of lim (A) 4/5 (C) 3/8

equals-

(A) 0

(B) 1

(C) 1/2

(D) 2

Q.57

lim

x 0 Question based on

Q.50

Q.58

lim x log x equals-

x 0

(A) e (C) 1 Q.51

lim

x a

Q.52

(B) 1/e (D) 0 xm  am xn  an

(A) m/n

(B) 0

m m–n (C) a n

n n–m (D) a m

lim tan x log sin x equals-

(B) 1 (D) None of these

(B) 25/6 (D) None of these

(B) 1

(C) 2/3

(D) 1/3

1 2/3 1 1 x (B) x–2/3 (C) x 1/3 (D) 3x–2/3 3 3 3

lim

x  x 2  .....  x n  n equalsx 1

(A) n (C)

(B) 0

n2 2

(D)

n (n  1) 2

The value of lim [x tan x– (/2) sec x] isx  / 2

x  / 2

(A) 0 (C) –1

is-

(A)

x 1

Q.60

(32  3x )1 / 5  2

 (x  h )1 / 3  x1/ 3  lim   equalsh 0  h  

equalsQ.59

(16  5x )1 / 4  2

(1  sin x )1/ 3  (1  sin x )1/ 3 equalsx

(A) 0

L’ Hospital rule

= – 1, then a equals-

(B) 1 (D) –1

x 0

Q.49

, then the value of

f ( x )  f (3) isx 3

(A) 0 (C) – 1/3

e x  e  x  2 cos x equalslim x 0 x sin x

(A) 1

lim n[a1/n–1] equals-

n

(A) –1 (C) 1

(B) 0 (D) None of these

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

4

Q.61



The value of lim  h 0

(A) 1/12

Q.62

x  / 2

  x   2 

(A) 0

Q.63

 h (8  h )

1   is2h 

Q.68

2

1 2

(D) –

(B) /2

The value of lim sec

(C) 1

(A) –5

1 2

Q.70

(C) –2

(D) 2

g ( x ) f (a )  g (a ) f ( x ) equalsx a

lim

(C)

(B) 1

If f(a) = 3, f ' (a) = –2, g(a) = –1, g'(a) = 4, then x a

 x  cos    2  isThe value of lim x 1 1  x

(A) /2

 1  tan x   is equal tolim  x   / 4  1  2 sin x  

(A) 0 Q.69

x 1

Q.65



equals-

(B) 1

(A) 0 Q.64

1/ 3

(B) –4/3 (C) –16/3 (D) –1/48

1  sin x

lim

1

lim

h 0

(B) 10

(C) –10

(D) 5

(a  h ) 2 sin (a  h )  a 2 sin a is equal to h

(A) a2 cos a + 2a sin a (B) a (cos a + 2 sin a) (D) 

(C) a2 (cos a + 2 sin a) (D) None of these

 log x is2x

(B) 2/ (C) – /2 (D) –2/

Q.71

(1  x)  (1  x )

The value of lim

sin 1 x

x 0

(A) 0

The value of lim cos x log (tan x) is-

(B) 1

(C) –1

is-

(D) 

x  / 2

(A) 1 (C) 0

(B) –1 (D) None of these

Q.72

3   1  lim   equalsx 1  1  x 1  x 3 

(A) 0

Q.66

lim

x 1

1  log x  x 1  2x  x

2

equals-

(A) 1 (C) –1/2 Q.67

(B) –1 (D) 1/2

The value of lim

Q.73

(B) – 1

The value of lim

x 

(A) 0 Question based on

Q.74

(A) (B)

cos x + log sin x x cos x x

The value of lim (A) 0

(C) e5

(D) e– 5

log (1  kx 2 ) is 1  cos x

(C) k

The value of lim

cot px iscot qx

(A) 0

(B) 1 x 2 tan1/ x

lim

8x 2  7 x  1 1

x – 

(C) x cos x + log sin x sin x (D) cos x log x + x

is-

(B) 1 x 0

Q.76

5x

(D) 1/3

Some standard limit

x 0

Q.75

x5

(B) 1

h 0

sin(x  h ) log(x  h)  sin x log x ish

(C) –2

(A) – (C)

2 2 1 2

(D) 2k

(C) q/p

(D) p/q

is equal to (B)

1 2 2

(D) Does not exist

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

5

Q.77

x 0

Q.78

(A) 1

(B) 2

lim

1  cos x 2 equals1  cos x

x 0

(A)

(C) 0

The value of lim ax sin (b/ax) is (a >1) x 

(A) b log a (C) b

(D) 1/2

Q.89

(B) 1/ 2

2

(C) 1 Q.79

Q.88

sin 2 x equalsx cos x

lim

lim

x0

d dx

The value of lim (y –2) cosec a (y –2) is(A) 0

Q.90

(B) 1

(C) a

1  cos x x2

dx is equal to-

(A) 1/2 (C) 0

(D) None of these y 2



(B) a log b (D) None of these

(D) 1/a

(B) –1/2 (D) 1        cos   = k, then value of  8x   8x 

If lim x sin  x 

k isQ.80

Q.81

The value of lim n[log (n+1) – log n] is-

(A) /4

(B) /3

(A) 1

(C)  /2

(D)  /8

n

lim

x0

(B) 0

(C) –1

(D) 2

(1  x )1/ x  e equalsx

(A) e

(B) e/2

(C) –e

Q.91 (D) –e/2

 sin 2x  lim   x0  x 

equals(C)

(A) 1 (C) 2 Q.83

lim

(B) 0 (D) None of these

2 sin 2 3x

x0

(A) 9

x2

Question based on

(B) 18

(C) 6

(D) 1

x

Q.85

If lim

x0

(A) 1 Q.87

(B) e

(C) 1

1 2

(D)

8

1 29

1 , 0 , 00 Forms

(B) 0

(C) 2

Q.93

(C) 5

1/ x

equals-

(A) e

(B) e–1

(C) e2

(D) e–1/2

lim [1 + tanx]

cot x

equals -

x 0

(A) 1 (D) 1/2

tan kx = 3, then the value of k issin 5x

(B) 3

 log (1  x )  lim   x 0  x 

(D) 

1  2x  lim sin–1   is equal to x0 x  1 x 2 

(A) 1 Q.86

2

 x 1  lim   equalsx   2x  1 

(A) 0

(B) 1/24

equalsQ.92

Q.84

x0

equals(A) 1/16

1 x

Q.82

1  x2 x2 x2 x2  1  cos  cos  cos cos   2 4 2 4  x 8 

lim

(D) 15

(C) Q.94

e–1

(B) e (D) None of these

lim (1+ x)1/x equals-

x 0

(A) 1 (C) e

(B) 0 (D) 1/e

lim x(e1/x – 1) equals-

x 

(A) 0

(B) 1

(C) –1

(D) 

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

6

1/ x

Q.95

Q.96

 1 x  lim   x 0  1  x 

equals-

(A) e

(B) e2

(C) 1/e

(D) 1/e2

lim (sec x) cot x equals-

x  / 2

(A) e (C) 1 Q.97

(B) 1/e (D) None of these

The value of lim (cosec x)1/log x is x 0

(A) 1 (C) e Q.98

The value of lim (tan x) tan 2x isx / 4

(A) e

Q.99

(B) –1 (D) 1/e

(B) e–1

 x  If f(x) =   2x 

(C) 0

(D) –1

2x

, then-

(A) lim f(x) = e–6

(B) lim f(x) = 2

(C) lim f(x) = e–3

(D) lim f(x) = e–4

x 

x 

x 

x 

x

Q.100

 a lim 1   equalsx   x

(A) ax

Q.101

(B) e

4   lim 1  x   x  1  

(A) e2

(C) a

(D) ea

(C) e4

(D) e3

x3

(B) e

=

Q.102 The value of lim x1/x is x 

(A) 0

(B) 1

(C) 

