Lifting Design

May 25, 2018 | Author: garateta | Category: N/A
Share Embed Donate


Short Description

Download Lifting Design...

Description

LIFT ANALYSIS L2(liftig lug to vessel C.G.) L3(Vessel C.G. to tailing lug) L1=L2+L3 L4(Vessel center line to tailing lug hole) WO (Erection weight) Impact factor W(with Impact Factor)

15000 15000 30000 2000 320000 1.5 480000

mm mm mm mm kg kg REACTION

AXIS TAILING LUG DEG 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

SIN (ø) COS(ø) TAIL (T) 0.000 0.087 0.174 0.259 0.342 0.423 0.500 0.574 0.643 0.707 0.766 0.819 0.866 0.906 0.940 0.966 0.985 0.996 1.000

1.000 0.996 0.985 0.966 0.940 0.906 0.866 0.819 0.766 0.707 0.643 0.574 0.500 0.423 0.342 0.259 0.174 0.087 0.000 MAX.

RADIAL (fr)

AXIAL (fL)

LIFTING LUG / TRUNION TOTAL LIFT (P)

TANGE NTIAL (PT)

AXIAL (PL)

TOTAL

240000

240000

0

240000

240000

120000

0

120000

238608

237700

20796

238608

241392

120237

10519

120696

237212

233608

41191

237212

242788

119550

21080

121394

235788

227754

61026

235788

244212

117945

31603

122106

234314

220184

80140

234314

245686

115434

42015

122843

232764

210956

98370

232764

247236

112036

52243

123618

231105

200143

115552

231105

248895

107775

62224

124448

229296

187829

131519

229296

250704

102682

71899

125352

227286

174111

146096

227286

252714

96795

81221

126357

225000

159099

159099

225000

255000

90156

90156

127500

222335

142914

170319

222335

257665

82812

98691

128832

219136

125691

179506

219136

260864

74813

106844

130432

215156

107578

186331

215156

264844

66211

114681

132422

209980

88741

190306

209980

270020

57058

122361

135010

202846

69377

190613

202846

277154

47396

130220

138577

192184

49741

185635

192184

287816

37246

139004

143908

174155

30242

171509

174155

305845

26555

150599

152923

136209

11871

135690

136209

343791

14982

171242

171896

0

0

0

0

480000

0

240000

240000

240000 kg

240000 kg

190613 kg

480000 kg

120237 kg

240000 kg

CALCULATION OF CENTROID AND MOM OF INERTIA OF A SKIRT ANCHOR CHAIR Lg tb Dsk tsk

180 50 5528 14

lr=(lg-tb)+0.55*(Dsk*tsk)^0.5 Lr

Area Bread depth Mark th 1 2 3

19 500 38

85 10 115 210

CENTROID =

Area 1.62E+03 5.00E+03 4.37E+03

283 500

Y dist.from base 42.5 90 152.5

1.10E+04

C1 C2

a*y 6.86E+04 4.50E+05 6.66E+05 1.19E+06

107.88 102.12

Moment of Inertia =Ig sum 5.83E+06 Ixs= sum of Ig+ sum of a*h^2 Sec. modulus 1= Ixs/C1 Sec. modulus 2= Ixs/C2

all Dimensions are in mm BOLD indicate input

2.30E+07 213500 225543

C1=(Sa*y)/ h dist.from Sa centroid 107.88

65.38 17.88 44.62

h^2

a*h^2

Ig= b*d^3/12

4275 320 1991

6.90E+06 1.60E+06 8.70E+06

9.72E+05 4.17E+04 4.82E+06

1.72E+07

5.83E+06

CALCULATION OF CENTROID AND MOM OF INERTIA OF A SKIRT ANCHOR CHAI Lg tb Dsk tsk

162 32 5528 14

lr=(lg-tb)+0.55*(Dsk*tsk)^0.5 Lr

Area Breadth Mark 1 2 3 4 5

19 19 500 19 28

depth 115 115 10 85 250 575

CENTROID =

Area 2185 2185 5000 1615 7000 17985

283 500

Y dist.from base 57.5 57.5 120 167.5 250

C1 C2

159.68 215.32

Moment of Inertia =Ig sum

42288468.8

Ixs= sum of Ig+ sum of a*h^2 Sec. modulus 1= Ixs/C1 Sec. modulus 2= Ixs/C2

all Dimensions are in mm BOLD indicate input

a*y 1.256E+05 1.256E+05 6.000E+05 2.705E+05 1.750E+06 2.872E+06

103842357.0 650328 482263

C1=(Sa*y h dist.from )/Sa centroid

159.68

102.18 102.18 37.68 7.82 35.32

IA OF A SKIRT ANCHOR CHAIR

h^2 10440.10 10440.10 1419.54 61.20 1247.73

a*h^2 2.281E+07 2.281E+07 7.098E+06 9.884E+04 8.734E+06 6.155E+07

Ig= b*d^3/12 2.408E+06 2.408E+06 4.167E+04 9.724E+05 3.646E+07 4.229E+07

BASE RING

for three point

(Refer Procedure 7-5 of Pressure Vessel Design Manual by Dennis R Moss.) Tailing Lug

T

Skirt Bracing

Rm Dist from N.Axis from CL

MATERIAL : Ys - YIELD STRESS MATERIAL : SA 285 GR C Ys - YIELD STRESS 2109 kg/cm² Sba - ALLOW.BENDING STRESS = 0.66 x Ys 1391.94 kg/cm² F2 - MAXIMUM LOAD (in horiz. position) : 16198 kg Z - SECTION MODULUS OF BASE RING+SKIRT 213500 mm3 Di - INSIDE DIAMETER OF BASERING 2830 mm Rm - MEAN RADIUS OF SECTION 1625 mm BM - MAX.BENDING MOMENT PRODUCED AROUND RING F2 x Rm x 0.0229 (0.0229 = Internal moment Coefficient for Base Ring for 3 point lifting at Zero deg) 602768 kg-mm BENDING STRESS IN BASE RING = BM / Z 282.33 kg/cm² SAFE HENCE BASE RING IS SAFE WITH ADDITIONAL STIFFENING BEAM. CHECK FOR SUFFICIENCY OF BRACING BEAM STIFFNER BEAMS PROVIDED AS INDICATED ABOVE WITH THE TAILING LUG MATERIAL : SA 36 TAILING BEAM SIZE SELECTED H 200*200*12*12 YIELD (Ys): 2530 ALLOW.BENDING STRESS (Sba = 0.66 Ys) : 1669.8 SECTION MODULUS OF BEAM : 479221.76 SECTION MODULUS OF BEAM (Z) : 479221.76

kg/cm² kg/cm² mm3 mm3

MAXIMUM LOAD F2 : (0.453*T) FOR 3 BEAM CONST L: MAX.BENDING STRESS (F2*L/Z) :

kg mm kg/cm2

HENCE BRACING BEAM OF HE 200 B OR OF EQUIVALENT IS PROVIDED.

7337.69 200 306.23 safe

BASE RING

for two point

(Refer Procedure 7-5 of Pressure Vessel Design Manual by Dennis R Moss.) Tailing Lug

T

Skirt Bracing

Rm Dist from N.Axis from CL

MATERIAL : Ys - YIELD STRESS MATERIAL : SA 285 GR C Ys - YIELD STRESS 2109 kg/cm² Sba - ALLOW.BENDING STRESS = 0.66 x Ys 1391.94 kg/cm² F2 - MAXIMUM LOAD (in horiz. position) : 31290 kg Z - SECTION MODULUS OF BASE RING+SKIRT 650328 mm3 Di - INSIDE DIAMETER OF BASERING 5630 mm Rm - MEAN RADIUS OF SECTION 3025 mm BM - MAX.BENDING MOMENT PRODUCED AROUND RING F2 x Rm x 0.0795 (0.0795 = Internal moment Coefficient for Base Ring for 2 point lifting at Zero deg) 7524854 kg-mm BENDING STRESS IN BASE RING = BM / Z 1157.09 kg/cm² SAFE HENCE BASE RING IS SAFE WITH ADDITIONAL STIFFENING BEAM. CHECK FOR SUFFICIENCY OF BRACING BEAM STIFFNER BEAMS PROVIDED AS INDICATED ABOVE WITH THE TAILING LUG MATERIAL : SA 36 TAILING BEAM SIZE SELECTED H 250*250*9*14 YIELD (Ys): 2530 ALLOW.BENDING STRESS (Sba = 0.66 Ys) : 1669.8 SECTION MODULUS OF BEAM : 846305 SECTION MODULUS OF BEAM (Z) : 846305

kg/cm² kg/cm² mm3 mm3

MAXIMUM LOAD F2 : (0.5*T) FOR 1 BEAM CONST L: MAX.BENDING STRESS (F2*L/Z) :

kg mm kg/cm2

HENCE BRACING BEAM OF HE 200 B OR OF EQUIVALENT IS PROVIDED.

15645.00 250 462.16 safe

BASE RING ADEQUACY

(For One Point)

(Refered Procedure 7-5 of Pressure Vessel Design Manual by Dennis R Moss.) Tailing Lug

T

MATERIAL : Ys - YIELD STRESS Sba - ALLOW.BENDING STRESS = 0.66 x Ys F2 - MAXIMUM LOAD (in horiz. position) : Z - SECTION MODULUS OF BASE RING+SKIRT Di - INSIDE DIAMETER OF BASERING Rm - MEAN RADIUS OF SECTION BM - MAX.BENDING MOMENT PRODUCED AROUND RING

(0.2387 = Internal moment Coefficient for Base Ring for One point lifting at Zero deg) BM = BENDING STRESS IN BASE RING = BM / Z HENCE BASE RING IS UNSAFE WITHOUT ADDITIONAL STIFFENING BEAM

(For One Point)

ual by Dennis R Moss.)

IS 2062 GR B 2249 1484.34 86274 766398 3640 1111.45

kg/cm² kg/cm² kg mm3 mm mm

F2 x Rm x 0.2387

r One point lifting at Zero deg)

IONAL STIFFENING BEAM

22888761 2986.54 UNSAFE

kg-mm kg/cm²

CALCULATION FOR LIFTING FORCES FOR RIGGING WO (Erection weight) Impact factor W L (with impact factor) CG(distance from bottom) Distance between tail lug hole to bottom Distance between lift lug hole to bottom Distance from C.G. to tailing lug hole (L3) Distance from lifting lug hole to C.G. (L2) Distance from vessel centerline to tailing lug hole (L4) Distance between lifting lug hole to tailing lug hole (L1)

320000 2 640000 15000 100 30000 14900 15000 2000 29900

kg kg mm mm mm mm mm mm mm

FORCE WHILE LIFTING ϴ (DEG) SIN(ϴ) COS(ϴ) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

0.000 0.087 0.174 0.259 0.342 0.423 0.500 0.574 0.643 0.707 0.766 0.819 0.866 0.906 0.940 0.966 0.985 0.996 1.000

1.000 0.996 0.985 0.966 0.940 0.906 0.866 0.819 0.766 0.707 0.643 0.574 0.500 0.423 0.342 0.259 0.174 0.087 0.000 MAX.

LL (P)

LV (PT) LH (PL) =Pcosϴ =Psinϴ

TL (T)

TV (fr) TH (fL) =Tcosϴ =Tsinϴ

318930 320798 322672 324583 326561 328641 330868 333295 335993 339060 342635 346927 352266 359208 368775 383069 407231 458044 640000

318930 319577 317770 313523 306867 297850 286540 273019 257385 239751 220241 198989 176133 151808 126128 99146 70715 39921 0

0 27959 56031 84008 111690 138890 165434 191170 215972 239751 262473 284186 305071 325553 346535 370016 401044 456301 640000

321070 319202 317328 315417 313439 311359 309132 306705 304007 300940 297365 293073 287734 280792 271225 256931 232769 181956 0

321070 317988 312507 304669 294537 282187 267716 251238 232883 212797 191143 168100 143867 118668 92764 66499 40420 15858 0

0 27820 55103 81636 107203 131586 154566 175919 195412 212797 227795 240072 249185 254484 254868 248176 229233 181263 0

640000

319577

640000

321070

321070

254868

STRESSES WHILE LIFTING WO (Erection weight) Impact factor W L (with impact factor) CG(distance from bottom) Distance between tail lug hole to bottom Distance between lift lug hole to bottom Distance from C.G. to tailing lug hole (L3) Distance from lifting lug hole to C.G. (L2) Distance from vessel centerline to tailing lug hole (L4) Distance between lifting lug hole to tailing lug hole (L1)

w L (dist. Of top of the vessel to mid of the span) H (Height of the vessel) Allowable bending stress in shell Allowable tensile stress in shell Do (vessel OD) Di (vessel ID) Z A

320000 2 640000 7500 100 14750 7400 7250 2800 14650

42.67 7500 15000 1764 1406 5010 5000 9.83E+07 78618

ϴ (DEG)

SIN(ϴ)

COS(ϴ)

LL (P)

LV (PT) =Pcosϴ

0

0.000

1.000

323276

5

0.087

0.996

328485

10

0.174

0.985

15

0.259

20

kg kg mm mm mm mm mm mm mm

kg/mm mm mm kg/cm² kg/cm² mm mm mm^3 mm^2

TH (fL) =Tsinϴ

Sb

Sac

Sat

Sc

St

Bend st

316724

0

11.884

0.000

0.000

11.884

11.884

11.639

310329

27150

12.226

0.345

0.364

12.571

12.590

11.985

306398

301743

53205

12.462

0.677

0.737

13.138

13.199

12.233

87664

301294

291027

77981

12.590

0.992

1.115

13.582

13.705

12.381

323138

117613

296124

278265

101280

12.610

1.288

1.496

13.899

14.106

12.428

349194

316477

147576

290806

263560

122900

12.522

1.563

1.877

14.085

14.399

12.372

0.866

354753

307225

177376

285247

247032

142624

12.324

1.814

2.256

14.138

14.580

12.214

0.574

0.819

360660

295435

206866

279340

228822

160223

12.018

2.038

2.631

14.056

14.649

11.953

40

0.643

0.766

367050

281177

235935

272950

209091

175449

11.603

2.232

3.001

13.835

14.604

11.591

45

0.707

0.707

374097

264527

264527

265903

188022

188022

11.082

2.392

3.365

13.474

14.447

11.127

50

0.766

0.643

382035

245567

292656

257965

165817

197613

10.454

2.514

3.722

12.968

14.177

10.562

55

0.819

0.574

391191

224378

320445

248809

142711

203813

9.720

2.592

4.076

12.312

13.796

9.895

60

0.866

0.500

402048

201024

348184

237952

118976

206072

8.878

2.621

4.429

11.499

13.307

9.126

65

0.906

0.423

415353

175536

376438

224647

94940

203599

7.923

2.590

4.788

10.513

12.711

8.247

70

0.940

0.342

432328

147865

406256

207672

71028

195148

6.845

2.482

5.167

9.327

12.012

7.246

75

0.966

0.259

455138

117798

439629

184862

47846

178563

5.620

2.271

5.592

7.891

11.212

6.093

80

0.985

0.174

488016

84743

480602

151984

26392

149675

4.196

1.904

6.113

6.100

10.309

4.716

85

0.996

0.087

540545

47112

538488

99455

8668

99077

2.447

1.260

6.849

3.707

9.297

2.917

90

1.000

0.000

640000

0

640000

0

0

0

0.000

0.000

8.141

0.000

8.141

0.000

12.610

2.621

8.141

14.138

14.649

12.428

LH (PL) =Psinϴ

TL (T)

TV (fr) =Tcosϴ

323276

0

316724

327235

28629

311515

333602

328534

57929

0.966

338706

327165

0.342

0.940

343876

25

0.423

0.906

30

0.500

35

MAX.

640000

Maximum Bending stress Maximum stress

328534

640000

= =

316724

316724

1242.8 kg/cm² 1464.9 kg/cm²

206072

Safe Unsafe

LIFTING LUG CALCULATIONS Calculation based on Procedure 7-6 of Vessel Design Manual by Moss Erection Weight (Kg) Impact factor for Lifting Total Lifting Wt. (Kg) No. of Lifting Lug Load on one Lifting lug PL (Kg) LUG DIMENSIONS C = (mm)

D R T E

Lifting Lug Material Yield Strenght at Room Temp Code Allowable Stress Allowable Tensile ( St ) Allowable Bearing Allowable Shear Allowable Bending Stress

= (mm) = (mm) = (mm) = (mm) f =(mm) b+a+H = (mm) H = (mm) A = (mm) B = (mm) W = (mm) Bearing pad Diameter (S) = (mm) Bearing Pad THK (t) = (mm) a = (mm) b = (mm) SA 516 GR 70 Sy = 2672 kg/cm² Sa = 1406 Sa 1406 kg/cm² 0.8 Sy 2137.6 kg/cm² 0.4 Sy 1068.8 kg/cm² 0.66 Sy 1763.52 kg/cm²

INDUCED STRESSES IN LIFTING LUG Tensile str area of Lug [ 2R - D] x T Tensile Stress Induced Bearing Area = D x (T + 2t) Bearing Stress Induced Shear Area 2T x (√[R² - (D/2)²]) Shear Stress Induced Max Load normal at Lifting Lug (PT) = (Refer Calculated Max Load during lifting) Maximum Moment Arm (L2=C+b) Bending Moment (M=P*L2) Sec Modulus Bending Stress Induced WELD CHECK Allowable Weld Shear CHECKING LUG WELDS Location of CG (Long) from bot of lug (c ) = c=(H^2/(W+2*H))

9280 56.95 24600.00 21.48 12604.51 41.93 45623

0.55*Sa=

mm² kg/cm² mm² kg/cm² mm² kg/cm²

7550 1.4 10570 2 5285 572

98 165 40 145 427 455 305 405 735 635 205 40 50 75

SAFE SAFE SAFE

Kg

647 29518081 2688167 1098.07

mm kg-mm mm3 kg/cm²

773.30

kg/cm²

74.72

mm

SAFE

Polar Moment of Inertia (Jw) = Jw=((W+2*H)^3/12)-(H^2(W+H)^2/(W+2H)) Finding Shear Loads on Weld i) Transverse Shear due to P (f1) = f1 = P / (2*H + 2*H + W+2*a) ii) Transverse Shear due to M (f2) = f2 = [(C+b+a+H-c)*P*(H-c)] / Jw iii) Longitudinal Shear due to M (f3) = f3 = (C+b+a+H-c)*P*H/Jw iv) Combined Load (fc) = fc = sqrt ((f1+f2)^2+f3^2) Fillet Size Throat unit area (w) Maximum Shear Stress = fc / w Hence Provided Leg to Pad/ Shell fillet size is safe CHECKING PAD WELDS Maximum Moment Arm (L1=C+b+0.5A) = Bending Moment (M1=P*L1) = Polar Moment of Inertia (Jw=(A+B)^3/6) = Lifting Lug pad thickness = Finding Shear Loads on Weld i) Transverse Shear due to P (f1) = f1 = P / (2*A + 2*B) ii) Transverse Shear due to M (f2) = f2 = 0.5*M1*A / Jw iii) Longitudinal Shear due to M (f3) = f3 = M1*A/Jw iv) Combined Load (fc) = fc = sqrt ((f1+f2)^2+f3^2) Fillet Size Throat unit area (w) Maximum Shear Stress = fc / w Hence Provided Leg to Pad/ Shell fillet size is safe

94793495.36

mm3

23.34

Kg/mm

102.77

Kg/mm

136.12

Kg/mm

185.56

Kg/mm

34 24.04 771.82

mm mm kg/cm²

849.5 38756739 246924000.00 28

mm kg-mm mm3 mm

20.01

Kg/mm

31.78

Kg/mm

63.57

Kg/mm

82.00

Kg/mm

20 14.14 579.81

mm mm kg/cm²

SAFE

SAFE

LOCAL LOADS Vessel is horizontal position : Vessel is vertical position :

MT = [ H+F+E-(h2/2) ]xP FC = P FL = PL

kg / kg-mm N / N-m 39897314 391261 45623 447412 7550 74041

TAILING LUG ANALYSIS LOADS

CASE A MAX BENDING

CASE B MAX TENSION

WITH IMPACT AXIAL LOAD / TAILING LUG Kg RADIAL LOAD / TAILING LUG Kg (Refer calculated maximum reaction values in lifting analysis) TAILING LUG CALCULATION: MATERIAL:

ALLOWABLE STRESS ( kg/cm² )

68192 84182

IS 2062 GR B YEILD STRES S (Sy) 2249

TENSILE 1049

Sa =

1049

kg/cm²

BENDIN SHEAR (0.4 G (0.66 * WELD SHEAR * Sy) Sy) (0.55*Sa) 899.6 1484.34 576.95

M (When no continuous ring) A C M ` B H

D B

C TAILING LUG DIMENSIONS: (…mm) (MIN.) H - DEPTH M - MOMENT ARM D - PIN HOLE DIA T - THK. R - RADIUS OF TAILING LUG D' - DIAMETER OF BEARING PAD T' - THK OF BEARING PAD

A

284 92 75 32 142 150 16

CHECK ON SEC 'AA' IN TENSION: (LOAD CASE B) WIDTH mm THK mm AREA mm² STRESS: kg/cm²

284 32 18176 463.15

CHECK ON SEC 'BB' IN SHEAR: (LOAD CASE B) SEC. WIDTH ( w' ) mm

136.96

safe

R

THK ( T + 2 * T' ) AREA ( 2 x w' x (T + 2 * T' ) STRESS:

mm mm² kg/cm²

64 17530.74 480.20

CHECK ON PIN HOLE BEARING AREA (LOAD CASE B) WIDTH mm THK (T + 2 * T' ) mm PROJECTED AREA mm² STRESS: kg/cm² ALLOWABLE STRESS (0.8 x Sy) kg/cm²

75 64 4800 1420.67 1799.2

CHECK ON SEC 'CC' IN BENDING: (LOAD CASE A) DEPTH mm WIDTH mm MOMENT ARM mm AREA mm² SECTION MODULUS BENDING MOMENT BENDING STRESS TENSILE STRESS TOTAL STRESS

mm3 kg-mm kg/cm² kg/cm² kg/cm²

safe

safe

284 64 92 18176 860330.6667 6273664 729.22 463.15 1192.36

safe

TAILING LUG WELD CHECKING TAILING LUG HEIGHT @ SKIRT WELD BASERING O/D SKIRT O/D

H1 Db Ds

LENGTH OF WELD ON ONE SIDE TOTAL LENGTH OF WELD

L

= 2 x L1

WELD FILLET SIZE THROAT AREA OF FILLET TOTAL AVAILABLE AREA OF WELD

f w A

f / SQRT(2) wxL

LOAD ON TAILING LUG

WD

ALLOWABLE SHEAR STRESS IN WELD (Eq. to Tailing Lug Material.)

Ssa

= 0.4 x Sy

Ar

WD/Ssa

REQUIRED AREA OF WELD : LOAD CASE 'D'

Therefore weld provided between Tailing Lug & Skirt is safe.

284 3630 3250

mm mm mm

474 948

mm mm

14 9.90 9384.7212

mm mm mm²

84182

Kg

899.6

Kg/cm²

9357.71454

mm²

safe

Tailing Beam if req

[(actual bending stress/ allowable bending stress) + (actual tensile 0.932787 stress/ allowable tensile stress)]
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF