Limit ContinuiTY Differential ASSIGNMENT FOR IIT-JEE
May 4, 2017 | Author: Apex Institute | Category: N/A
Short Description
Apex institute for IIT-JEE is the institution of making IITians in the Ghaziabad. It is the Institute in Indirapuram to ...
Description
L E V E L - 1 (Objective)
1.
cos x − sin x is π − x (cos x + sin x ) 4
lim π x→ 4
(a) 0 2.
(c) e2
(d) none of these
(b) 1
(c) e
(d) does not exist
(b) l n 5
(c) (ln 2) (ln 5)
(d) ln 10
(b) e-2
(c) e-1
(d) 1
10 x − 2 x − 5x + 1 is x tan x
lim x →0
ln 2
x +1 lim x →∞ x+2
2 x +1
is
(a) e 6.
(b) e
lim (cos x)cot x is x →0
(a) ln 2 5.
(d) none of these
x →1
(a) 0 4.
(c) -1
lim (log3 3x) logx 3 is
(a) 1 3.
(b) 1
lim
(cos x )1/ 2 − (cos x )1/ 3 is sin 2 x
(a)
1 6
x →0
(b) −
1 12
(c)
2 3
(d)
1 3
1/ x
7.
8.
a x + bx + cx lim x →0 3
is
(a) abc
(b) abc
π 4
(a) 9.
lim
11 4
(b) x − 2a + x − 2a x 2 − 4a 2
x →2a
(a)
(d) none of these
1 − cot3 x 2 − cot x − cot3 x is
lim x→
(c) (abc)1/3
1 a
(b)
3 4
(c)
1 2
(d) none of these
is 1 2 a
(c)
a 2
(d) none of these
sin (1 + [ x ]) , [x ] ≠ 0 f ( x ) is 10. If f ( x ) = [ x ] , then xlim →0 − 0, [x] = 0
(a) -1
(b) 0
11. If f (x ) =
(d) none of these
(c) 0
(d) 1
(c) 1
(d) none of these
sin (e x −2 − 1) , then lim f (x) is x→2 log ( x − 1)
(a) -2
(b) -1
x cos x − log (1 + x) is x2
12. lim x →0 (a)
(c) 1
1 2
(b) 0 πx = 2
(1 − x) tan 13. lim x→1
(a) -1
(b) 0
(c)
π 2
(d)
2 π
π − cos−1 x is given by x +1
14. xlim →−1
1 π
(a)
1 2π
(b)
(c) 1
(d) 0
(c) π
(d) none of these
(c) a = 16, b = 8
(d) none of these
(c) 1
(d) none of these
(c) eab
(d) eb/a
(c) − 24
(d)
1 30
(d)
|x +π|
15. xlim → − π sin x is (a) -1 (1+ ax) 16. If lim x→0
(b) 1 b/ x
= e2 , (a, b ∈ N), then
(a) a = 4, b = 2 1 + tan x 17. lim x →0 1 + sin x
(a) e
(b) a = 8, b = 4 cos ec x
is (b) e-1
(cosx + a sin bx)1/ x is 18. lim x→0
(a) 1
(a) ab
2 19. If f ( x) = − 25 − x then lim x →1
(a)
1 24
(b)
1 5
x3 sin x − x + 6 20. Value of lim x →0 x6
(a) 0
(b)
f ( x) − f (1) is x −1
1 24
sin x is
1 12
(c)
1 120
21. Value of lim x →0
1 + sin x − cos x + log(1 − x) is x3
(a) -1/2
(b) 1/2
22. Value of lim x →0
(c) 0
(d) none of these
1 − cos3 x is x sin x cos x
(a)
2 5
(b)
(c)
3 2
(d) none of these
23. If f (x) =
1 18− x
2
, then lim x→3
(b) −
(a) 0
3 5
f (x) − f (3) is x −3
1 9
(c) −
1 3
(d) none of these
1 2 x sin − x x is 24. xlim →∞ 1− | x |
(a) 0
(b) 1
(c) -1
(d) none of these
x 2 + 1, x ≠ 0, 2 sin x , x n , n Z ≠ π ∈ x = 0 then lim g(f (x)) is 25. If f ( x ) = and g(x) = 4, x→0 2 , otherwise 5, x=2
(a) 5
(b) 4
(c) 2
(d) -5
(b) 0
(c) does not exist
(d) none of these
(b) -1
(c) 0
(d) none of these
(b) 5
(c) 3
(d) none of these
sin [cos x ]
26. lim x →0 1 + [cos x ] is (a) 1 log ( x − a )
27. lim x →a log (e x − e a ) is (a) 1 28. lim x →1
x3 + x 2 − 2 is sin ( x − 1)
(a) 2
1 − cos λx , x≠0 x 29. If f ( x ) = x sin is continuous at x = 0, then λ is 1 , x =0 2
(b) ±1
(a) 0
(c) 1
(d) none of these
[ x ] + [− x ], x ≠ 2 , then 'f' is continuous at x = 2 provided λ is x=2 λ,
30. If f ( x ) = (a) -1
(b) 0
(c) 1
(d) 2
31. If f (x) =
2 − (256− 7x)1/ 8 , (x ≠ 0) then for 'f' to be continuous everywhere f(0) is equal to (5x + 32)1/ 5 − 2
(a) -1
(b) 1
(c) 16
x2 a , 32. The function f ( x ) = a , 2b 2 − 4b , 2 x
(d) none of these
0 ≤ x
View more...
Comments