(D) None of these

Q. 103 The value of lim (x + ex)2/x is x 

(A) 1

(B) 2

(C) e

(D) e2

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

7

LEVEL- 2 Q.1

sin x, x  n, n  Z and otherwise  2,

If f(x) = 

Q.8

x 2  1, x  0, 2  g(x)=  4, x  0 then lim g[f (x)] = x 0  5, x2 

(A) 0 Q.2

(B) 1

(C) 2

where [x] denotes the greatest integer  x, lim f(x) equals -

x 0 

(A) 1 (C) – 1

(D) 5

If [x] denotes the greatest integer  x, then lim

n 

1 n3

{[12 x] + [22 x] + [33 x] + …. + [n2 x]

Q.9

(A) 1/8 (C) 1/2

(A) x/2

(B) x/3

(C) x/6

(B) 0

(C) 1/2 1 x

The value of lim

(cos 1 x ) 2

x 1

(A) 1/2

(B) 1

Q.10

lim {log

n 

and y and g(2) = 5, then lim g(x) is x 3

is-

(C) 1/4

(D) 4

k n – 1 (n) logn (n + 1) ... log n k 1 (n )},

(A) –8

(B) 10

(C) 8

(D) None of these

 1  x 5 tan 2   3 | x | 2 7  x  lim is equal to x   | x |3 7 | x | 8

1 

(A) –

k  N is (A) 0 (C) does not exist

Q.6

If g(x) is a polynomial satisfying g(x) g(y) = g(x) + g(y) + g (xy) – 2 for all real x

(D) 2

Q.11 Q.5

(B) 1/4 (D) 1

(D) 0

 1 1 1    .....  lim   equalsn   2.3 3.4 n (n  1) 

(A) 1

Q.4

(B) 0 (D) None of these

1  x  x 2 1 equalssin 4 x

lim

x 0

equals -

Q.3

 sin(1  [x ]) for [ x]  0  If f(x) =  [x ]  0 for [ x ]  0 

(B) k (D) None of these

  log  x   2  The value of lim is tan x x

(B) 0

(C) 

Q.12

lim

x 2

(D) does not exist 2 x  2 3 x  6

( 2 )  x  21 x

(A) 0

(B) 1

equals(C) 8

(D) 

2

(A) 0 (C) –1

Q.7

(B) 1 (D) None of these

      3 sin  6  h   cos  6  h        is equal to lim 2  h 0   3h ( 3 cosh  sin h )    

(A) 2/3 (C) –2

3

Q.13

lim

n 

4n  (1) n 5n  (1) n

equals-

(A) 0 (C) 4/5 Q.14

lim

x 

(B)  (D) Does not exist x

equals-

x x x

(B) 4/3

(A) 0

(B) 1

(D) –4/3

(C) 

(D) None of these

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

8

Q.15

sec 4x  sec 2x issec 3x  sec x

The value of lim

x 0

Q.16

(A) 1

(B) 0

(C) 3/2

(D) 

Q.23

e

x 

 g(x )

nx

1

(A) 1/2 (C) 1/4 Q.24

is -

(A) 0 (C) g(x)

(B) f(x) (D) None of these Q.25

Q.17

x (1  1  x 2 )

lim

1  x 2 (sin 1 x ) 3

x 0

(A) 0 (C) 1/2

equals-

(A) 0 (C) 1/2

(D) None of these 

cos (sin x )  cos x x4

(A)

1 5

(B)

1 6

(C)

1 4

equals-

(D)

Q.28 Q.20

lim

x 0

x

(B) 24

(C) e3

(D) e4

lim

sin x n (sin x ) m

(m < n) is equal to(B) 1 (D) m/n

2  cos x  1

lim

(  x ) 2

equals(B) 1/3 (D) 1/8

lim (log 5 5x ) log x 5 equals x 1

x

equals-

| x | x 2

(A) 1 (C) 0

(A) 1 (C) –1

(B) –1 (D) Does not exist Q.29 10

Q.21



(A) e2

(A) 1/2 (C) 1/4

1 2

2

is -

x  5x  3  The value of lim  2 isx   x  x  2   

x 

x 0

tan 2 x  4 tan x  3

(C) 

(B) – 1/2 (D) None of these

The value of lim

tan 2 x  2 tan x  3

(B) 2

(A) 0 (C) n/m

Q.27 Q.19

lim1

(A) 0

x 0

2 n   1   ....  lim   is equal to2 2 n   1  n 1 n 1 n 2 

equals-

(B) –1/2 (D) –1/4

The value of

(B) 1 (D) 1/4 Q.26

Q.18

x3

x  tan 3

nx

f (x )e

x sin x  log (1  x) x

x 0

If x > 0 and g is a bounded function lim

lim

10

 ( x  1)  (x  2)  ....  ( x  100) lim  x   x10  1010 

10

lim

x 0

  is 

(B) e (D) None of these

a

x

 a1/

x

a

x

 a 1/

x

(A) 1 (C) 0

(a > 1, x > 0) is equal to (B) –1 (D) None of these

equal to(A) 102

(B) 103

(C) 

(D) 104

Q.30

lim

x  / 2

Q.22

lim

x 4 sin (1 / x )  x 2

x  

3

1 | x |

equals-

(A) 0

(B) 1

(C) –1

(D) 

cot x – cos x is equal to(  2x )3 1 16

(A) 1

(B)

(C) 16

(D) None of these

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

9

Q.31

If lim

x 0

x n  sin x n x  sin n x

must be (A) 1 (C) 3

Q.32

x 1 / 2

(C)

Q.33

1  tan (sin 1 x )

1

equals1

(B) –

2

1 2

2

1 2

(D) –

If f '' (0) = 4, then the value of 2f ( x)  3f (2x )  f (4 x)

lim

x2

x 0

(A) 11 Q.34

(B) 2 (D) None of these

x  cos (sin 1 x )

lim

(A)

is non-zero definite, then n

(B) 12

is-

(C) 2

(D) 0

lim (x + (x– [x])2) equals-

x 2 

where [x] represent greatest integer function. (A) 0 (B) 1 (C) 2 (D) 3

Q.35

  x 1  1  x   lim x  tan 1    tan    x  2    x  2  

x 

equals(A) 1

Q.36

(B) –1

(C)

1 2

lim

e x  e sin x equalsx  sin x

x 0

(D) –

1 2

(A) 0

(B) 1

(C) 

(D) None of these

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

10

LEVEL- 3 Q.1

If [x] denotes the greatest integer less than or equal to x, then [x ]  [2x ]  [3x ]  .....  [nx]

lim

n2

n 

(A) x/2 Q.2

(B) x/3

The value of lim (2  x )

b = lim

equals (D) 0

x 2

Let a = minm {x2 + 2x + 3} x  R and 0

(C) x tan

Q.7

is equal to -

(A)

2n 1 – 1 3 .2 n

(C)

4n 1 – 1 3 .2 n

x 1

–2/

(B) e1/ (D) e–1/

(A) e (C) e2/ Q.3

lim

e

x [ a ]

– {x} – 1 is equal to where [·] {x}2

represent G.I.F. (A) 0 (C) e–2 Q.4

Let f (x), lim

n 

x

2n

1

then -

(A) f (x) = 1, for |x| > 1 (B) f (x) = –1 for |x| < 1 (C) f (x) is not defined for any value of x (D) f (x) = 1 for |x| = 1 Q.5

Q.8

If f (x) = h (x) = –

Q.9

x 2  x  12

Q.10

(D) None of these

 1x  2 x  3 x  ......  n x lim  x 0  n 

Q.11

Q.12

(C) – Q.6

If Ai =

2 x  3x1/ 3  4 x1/ 4  .....  nx1 / n x  ( 2 x – 3)1 / 2  ( 2 x – 3)1/ 3  .....  ( 2 x – 3)1/ n (A) 1 (B) 

(D) None of these

2

sin x ] where [ ] x represent greatest integer function is (A) 5 (B) 6 (C) 7 (D) None of these

lim [(minm (y2 – 4y + 11)) x 0

If f(x) is the integral of

a1 < a2 < a3 < ... an. Then lim (A1A2 …..An),

2 sin x – sin 2 x , x 0 x3

x 0

(A) 1 (C) 3/2

(D) 0 x  ai , i = 1, 2,..., n and if | x  ai |

is equal to -

then find lim f (x) -

(B) –1

2 7

1/ x

(B) (n !)1/n (D) n(n !)

x 3

(A) –2

   

lim

(C)

then

lim [f(x) + g(x) +h(x)] is-

2n 1  1 3 .2 n

(B)

(B) e (D) None of these

(A) (n !)n (C) n !

2 x 3 , g (x) = and x 3 x4 2(2x  1)

Q.13

(B) 1/2 (D) None of these

If f (x) is a continuous function from f : R  R 100

and attains only irrational value’s then

 f (r) r 1

x a m

1 m n (A) is equal to (–1)m (B) is equal to (–1)m+1 (C) is equal to (–1)m–1 (D) does not exist

is -

r 1

 sin x  x sin x The value of lim   x 0  x 

(A) e–1 (C) 1

(B) 1/2 (D) None of these

x 2n  1

r n –r

a b

sin x

If { }  represent fractional part of x then { x}

n

1 – cos  the value of 2

is equal to 200

(A) 100

(B)

 f (r )

r 101 10

(C)

 f (r)

(D) None of these

r 1

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

11

1cos( x 1)

Q.14

 x 3  2x 2  x  1   The value of lim  2  x 1 x  2 x  3  

is -

Q.19

 e1 / x – 1 

Q.20

(a, 0) through which the graph passes then log e (1  6 (f (x )) =2 3f ( x )

where [ ] represent G.I.F. and { } represent fractional part of x (A) lim f(x) = 1

Statement-II : Since the graph passes through

(B) lim– f(x) = cot 1

(a, 0). Therefore f(a) = 0, when f(a) = 0 given

(C) tan–1  lim f (x )  = /4  x 0  (D) All of the above

limit is zero by zero form. So that it can be

lim

x 0

lim

x a

The value of lim

x 0

log (x  2)  x 2 n cos x

n 

x 2n  1

 x   sin x    100   99 sin x   x   

as n  , x2n  0. Q.22

1 Statement -II : lim y sin   = 1 y   y

(B) a = 1, b = 2 (D) None of these

All questions are Assertion & Reason type questions. Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Answer these questions from the following four option. (A) Statement-I and Statement-II are true Statement-II is the correct explanation of Statement-I (B) Statement-I Statement-II are true but Statement-II is not the correct explanation of Statement-I. (C) Statement-I is true but Statement-II is false (D) Statement-I is false but Statement-II is true.

1 x

Statement -I : lim x sin   = 1 x 0



 Statement type Questions

= log(x + 2)

Statement-II : For –1 < x < 1,

If lim  2 – (ax  b)  = 2 then  x   x 1  (A) a = 1, b = 1 (C) a = 1, b = – 2

Statement-I : when | x | < 1, lim

(B) 0 (D) None of these

where [ ] represent greatest integer function (A) 199 (B) 198 (C) 0 (D) None of these  x3  1

evaluate by using L’Hospital’s rule. Q. 21

sin [cos x ] is 1  cos [cos x]

(A) 1 (C) does not exist

Q.18

Statement-I : The graph of the function y = f(x) has a unique tangent at the point

x 0

Q.17

1 

Statement-II : lim  1 / x  does not exist. x 0 e 1  

x 0

Q.16

e

represent greatest integer function) does not exist.

Given a real valued function f such that  tan 2 {x} , x0  2 2  ( x – [ x ] ) f(x) =  1 , x0  {x} cot{x}, x  0  

 e1 / x – 1  Statement – I : lim [x]  1 / x  (where [ ] x 0

(B) e1/2 (D) None of these

(A) e (C) 1 Q.15

( x 1) 2

Q.23

Statement -I : lim

x 0

1 cos 2x 2 exist's. x

Statement -II : lim f(x) exists if the left hand x a

limit is equal to right hand limit. 

Q.24

Statement -I : Value of lim (sinx)tanx is 1. x  / 2

lim f ( x ) g ( x )

Statement -II: lim (1 + f(x))g(x) is e xa

,

x a

If lim f(x) = 0 and lim g(x) =  x a

x a



 IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

12

 Passage Based Questions

 Column Matching Questions Match the entry in Column 1 with the entry in Column 2.

Passage :- Let m, n are non zero integers and lim

x 0

tan mx  n sin x x3

= an integer.

Q.30

On the basis of above information, answer the following questionsQ.25

Which of the following statement is true – (A) m is should be an even but n is odd (B) both m & n should be odd (C) m is odd and n is even (D) both m & n are even integers 



Q.26

lim f(x) is less than equal to, where

x 0

Column-I x

(A) f ( x ) 

e e x

(B) f ( x ) 

ex  ex sin x

(Q) – 2

(C) f ( x ) 

e2x  e4x x

(R) – 1

2m  n 2  6

(C) 

(D) (1 + sin x)cosec x



(B)

2m 3  n 6

Q.31

Q.29

(S) 2

lim f(x), where f(x) is as in column-I is-

x 0

Column-I

(D) None of these

2

(A) f(x) =

Q.28

(P) e

The value of limit in terms of m & n is – (A)

Q.27

Column-II 2x

Is m & n are related as – (A) m2 = n (B) m = n2 (C) m = n (D) None of these The value of limit for m = 2 is – (A) 3  (B) 2 16  n (C) (D) None of these 12 If lim

x 0

tan (mx)  n sin x x3

(B) f(x) =

Column-II 2

2

tan[e ]x  tan[e ]x sin 2 x

(P)

2 /8

[5 / 2  tan x  tan 2 x ]  [5 / 2] (Q) 15 tan x

where [x] is the greatest integer function x cos x – log(1  x ) (C) f(x) = x2 (D) f(x) =

2

2  1  cos x sin 2 x

(R) 0 (S) 1/2

= not an integer then

for m = n = 1, the value of limit is– 1 1 (A) (B) – 2 2 (C) 2 (D) None of these

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

13

ANSWER KEY LEVEL-1 Q.No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Ans.

A

C

D

D

B

B

A

A

C

D

D

D

A

D

A

A

A

D

C

B

Q.No.

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Ans.

A

B

B

C

A

A

B

C

A

B

B

B

B

D

D

D

B

D

D

A

Q.No.

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Ans.

B

B

D

B

B

C

B

B

B

D

C

A

B

D

B

B

C

B

D

A

Q.No.

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Ans.

D

C

D

B

C

C

D

D

B

A

B

B

A

D

C

A

C

A

D

A

Q.No.

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Ans.

D

C

B

A

C

D

B

C

A

D

C

D

B

C

B

C

D

B

D

D

Q.No. 101 102 103 Ans.

C

B

D

LEVEL-2 Q.No.

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15 16 17 18 19 20

Ans.

B

B

C

C

B

A

B

B

A

B

Q.No.

21

22 23

24

25 26

27

28

29

30 31 32 33 34 35 36

Ans.

A

C

B

D

C

B

B

B

B

A

A A

C B

C B

B D

C C

B

C

B

B

D

B

LEVEL- 3 Q.No.

1

2

3

5

6

7

8

9

10 11 12 13 14 15 16 17 18 19 20

Ans.

A

C

D A,B C

4

D

C

A

B

C

Q.No.

21

22

23

24

25

26

27

28

29

Ans.

A

D

D

A

D

B

C

A

A

30. (A)  P,R,S ; (B)  P,S ; (C)  P,Q,R,S ; (D)  P

B

A

B

D

D

B

B

C

B

A

31. (A)  Q ; (B)  R ; (C)  S ; (D)  P

IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com

14

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF