Libro Crecimiento Economico
August 25, 2020 | Author: Anonymous | Category: N/A
Short Description
Download Libro Crecimiento Economico...
Description
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Ejer cicios de Crecimient o Económico
ECONOMÍA
CRECIMIENTO ECONÓMICO
1
Versión Corregida
Cesar Humberto Antunez Irgoin 0
CRECIMIENTO EC O N Ó M I C O Ejercicios de Crecimiento Económico Versión Corregida
1
Mayo del 2011
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Cesar Humberto Antunez Irgoin (Lima – Perú)
1
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Cualquier tonto inteligente puede hacer las cosas más grandes y más complejas…Se necesita ser un genio y mucho coraje para moverse en la dirección contaría. (Albert Einstein)
1
Ejer cicios de Crecimient o Económico
CARMEN
2
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
CONTENIDO Prólogo………………………………………………………………………………….…….9 Agradecimiento……………………………………………………………………….…….10 I. INTRODUCCIÓN……………………………………………………………………………...12
II. CRECIMIENTO SIN PROGRESO TECNOLOGICO Y TASA DE AHORRO ENDOGENA…………………………………………………………………………………...18 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8
Modelo de Harrod…………………………………………………………………20 Supuestos del modelo…………………………………………………………..…20 La regla del 72…………………………………………………………………...…21 Función de inversión……………………………………………………………….22 Trayectoria de crecimiento del producto……………………………………..…24 Tasa de crecimiento natural………………………………………………………25 Acerca del crecimiento proporcionado………………………………..…………26 Acerca de la inestabilidad…………………………………………………………26 Políticas de crecimiento ejercicios resueltos……………………………………27
2.2 2.2.1 2.2.2 2.2.3 2.2.4
Modelo de Domar………………………………………………………..………..28 Supuestos del modelo……………………………………………………………..28 Ecuación fundamental……………………………………………………………..30 Trayectoria de la inversión………………………………………………..……….30 Políticas de crecimiento ejercicios resueltos……………………………………31
2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6
Modelo básico de Solow…………………………………………………...……31 Supuestos del modelo…………………………………………………………..…32 Ecuación Fundamental de Solow………………………………………………...35 Crecimiento proporcionado……………………………………………………..…37 Sobre la estabilidad……………………………………………………………..…37 Beneficios, salaros y distribución del ingreso……………………………….....38 Distribución del ingreso………….……………………………...…………...……41
2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7
Modelo de Solow – Swan………………………………………………………..41 Supuestos del modelo……………………………………………………………..41 Ecuación fundamental de Solow – Swan…………………………………….….43 Estado de crecimiento proporcionado…………………………………………...43 Acerca de la Estabilidad………………………………………………………..….45 Dinámica de transmisión sobre la convergencia………………………………..47 La regla de la Oro de la acumulación…………………………………………....49 Políticas de crecimiento ejercicios resueltos……………………………………52
2.5 2.5.1 2.5.2 2.5.3 2.5.4
Modelo de Crecimiento de Uzawa……………………………………….........59 Supuestos del modelo………….…………………………………………………59 Sector de bien de consumo……………………….……………………………...60 Sector de bienes de capital…………………………………………………….....60 Ecuación fundamental de Uzawa………………………………………….….….61
3
Ejer cicios de Crecimient o Económico
Introducción al crecimiento…………………………………………………….14 ¿Qué causa el crecimiento económico?.........................................................15 Teorías del crecimiento económico………………………………………………16 Teoría del ciclo económico………………………………………………..………16 Teoría del desarrollo económico………………………………………………….16
1
1.1 1.2 1.3 1.4 1.5
Estado de crecimiento proporcionado…………………………………………...62
2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5
Modelo de Kaldor(Enfoque de Cambridge)………………………………..…64 Supuesto del modelo……………………………………………………….………65 Ecuación de beneficios…………………………………………………………….66 Crecimiento Económico……………………………………………………………67 Caso límite………………………………………………………………………..…68 Tres leyes de crecimiento de kaldor…………………………………….……..…68
2.7 2.7.1 2.7.2 2.7.3
Modelo de Pasinetti………………………………………………………………70 Supuestos del modelo……………………………………………………..………71 Función de ahorro de Pasinetti…………………………………………………...72 Supuesto en el largo plazo………………………………………………………..74
2.8 2.8.1 2.8.2 2.8.3 2.8.4
Modelo de Kalecki………………………………………………………………...75 Supuestos del modelo……………………………………………………………..76 Análisis de corto plazo……………………………………………………………..77 Análisis de largo plazo……………………………………………………………..80 Crecimiento económico de largo plazo…………………………………………..81
III. CRECIMIENTO CON PROGRESO TECNOLOGICO Y TASA DE AHORRO EXOGENA………………………………………...............................................................84 3.1 3.1.1 3.1.2 3.1.3 3.1.4
Definiciones de técnica, tecnología, cambio técnico y progreso tecnológico…………………………………………………………………..…….86 Schumpeter y los componentes de progreso tecnológico………………..……86 Progreso tecnológico exógeno y desincorporado………………………………87 Clasificación del progreso tecnológico…………………………………………..88 Clasificación general del progreso tecnológico……………………………....…89
3.2
Solow con progreso tecnológico exógeno y desincorporado………....……………………………………………………....…90
3.3
Modelo de Solow – Swan con progreso tecnológico exógeno…………………………………………………………………………...…92 Supuestos del modelo……………………………………………………………....93 Ecuación fundamental de Solow – Swan con progreso tecnológico exógeno y desincorporado…………………………………………………….……93 Estado de crecimiento proporcionado…………………………………………..…94 Política de crecimiento ejercicios resueltos………………...………………….…97
3.3.1 3.3.2 3.3.3 3.3.4
IV. CRECIMIENTO CON PROGRESO TECNOLOGICO Y TASA DE AHORRO ENDOGENA………………………………………………………………………………….108 4.1 4.1.1 4.1.2
Modelo de Hicks…………………………………………………………...………110 Planteamiento…………………………………………………………………….…110 Proposición / Aplicación……………………………………………………...…….110
4.2 4.2.1 4.2.2
Modelo de aprendizaje de Arrow……………………………………………….111 Planteamiento…………………………………………………………………….…112 Hipótesis…………………………………………………………………………..…112
4.3 4.3.1 4.3.2
La función de progreso técnico………………………………………………...113 Planteamiento……………………………………………………………………….113 Características……………………………………………………………………....114
4
1
2.5.5
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Modelo de Ramsey -Cass-Koopmans………………………………………....118 Supuestos del modelo……………………………………………………………...118 Ecuación de Movimiento…………………………………………………………...120 El problema de la convergencia……………………………………………..….…121 Planteamiento del problema………………………………………………….……122 Sistema de ecuaciones diferenciales (Diagrama de fases)………………….…125 Análisis cualitativo……………………..……………………………………...….…127 Estado de crecimiento proporcionado………………………………………….…128 Dinámica……………………………………………………………………………..130
5.2 5.2.1 5.2.2
Modelo Neoclásico de Ramsey con progreso tecnológico……………..…131 Sistema de ecuaciones diferenciales………………………………………….…134 Estado de crecimiento proporcionado……………………………………………136
VI. ENFOQUES RECIENTES DE CRECIMIENTO ENDOGENO……………………….....138 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5
Modelos AZ………………………………………………………………..…….….140 Supuestos del modelo……………………………………………………….….….140 Ecuación fundamental………………………………………………………….…..142 Dinámica de transmisión………………………………………………………..….143 Características del modelo…………………………………………………….…..144 Modelo AZ con la función de producción Cobb-Douglas………………….……145
6.2 6.2.1 6.2.2 6.2.3 6.2.4
Modelo de crecimiento con sector capital Físico y Humano…………...…148 Supuestos del modelo……………………………………………………………...148 La ecuación fundamental…………………………………………………….…….148 Transformación de la función Cobb-Douglas…………………………….………151 Ejercicios resueltos……………………………………….……………..……….…153
6.3 6.3.1 6.3.2 6.3.3
Modelo de Romer con externalidad de capital…………………………….…157 Supuestos del modelo…………………………………………………………..….157 Ecuación fundamental………………………………………………………...……159 Tipología……………………………………………………………………………..159
6.4 6.4.1 6.4.2 6.4.3
Modelo de Lucas………………………………………………………………..…163 Supuestos del modelo…………………………………………………………..….163 Ecuación fundamental………………………………………………………...……164 Análisis…………………………………………………………………………..…..164
6.5 6.5.1 6.5.2 6.5.3 6.5.4
Modelo de crecimiento con gobierno…………………………………….……169 Supuestos del modelo…………………………………………………………..….169 Ecuación fundamental………………………………………………………...……171 Análisis……………………………………………………………………………….173 Problemas resueltos…………………………………………………………….….174
6.6 6.6.1 6.6.2 6.6.3
Modelo de crecimiento con gasto público……………………………………178 Supuestos del modelo…………………………………………………...…………178 Planteamiento del problema……………………………………………………….180 Tipología……………………………………………………………………………..182
6.7 6.7.1 6.7.2
Modelo de crecimiento Neoclásico con capital Humano…………….…….184 Supuestos del modelo………………………………………………………...……184 Ecuación dinámica del sector de producción del bien final…………….….…...187
5
1
5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6 5.1.7 5.1.8
Ejer cicios de Crecimient o Económico
V. MODELOS NEOCLASICO DE CRECIMIENTO ÓPTIMO………………………...……116
Ecuación dinámica del sector del sector educación…………………………….188
6.8 6.8.1 6.8.2
Modelo de crecimiento con educación (Jones)………………………….…..191 Supuestos del modelo…………………………………………………………...…191 Ecuación dinámica fundamental……………………………………….…….……193
6.9 6.9.1 6.9.2 6.9.3
Modelo de crecimiento con educación (Uzawa)………………………..……196 Supuestos del modelo…………………………………………………………..….197 Sector de producción del bien final…………………………………………….…197 Sector educación…………………………………………………………….……..198
6.10 6.10.1 6.10.2 6.10.3 6.10.4
Modelo de acumulación de capital Humano (Lucas)…………………...…..200 Supuestos del modelo……………………………………………………..…….…201 Función de producción del bien final………………………………………..….…201 Sector Educación………………………………………………………………...…202 Planteamiento del problema……………………………………………………….204
6.11 6.11.1 6.11.2 6.11.3
Modelo de Aprendizaje y Derrame de Conocimiento…………...................210 Supuestos del modelo………………………………………………………...……210 Ecuación dinámica fundamental……………………………………………..……213 Planteamiento del problema…………………………………………………….…214
6.12 Modelo de Jones - Manuelli…………………………………………………...…219 6.12.1 Supuestos del modelo………………………………………………………..…….219 6.12.2 Ecuación dinámica fundamental……………………………………………….….221 6.13 6.13.1 6.13.2 6.13.3
Contabilidad de crecimiento o fuentes de crecimiento………………….…224 Supuestos del modelo…………………………………………………….…….….224 Contabilidad de crecimiento con una función Cobb-Douglas…………..….…..226 Ejercicios resueltos…………………………………………………………………229
VII. CRECIMIENTO ECONOMICO EN LA PERIFERIA……………………………………..231 7.1 Modelo de Lewis…………………………………………………………………….233 7.1.1 Supuesto del modelo……………………………………………………….………233 7.1.2 Mercado de trabajo y distribución del ingreso……………….……….…….……234 7.1.3 Acumulación de capital………………………………………………..……….…..236 7.1.4 Concepción de desarrollo………………………………………………………….237 7.1.5 Crítica del modelo…………………………………………………………………..238 7.2 Modelo de Solow con economía abierta………………………………………..239 7.2.1 Supuesto del modelo……………………………………………………….………239 7.2.2 Estado de crecimiento proporcionado…………………………………..………..240 7.3 Modelo de crecimiento con factor tierra…………………………………..……242 7.3.1 Supuestos del modelo……………………………………………………..….……242 7.3.2 Determinación de la tasa de crecimiento……………………………….…..……245 7.3.3 Tipología………………………………………………………………………….….246 APENDICE DE REVISIONES MATEMATICAS…………………………………………….….248 A.1 A.1.1 A.1.2 A.1.3
Derivadas……………………………………………………………………………250 Reglas de derivación………………………………………………………….….…251 Tasas de crecimiento……………………………………………..........................253 Tasas de crecimiento logaritmo natural…………………………….….…………253
6
1
6.7.3
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico A.2 Optimización dinámica: Teoría de control óptimo......................................254 A.3 Caso de múltiples variables……………………………………………..………255 BIOGRAFIAS……………………………………………………………………………………….258 B.1 Arrow Kenneth ………………………………………………………………….…260 B.2 Domar David …………………………………………………………………….…261 B.3 Harrod Roy ………………………………………………………………………....262 B.4 Hicks John …………………………………………………………...................…264
B.7 Kuznets Simon …………………………………………………………………….269 B.8 Lewis Arthur....................................................................................................270 B.9 Phelps Edmun………………………………………………………………...……272 B.10 Ramsey Frank.................................................................................................2 74 B.11 Rebelo Sérgio…………………………………………………………………...….276 B.12 Robert Lucas……………………………………………………………………....278 B.13 Romer Paul………………………………………………………………………….279 B.14 Schumpeter Joseph……………………………………………………………….281 B.15 Solow Robert...................................................................................................282 B.16 Swan Trevor………………………………………………………………………...283 B.17 Uzawa Hirofumi………………………………………………………………...…..284
BIBLIOGRAFÍAS…………………………………………………………………………………..288
7
1
B.6 Kalecki Michal ……………………………………………………..................…..267
Ejer cicios de Crecimient o Económico
B.5 Kaldor Nicholas………………………………….................................…………265
1
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
8
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
PRÓLOGO
C
recimiento Económico en son apuntes de estudio, que ha sido desarrollado como material de consulta para el mejor entendimiento del lector, de manera rápida y
concisa de los modelos de crecimiento. Este material tiene como finalidad introducir al lector en las técnicas
de optimización dinámica aplicadas
al análisis económico, y un
razonamiento económico de los modelos de crecimiento. Se exponen modelos que buscan
plazo en los niveles de ingreso por habitante entre países con énfasis a economías emergentes. En este texto expondremos las principales teorías, que han sido divididas por capítulos para su fácil entendimiento. El capítulo I: Trataremos de introducir al lector de forma rápida y sencilla sobre las causas del crecimiento y las teorías del crecimiento. Capítulo II: Hablaremos del modelo del modelo de Harrod, de Domar, el modelo básico de Solow, el modelo de Solow – Swan, el modelo de Crecimiento de Uzawa, el modelo de Kaldor, el modelo de Pasinetti y el modelo de Kalecki. Capítulo III: Hablaremos del crecimiento con progreso tecnológico y tasa de ahorro exógena en esta parte explicaremos la técnica, tecnología, cambio técnico y progreso tecnológico. Solow con progreso tecnológico exógeno y desincorporado y el modelo de Solow – Swan con progreso tecnológico exógeno.
1
Capítulo IV: Veremos el crecimiento con progreso tecnológico y tasa de ahorro endógena, hablaremos, del modelo de Hicks, el modelo de aprendizaje de Arrow y la función de progreso técnico.
Ejer cicios de Crecimient o Económico
explicar los determinantes del crecimiento económico, así como las diferencias de largo
Capítulo V: Trata de los modelos neoclásico de crecimiento optimo, es esta parte de explica el Modelo de Ramsey -Cass-Koopmans y el modelo Neoclásico de Ramsey con progreso tecnológico. Capítulo VI: Trata del enfoques recientes de crecimiento endógeno, hablaremos del modelo AZ, el modelo de crecimiento con sector capital Físico y Humano, con externalidad de capital, el Modelo de Lucas, con gobierno, con gasto público, el modelo de crecimiento Neoclásico con capital Humano, el modelo de crecimiento con educación de Jones y Uzawa, con acumulación de capital Humano, el Modelo de Aprendizaje y derrame de conocimiento, el modelo de Jones – Manuelli y Contabilidad de crecimiento o fuentes de crecimiento. Capítulo: VII: Para finalizar explicaremos los modelos de crecimiento en la periferia, como el modelo de Lewis, el modelo de Solow con economía abierta y el modelo de crecimiento con factor tierra.
9
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Agradecimiento: Este libro no hubiera sido posible, sin la valiosa ayuda de las siguientes personas:
Del Economista Carlos Contreras Paz, que me impartió el curso de Crecimiento Económico en la Universidad Nacional Mayor de San Marcos, gracias a lo cual empecé a escribir este libro con ayuda de sus notas de clase.
El agradecimiento a las personas que dedico este libro. Como diría el gran Althea Gibson alcanzarlos”. A mis padres que con su enorme esfuerzo e interés en mí siempre tuvieron que dispusiera de las condiciones y medios para estudiar, que sin esta importante ayuda no hubiera sido posible la realización de este libro.
Por ultimo Quiero agradecer por la primera edición de este texto y otros al Director y Fundador del grupo de Investigaciones eumed.net
Juan Carlos Martínez Coll, por la
publicación del texto en la Biblioteca Virtual de Economía y ha todo los que conforman este grupo que se encuentra alojado en http://www.eumed.net/, que sin esta ayuda tal vez nunca hubiera sido publicado este texto. Y ha toda la gente de la UNMSM que con su interés en este texto hacen posible la segunda edición del mismo en espacial a Gustavo Espinoza
1
Peralta un agradable compañero de aula.
Ejer cicios de Crecimient o Económico
“Cualesquiera que hayan sido nuestros logros, alguien nos ayudó siempre a
Cesar Humberto Antunez Irgoin Lima, Mayo del 2011.
10
1
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
11
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Introducción “El crecimiento económico es un fenómeno complejo en el que, mediante la acumulación de más y mejores factores productivos y de su utilización mediante técnicas cada vez más productivas, las economías son capaces de generar una mayor cantidad de bienes y servicios. Se trata además de un proceso dinámico que entraña un cambio continuo en la estructura sectorial. De hecho, este último podría ser considerado como uno de los hechos estilizados del crecimiento.”
1
Kuznets (1973). Citado Por: Lorenzo Serrano (1998), Pág.:3
Ejer cicios de Crecimient o Económico
Capítulo I
12
1
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
13
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 1.1
Introducción al Crecimiento
El crecimiento económico es importante hoy más que nunca, cuando la economía mundial atraviesa una desaceleración económica, por la crisis financiera que esta pasado EE.UU. y por las consecuencias que tiene en países desarrollados y en vías de desarrollo. Pero ¿qué es el de crecimiento? Que nos ayuda a medir el bienestar de la población de un país o región económica y del éxito de las políticas económicas. La definición de crecimiento económico se puede interpretar como el incremento porcentual del producto bruto interno de una economía en un período de tiempo.1 El crecimiento no es espontáneo, sino es el resultado de la combinación de los componentes del crecimiento y de la política económica que el gobierno aplica. Esto quiere decir que un nivel de crecimiento elevado mejora el bienestar de la población de un país.2
1
Ejer cicios de Crecimient o Económico
Gráfica 1.1: El Crecimiento Económico
1
El crecimiento se calcularse en términos reales para excluir el efecto de la inflación. Crecimiento económico = (PBI t – PBI t-1) / PBI t = ΔPBI / PBI donde PBI t: Producto bruto interno en el período t, PBI t1: Producto bruto interno en el período t-1 y ΔPBI. Variación del producto bruto interno. Donde los valores están generalmente expresados en términos pre-capital. Un ejemplo de esto es que si aumenta, si el PIB real per-cápita fue $17,000 el primer año y $21,000 el segundo, significa que la economía experimentó un crecimiento económico real per-cápita. 2 supone que un elevado crecimiento económico es beneficioso para el bienestar de la población, ya que mejora el bienestar materiales disponibles y por ende una cierta mejora del nivel de vida. Mejora tanto en la educación, salud vivienda y alimentación y con esto mejor posibilidades de vida.
14
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico En el Gráfico [1.1] se puede observar, la importancia del crecimiento económico para la sociedad, así como sus beneficios, costo que tiene para esta sociedad y los factores que influyen en el crecimiento económico. 1.2
¿Qué causa el Crecimiento Económico?
Existen diversos factores que pueden afectar el crecimiento económico de un país. Los modelos que se presentan en este libro utilización estos factores para explicar el crecimiento económico como son: trabajo, capital, capital humano, recursos naturales, avances tecnológicos.
Imaginemos un país que presenta mayores recursos naturales que otro país y puede producir más bienes y servicios. Supongamos que estos dos países están expresados por, “I” y “II” se sabe que presentan similitudes en casi todos sus ámbitos. Sin embargo, I posee mayores recursos naturales en su país que II. Es más probable que “I” tenga un mayor crecimiento económico que el otro país ”I”. Mano de Obra Cuando existe más mano de obra (productiva), la producción de un país aumenta. Con lo cual no significa que a mayor trabajadores mayor producción sino lo más importante para el crecimiento económico es la productividad laboral de los trabajadores. La productividad laboral es la producción total dividida por el número de horas que se tarda en producirla bienes o servicios. Un aumento en la productividad laboral aumenta también la producción de la economía. Ello conduce a un crecimiento económico. Capital Dentro de los bienes de capital se incluyen las fábricas y maquinarias. La inversión que se realiza en estos bienes de capital puede contribuir a aumentar la productividad laboral, con la cual se aumenta la producción del PIB real de la economía. Para aumentar la inversión en bienes de capital, un país debe reducir el consumo actual.
1
Capital Humano
Ejer cicios de Crecimient o Económico
Recursos naturales
Se refiere al conocimiento y habilidades que las personas adquieren gracias a la educación, capacitación laboral y experiencia laboral. Mientras mayor sea el capital humano de las personas en un país, mayor será su crecimiento económico de este país. El crecer su economía en base a trabajadores que poseen una buena capacitación, educación y desempeño laboral, conduce al crecimiento económico. Avances Tecnológicos Los avances tecnológicos permiten aumentar la producción usando la misma cantidad de recursos y esto se puede ver en estos tiempos en que la tecnología simplifica el trabajo como por ejemplo de los obreros. Estos avances tecnológicos suelen ser el resultado de nuevos bienes de capital o nuevos métodos de producción.
15
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 1.3
Teorías del Crecimiento Económico
Las teorías de crecimiento económico explican sus causas utilizando modelos de crecimiento económico, que son simplificaciones de la realidad. Estos modelos de crecimiento económico no se refieren a ninguna economía en particular, aunque sí pueden ser contrastados empíricamente. Como veremos a largo de este libro, las causa del crecimiento económico se deben: Que la economía crece porque los trabajadores tienen cada vez más instrumentos, para su trabajo (mas capital), que trabajadores con un mayor stock de conocimientos son más productivos (educación, incrementaría el capital humano) y que la economía crece por el proceso tecnológico, como veremos son muchos los autores que explican el crecimiento económico con estas tres variables en los modelos que plantean. 1.4
Teorías del Ciclo Económico
Los ciclos económicos han sido estudiados por más 150 años, pero no fue hasta 1940, que surgió una definición clara de los ciclos económicos, debido a los esfuerzo de un grupo conformado por: Wesley Clare Mitchell y Arthu F. Burns. Auspiciados por National Bureau of Economic Research (El Escritorio nacional de Investigación Económica) en Nueva York. Definieron que el ciclo económico es el cambio o fluctuación que encuentra la actividad económica de las naciones.
1
Un ciclo consiste de expansión de hechos que ocurre al mismo tiempo en muchas actividades económicas, seguida por recesiones generales, contracción y recuperación. La actividad económica se distingue por su forma cíclica, generalmente la duración de los ciclos es variable presentando una media de unos ocho años aproximadamente. ¿Por qué es importante el ciclo? Por que nos ayuda a ver las fluctuaciones de la actividad agregada. Aunque en existen varias formas de medir la actividad económica agregada, se puede medir mediante el ingreso real.
Ejer cicios de Crecimient o Económico
Son muchos las teorías económicas de crecimiento se refieren al crecimiento de la producción potencial, o nivel de producción de pleno empleo. Las teorías del crecimiento vienen desde los tiempos de Adam Smith hasta nuestros días, y han intentado explicar los fenómenos de crecimiento y desarrollo a lo largo de la historia.
1.5
Teoría del Desarrollo Económico
Estas buscan modificar la estructura económica, política y social. Donde el desarrollo económico se logra agilizando significativamente la producción, productividad, las oportunidades de empleo y dinamizar las exportaciones y tratar de liberarse de la dependencia de otros países desarrollados. La decisión es invertir en el sector público y en el sector privado.
16
1
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
17
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Capítulo II tasa de ahorro endógena “Estas tres señales distinguen al hombre superior: La virtud que lo libra de la ansiedad; la sabiduría que lo libra de la duda; y el valor, que lo libra del miedo”.
1
Confucio
Ejer cicios de Crecimient o Económico
Crecimiento sin progreso tecnológico y
18
1
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
19
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 2.1
Modelo de Harrod
Roy Harrod (1939) elabora un modelo que explicar el crecimiento económico a largo plazo, de manera equilibrada (regular). Califico su teoría como el matrimonio entre “el principio de aceleración” y la “teoría del multiplicador” expresando con esto su posición keynesiana.
Keynes al introducir anticipadamente que el crecimiento es la determinación de la inversión en la economía, concluye que la relación que determina la tasa de crecimiento es inestable. Inspirando en este análisis, Harrod demostrará años mas tarde que la inestabilidad del crecimiento económico, se puede obtención de la estabilidad y esta puede ser el fruto del azar o de intervenciones de estabilizaciones derivadas de instrumentos monetarios y presupuestarios del Estado.3 2.1.1 Supuestos del modelo Harrod considerara para su modelo que: Sea una economía sin relacionada con el exterior El ahorro agregado “S” es una fracción (proporción) constante “s” del ingreso nacional (renta) “Y”. S s.Y ,
0 s 1
la tasa de incremento del ingreso es un determinante importante de su demanda de ahorros. La fuerza de mano de obra “L” crece a una tasa constante. Lt L0 (1 n) t La demanda es igual a la oferta. Con esto Harrod puede distingue que las fluctuaciones en la trayectoria de crecimiento y las fluctuaciones, que en la actualidad se conoce como
1
los ciclos de negocios, son cosas distintas, sin embargo, creía que ambos fenómenos
Ejer cicios de Crecimient o Económico
Por que usado el principio de Keynes que la inversión juega una doble función en la economía: Determina el ingreso y la demanda global, y por su característica del multiplicador que influya en la demanda y por su apariencia de oferta aumenta la capacidad de producción. De manera que la condición para un crecimiento regular y equilibrado en la economía se realiza cuando el crecimiento de la oferta es igual al crecimiento de la demanda.
deberían ser estudiados conjuntamente. Función de Producción Agregada Según Harrod la sociedad tiene una función de coeficientes fijos (capital y trabajo) de Leontief, de esta manera satisface el principio del acelerador. El proceso de producción de la economía hay una sustituibilidad nula de los factores de la producción, de manera que para generar una unidad de producto (output) se necesitará de “u” (coeficiente fijo) unidades de capital y de “v” (también coeficiente fijo) unidades de mano de obra. La función de producción escribe de la siguiente forma:
3
El artículo de Harrod que se titula “An Essay in Dynamic Theory” (Un Ensayo en la Teoría Dinámica). Publicado en The Economic Journal (El Periódico Económico), Marzo 1939.
20
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Gráfica 2.1: La función de producción de Harrod
Yt : Producto agregado en el periodo “t” K t : Stock de capital agregado en el periodo “t” Lt : Función de trabajo (La mano de obra o producción económica activa) en el periodo “t”
v : Relación capital – producto u : Relación trajo – producto En la gráfica [2.1] se observamos la imposibilidad de sustituir (K, L), o mejor dicho, dados los coeficientes fijos, las isocuantas toman la forma de ángulo recto, revisten la forma de una forma de escuadras con esquinas a lo largo de la línea [0( K / L)] . Esa línea es el lugar geométrico en el que la ratio K y L es
v , sí los inputs están plenamente empleados, el u
producto nacional será igual a la función de producción de Leontief. Además, hay que añadir que la unión de lo vértices de los ángulos es el único camino para aumentar o disminuir la cantidad del producto. 2.1.2 La regla de 72 Esta regla nos permitirá determinar el tiempo necesario para que cualquier variable necesite para duplicarse. En economía empleamos la regla del 72 para determinar el tiempo necesario para duplicar la tasa de crecimiento del producto Se emplea dividiendo 72 entre la tasa, el resultado es el número de años necesario para el producto. Por ejemplo: Si la tasa de crece 1% entonces se duplicara cada 72 años. Si la tasa de crece 2% entonces se duplicara cada 36 años. Si la tasa de crece 3% entonces se duplicara cada 24 años. Si la tasa de crece 4% entonces se duplicara cada 18 años. Si la tasa de crece 5% entonces se duplicara cada 14,4 años. Si la tasa de crece 6% entonces se duplicara cada 12 años. Si la tasa de crece 7% entonces se duplicara cada 10,28 años. Si la tasa de crece 8% entonces se duplicara cada 9 años.
21
1
Donde:
Ejer cicios de Crecimient o Económico
K L Yt Min t , t v u
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Si la tasa de crece 9% entonces se duplicara cada 8 años. Si la tasa de crece 12% entonces se duplicara cada 6 años. Demostración de la regla del 72 Sea y (t) el ingreso per - cápita en el momento “t” y se supone que y0 se el valor inicial del ingreso per-cápita. Entonces y (t ) y 0 .e gt es el tiempo que necesitamos para duplicarse el ingreso per - cápita se determina por el tiempo t*. Cual se considera que el ingreso per - capita inicial es igual a y (t ) 2. y 0 . Por lo tanto, si reemplazamos en la ecuación queda 2. y 0 y 0 .e gt aplicado logaritmo neperiano y despejando t quedara expresado como4. t
ln(2) . g
1
Ejer cicios de Crecimient o Económico
Veamos algún ejemplo de esta regla con tasa de crecimiento:
2.1.3 Función de inversión Harrod nos dice: Que la inversión es tipo aceleradora, estos significa que el volumen de la inversión va depender directamente de la variación del producto, dado el coeficiente de aceleración. Partiendo de la condición de equilibrio en la que la demanda iguala a la oferta, establecemos que el ahorro iguala a la inversión (economía sin relación con el exterior). El ahorro es una fracción s del ingreso, mientras que la inversión es el incremento en el stock de capital. Esto que expresado por la ecuación. 4
Para fines practico de la reglase concederá el ln(2) = 0.7, pero en los ejemplos anteriores se a considerado todos los decimales del ln(2), queda como ejercicio para el lector, aplicar la regla practica de 0.7 que es el logaritmo neperiano a todos los ejemplos.
22
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico I t v.Yt Donde:
v : Coeficiente de aceleración, relación capital – producto. I t : Volumen de inversión. Yt : Variación del producto.
a) Análisis Ex-ante Antes que ocurra el fenómeno de los hechos que van hacer variables planeadas. Partiendo de la condición de equilibrio en la que la demanda iguala a la oferta, establecemos que el ahorro iguala a la inversión. El ahorro es una fracción s del ingreso, mientras que la inversión es el incremento en el stock de capital. La inversión se iguala con el volumen de ahorro se hay, como la razón de la propensión marginal ahorra requerida, respecto a la aceleración capital – producto requerida. La tasa de crecimiento garantizada es aquella tasa decrecimiento del producto, que hace que los empresarios se sientan satisfechos por haber formulado un volumen. Del equilibrio macroeconómico tenemos:
I S K v.Y s.Y
I se ve el rol del multiplicador tiene en esta teoría. s Dividiendo ambos lados de la ecuación entre el cambio en el nivel de ingreso Y . Si rescribimos de esta forma como Y Obtenemos:
1
Y s r Yr vr La ecuación puede ser reescrito como
Debido a que v
Y s r g W , la ecuación fundamental de Harrod Yr v r
Y es el incremento que efectivamente ocurre en el stock de capital ante K
Un incremento en una unidad en el nivel de ingreso. Y constante, esta ecuación puede aproximarse con la siguiente formulación5.
gW
5
s Yr Yr
Ejer cicios de Crecimient o Económico
El crecimiento equilibrado se puede empezar por analizar por el ahorro ex-ante (deseado) y la inversión ex-ante sean iguales y después analizar de qué manera el crecimiento equilibrado requiere que se sostenga sin discontinuidad la proporción ex-ante entre el stock de capital y el ritmo de producción. El análisis ex post analiza la cantidad realizada efectiva.
La tasa de crecimiento efectiva, la que en realidad ocurre
Si diferenciamos e igualamos cero a K/Y (que es constante, entonces) tenemos
( K / Y ) v
K K Y K K Y 0 , es decir. Y Y Y 2
23
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Donde: r : Subíndice requerido o planeado. g w : Tasa de crecimiento garantizada.
s r : Propensión marginal ahorrar. v r : Relación capital - producto requerido. b) Análisis Ex-post
Para Harrod el equilibrio dinámico es intrínsecamente inestable6. Dado que la trayectoria de la producción que se sigue con la g w es un movimiento en equilibrio, y ella representa que los productores han hecho las cosas tal como debían haber sido hechas. Por lo que los empresarios tendrán incentivos para seguir haciendo lo mismo. De la identidad macroeconómica (Oferta igual a la demanda) tenemos;
I e S e v e .(Ye ) s e .Ye
Ye s e s , entonces tenemos g e e Ye ve ve
Donde:
e : Subíndice efectivo u observado. g e : Tasa de crecimiento efectiva. s e : Propensión marginal ahorrar efectiva. v e : Relación capital - producto efectivo.
1
2.1.4 Trayectoria de Crecimiento del producto
Ejer cicios de Crecimient o Económico
Este efectúa un análisis considerando las variables después del fenómeno ocurrido, partir de la identidad. Si la inversión ex post es inferior a la ex ante entonces habrá un estímulo para el incremento de la producción, pues habría ocurrido una reducción indeseada de stocks de producción que son insuficientes. Lo contrario ocurrirá si la inversión ex ante es inferior a la ex post.
En esta parte se va definir la trayectoria de crecimiento garantizada y efectiva, con sus respectivas demostraciones. a) Trayectoria de Crecimiento Garantizada Es la ruta de crecimiento del producto de satisface a los empresario, al igual que el ahorro y la inversión a través del tiempo.
Yt Y0 (1 g w ) t Esta ecuación nos dice; que el producto en el periodo “t” crece a la tasa de crecimiento garantizada, partir de su valor inicial “ Y0 ”. Donde gW es la tasa de crecimiento garantizada (“warranted rate of growth”) de la economía, s: La propensión marginal ahorrar (la fracción del ahorro con respecto al PBI) 6
Harrod no dice, que en el campo de la dinámica a diferencia de lo que ocurriría en el campo de la estática, una salida de la trayectoria de equilibrio en vez de autocorregirse se autoempeora. Debido a esto él consideró que gW representa una trayectoria de equilibrio pero inestable
24
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
s Y t Y 0 1 r vr
t
Demostración; De la condición de equilibrio macroeconómico
I S v r .Yt 1 s r .Yt v r .Yt 1 Yt s r .Yt v r .Yt 1 v r .Yt s r .Yt 0 v r .Yt 1 v r s r .Yt 0 Dividiendo a la ecuación anterior entre v r
Yt 1 b.Yt 0 Características de la ecuación; Ecuación diferencial ordinaria, 1º orden (Primera diferencia), 1º grado (coeficiente constante “t”) y termino nulo. Solución homogénea; Yt A.b t , A>0, b >0 y t>0
Donde; b 1
sr , A = es constante Y0 vr
Reemplazando en la solución homogénea
s Y t Y 0 1 r vr
t
b) Trayectoria de Crecimiento Efectivo Es la ruta de crecimiento de la producción efectiva a través del tiempo
Yt Y0 1 g e
t
t
1
s Yt Y0 1 e ve
Ejer cicios de Crecimient o Económico
v vr s .Yt r r .Yt 0 vr vr vr
Crece a una tasa constante y lo hace a través del tiempo del producto efectivo en el periodo “t” a la tasa constante efectiva “ g e ” y lo hace a partir de su valor inicial. 2.1.5 Tasa de Crecimiento Natural Harrod considera también que hay una tasa de crecimiento el cual la llama tasa natural. Esta depende del incremento de la población. No existe tendencia inherente alguna coincidan pues, para empezar, no existe una única tasa de crecimiento garantizado ya que esta depende del nivel de actividad. Para esto plantea un análisis de dinámica, el equilibrio de mercado de trabajo ocurre cuando se igualan las tasas de crecimiento de la oferta con la demanda de trabajo. El sistema económico no puede avanzar a una velocidad mayor que la que la tasa natural. Si la tasa de crecimiento posible fuera superior a la tasa natural se produciría una tendencia a
25
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico la depresión, por el mecanismo explicado previamente. Por esto, cuando la tasa garantizada empieza a exceder la tasa natural, aquella debe ser reducida7.
g sL g dL m g Donde; g sL : Tasa de crecimiento de la oferta de trabajo (m)
g dL : Tasa de crecimiento de la demanda de trabajo ( g ) 2.1.6 Acerca del Crecimiento Proporcionado
Proposición La economía capitalista en el largo plazo puede lograr el crecimiento proporcionado, pero ello tiene la baja probabilidad. Harrod señala que es muy difícil que en el capitalismo se de el crecimiento proporcionado, por que ello significa lograr un crecimiento con el pleno uso productivo a través del tiempo, debido a que en el capitalismo existe incertidumbre, riesgo y que los capitalista para inversión, debe tomar en cuenta dichas situaciones, en consecuencia es muy difícil que se igualen las tres tasas de crecimiento por que cada uno de ellos es independiente. Proposición de keynes Keynes nos dice que la economía en el corto plazo puede tener un equilibrio con desempleo (diferencia con los clásicos). Proposición de harrod Harrod extiende la proposición de Keynes alargo plazo y propone una hipótesis que se formule y que se demuestre. 2.1.7 Acerca de la Inestabilidad Harrod no da su proposición en que la economía en el argo lazo tiende a un equilibrio inestable, donde cualquier diferencia entre la tasa de crecimiento efectivo y la tasa de crecimiento garantizado lleva a la economía alejarse del equilibrio, por eso nos plantea dos casos: Caso I (ge < gW) Este el caso entre recesión e inflación, se plante a que el incremento del capital efectivo supera al incremento del capita requerido ante lo cual los empresarios los empresarios diminuyen la tasa de crecimiento efectivo, ampliando la brecha de diferencia con la cual se expresa la recensión de la economía. Caso II (ge > gW) En este caso de plante el auge e inflación, esto se da cuando el incremento del capital efectivo es inferior al crecimiento del capital garantizado requerido. Ante lo cual los empresarios aumentan la inversión y con ello elevan el proceso de producción efectivo, elevando la tasa de crecimiento efectivo y con ello ampliando la brecha. 7
El lector puede concluir que, la tasa de crecimiento garantizado no puede superar a la tasa natural, sino que debería ser igual.
26
1
ge gw gn
Ejer cicios de Crecimient o Económico
Harrod nos dice que el crecimiento en el cual todas las variables agregadas crecen a la misma tasa constante, en el cual su modelo de crecimiento proporcionado se expresa cuando se iguala a las tres tasa de crecimiento.
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 2.1.8 Políticas de Crecimiento ejercicios resueltos Problema #1 Hallar la tasa de ahorro de la sociedad que permite una tasa de crecimiento del producto de 8.2%, conociendo que la relación capital – producto es 1.5. Rpt: Sabiendo que g w
s s g w .v s 8.2% x1.5 0.123 v
Problema #2 Se sabe que la tasa de crecimiento del producto per cápita es de 8%, la relación capita – producto es de 3 y la tasa de crecimiento de la población es de 1% al año. Se pide hallar la tasa de ahorro de la sociedad. Rpt: Se sabe la relación per cápita esta expresada como; Adelantando un periodo a la relación per-cápita8.
Yt y t Yt y t .Lt ( I ) Lt
Yt 1 y t 1 .Lt 1 ( II )
Dividiendo (II ) entre (I )
Yt 1 y t 1 Lt 1 . Aplicando logaritmo neperiano Yt y t Lt Y y L Ln t 1 Ln t 1 Ln t 1 g Y g y g L Yt yt Lt g PBI g PBI ( per cápita ) g ( pobla ) Donde:
1
g PBI : Tasa de crecimiento del producto g pobla : Tasa de crecimiento poblacional g PBI ( per cápita ) : tasa de crecimiento del producto per-cápita De al ecuación de Harrod g w
Ejer cicios de Crecimient o Económico
Entonces el ahorro de la sociedad es de 12.3%.
s s ( g w ).v s ( g PBI ( per cápita ) g ( pobla ) ).v v s (8% 1%).3 0.27
La tasa de ahorro de la sociedad es de 27%.
8
Otra manera de expresar esta relación y poder obtener tasas de crecimiento de forma sencilla es mediante un truco matemático, para esto expresaremos la relación per-cápita, luego aplicaremos logaritmo y por ultimo tomaremos una derivada parcial a la ecuación.
Yt d (ln Yt ) d (ln y t ) d (ln Lt ) y t Yt L t . y t ln(Yt ) ln( Lt ) ln( y t ) Lt dt dt dt Entonces esto queda expresado en tasas de crecimiento como se aprecia g Y ( t ) g y ( t ) g L ( t )
27
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Problema #3 Se sabe que la tasa de crecimiento de un país el año 2008 fue de 9.3% y el capital utilizado fue de 21,000 mil millones de dólares y el producto fue de 5,500 mil millones de dólares. Se pide hallar la tasa de ahorro de la sociedad. Rpt: De la relación capital – producto v
K 21,000 3.81 L 5,500
Reemplazando este resultado en la ecuación de Harrod
gw
s s g w .v s 9.3% x3.81 0.35443 v
2.2
Modelo de Domar
En 1946 Evsey D. Domar, publicó su artículo Capital Expansion, Rate of Growth, and Employment.9 En este árticulo crea un modelo en el cual plante determinar la tasa de crecimiento de la inversión que permite el pleno uso de la capacidad productiva, analizando desde un enfoque post-keynesiano, busca hacer una extencion de Keynes a largo plazo. Generar demanda efectiva (CP) Plantea que la inversión tiene un doble rol
Creador de nueva capacidad productiva (LP) Plantea la productividad promedio social potencial y lo define como la razon de la tasa de cambio producción potencial asociada a la inversión
dY . I
2.2.1 Supuesto del modelo Domar considera los siguientes supuestos para su modelo: Sea una economía sin relación con el exterior. Sea una productividad promedio social potencial fija:
1
Los precios de la economía son constantes.
Ejer cicios de Crecimient o Económico
Entonces la tasa de ahorro e esta sociedad es de 35.4443%
El ahorro y la inversion son netos de depreciación. El ahorro agregado,s, es una proporción de indreso naacional, dado la propencion marginal ahorrar [pmg(s)].
S s.Y
0 s 1
La ausencia de “lags”(retrasos), todo se refiere al mismo período. La fuerza de trabajo agregada crece a una tasa constante y exogena: n La función de inversión es de tipo acelerador. se asume que la capacidad productiva es medible. la depreciación es medida como el costo de reemplazo del activo depreciado, para adquirir otro con la misma capacidad productiva.
9
En este articulo “Capital expantion, rate of growth and employment” (la expansión del capital, la tasa de crecimiento y el empleo) de 1946 se expresa su tendencia keynesiana.
28
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Función de Producción Agregada Según Solow, Domar plantea la siguiente función de producción agregada tipo Leontief. Esta producción se obtiene a partir de una proporción fija de capital y trabajo.
Y t Min . K t , b . L t Donde: Yt : Producción agregada en el instante,”t”
: Relación producto capital (reciproco de;
1 ) v
Si queremos expresar la función de producción en términos per-cápita, debemos dividir la función de producción entre Lt .Esto quedara expresado como;
y t Min .k t , b ~ Donde la relación capital – trabajo esta representada; k / b , con esto la función de producción puede expresarse de la siguiente manera10: y = t
~ .k t Para todo k t k t b / ~ Para todo k t k t b / b
1
Gráfica 2.2: La función de producción per cápita de Domar
Ejer cicios de Crecimient o Económico
K t : Stock de capital en el instante, “t” Lt : Fuerza de trabajo b : Relación producto trabajo
En el Gráfico [2.2] podemos apreciar que para un k t grande, la función de producción es horizontal y para cual quier nivel de k t se tiene una recta, y esto esta dado por la ecuación de la recta .k t . Domar considera que el sistema keynesiano carecía de herramientas para derivar la tasa de crecimiento de equilibrio, por que, el empleo es función del nivel de ingreso. Para modificar esto, su propuesta es hacer del empleo una función del ratio del ingreso sobre la capacidad productiva, Y/P. 10
Para el mejor entendimiento de este modelo y los casos que se desarrollan, véase; Sala-I-Martín (1994), "Apuntes de Crecimiento Económico", Antoni Bosch, pp. 70-76
29
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Suponiendo que la inversión ocurre a una tasa anual, y que produce un incremento en la capacidad productiva de modo que su ratio es igual a
P s t (I ) I El ahorro(s) es el maximo en que la capacidad productiva del incremento de la inversión a la tasa anual, puede producir. En esta caso, el valor de la ecuación (I) llegará a solo σ, que será definido como el promedio social potencial de la productividad de la inversion.
2.2.2 Ecuación Fundamental Artículo I. Por el lado de la demanda, aplicado la teoría de la demanda efectiva de Keynes tenemos;
1 I S I s.Y Yt .I ( III ) s Derivando la ecuación (III) con respecto a “t”, tenemos;
dY 1 dI . ( IV ) dt s dt Artículo II.
I v.
Por el lado de la oferta tenemos a partir;
dY 1 dY dY I . .I (V ) .La tasa potencial va depender del volumen dt dt dt
de inversión. Artículo III.
En el Equilibrio, se asume que en el inicio existe un equilibrio entre: la
producción efectiva; Yt y la producción potencial Yt
dYt dYt reemplazando (IV) y (V). dt dt
1
Yt Yt análisis dinámico
Ejer cicios de Crecimient o Económico
P dY t (II ) I I
1 dI 1 dI . .I . s dt I dt
g I s. , La ecuación fundamental de Domar La tasa de crecimiento ( g I ) permite lograr el pleno uso de la capacidad productiva. Donde: s : Pmg(s) : Relación producto – capital. g I : Tasa de crecimiento de la inversión en equilibrio. 2.2.3 Trayectoria de la Inversión Significa que la inversión en el instante,”t” crece a una tasa “ s. ” y lo hace a partir de su valor inicial. Lo dicho anteriormente se puede expresar mediante la siguiente ecuación.
30
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
I I0 es.t La preocupación de Domar en este trabajo tiene un tema adicional, que se ha perdido en la línea central de desarrollo del pensamiento sobre crecimiento económico, esto es que el crecimiento debe ocurrir sin generar desempleo. Demostración:
1 dI d ( LnI ) g I s. . s. s. d ( LnI ) s. .dt I dt dt Sea e c I 0 d ( LnI ) s. .dt LnI s. .t c , trayectoria de la inversión.
2.2.4 Política de Crecimiento ejercicios resueltos Problema #1 Determinar la tasa de ahorro de la sociedad, tal que permita lograr el pleno uso de la capacidad productiva y que se logre un crecimiento de la inversión de 9.3%, se conoce que la relación producto - capital es de 1/3. Rpt: Sabemos que la ecuación fundamental de domar esta expresado como;
g I s. s
g I 9 .3 % 0.279 1/ 3
La tasa de ahorro de la sociedad es de 27.9% Problema #2 Determinar la tasa de ahorro de la sociedad, que permite lograr el pleno uso de la capacidad productiva y que logre un crecimiento 7.5%, sabiendo que la relación producto – capital es de 1/4. Rpt:
g I 7 .5 % 0 .3 1/ 4
1
De la ecuación fundamental g I s. s
Ejer cicios de Crecimient o Económico
s..t
eLnI es..t .ec It I0.e
Entonces la tasa de ahorro de la sociedad es del 30% 2.3
Modelo básico de Solow
Robert Solow en 1956 publicó un ensayo titulado “A Contribution to the Theory of Economic Growth” (Una contribución a la teoría del crecimiento económico), Que seria de gran influencia para las generaciones futuras. A este aporte conocido es un modelo del crecimiento considerando la respuesta ortodoxa al modelo keynesiano de Harrod y Domar. Por este y otros trabajo más se le otorgo el Premio Nobel de Economía en 1987. En este articulo Solow demostrará que si se descarta las proporciones fijas, como lo establecían Harrod-Domar el crecimiento regular no seria inestable, sino estable. Para esto Solow incorpora el equilibrio general estable, de que la función de producción que permite la sustitución de factores (capital y trabajo)11. 11
El lector interesado puede revisar el modelo con mas detalle ``A Contribution to the Theory of Economic Growth.'' (1956), pp: 56-94.
31
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Partiendo del equilibrio macroeconómico entre ahorro e inversión; incluye: al capital físico como un activo acumulable, a la mano de obra como reproducible, al ahorro real como función del ingreso, la tasa de depreciación y el crecimiento poblacional. De manera general podemos decir con rigurosidad que, el modelo de Solow es un modelo de la síntesis clásicokeynesiana y parte de las siguientes hipótesis12: Por que retomo la hipótesis del Keynesianismo:
La función de producción con factores sustitutivos (capital y trabajo). Todo el ahorro es invertido, por consiguiente necesariamente hay equilibrio en el mercado de los productos y por lo tanto no existe problema de salida o de demanda. Este modelo podremos notar, la tasa de ahorro endógena y la ausencia del progreso tecnológico como en los modelos anteriores de Harrod y Domar. Critica de Solow En esta parte Solow hace un balance de los modelos de crecimiento de Harrod y Domar.
Modelo de crecimiento pesimista respecto al desenvolvimiento del capital. La proposición de Harrod, de que la ecuación del capital tienda a una ecuación inestable. Es como si tuviera un doble “filo”. Dichos modelo soslaya la sustitución de factores siendo ello su principal defecto. El periodo de auge del capitalismo en post-guerra coincide con el pronostico de Harrod y Domar. Solow plantea, un modelo neoclásico donde la relación entre factores sea variable. Importancia en que los factores se sustituye entre si. Nos dice que la economía capitalista en el largo plazo tiende a un equilibrio dinámico estable. La economía capitalista en el largo plazo tiende a un equilibrio dinámico proporción.
2.3.1 Supuestos del modelo Sea una economía de mercado donde solo se produce un bien el mismo que se consume e invierte13. La relación capital-producto es endógena y flexible: v La fuerza de trabajo agregad crece a una tasa constante y exógena: n El ahorro agregado, s, es una proporción del ingreso nacional, dado la proporción marginal ahorrar.
12
El modelo de Solow ha sido considerado como de inspiración neoclásica, ello por oposición al modelo de tipo Keynesiano de Harrod y Domar. 13 Se supone una economía parecida a la de Robinson Crusoe, donde no hay empresas, ni empleados y ni mercados, donde Robinson combinaba su propio trabajo para producir.
32
1
De la reflexión clásica o neoclásica retomó:
Ejer cicios de Crecimient o Económico
En el mercado de bienes: El ahorro es función del ingreso, la relación entre ahorro y la tasa de interés del enfoque neoclásico no ha sido considerada; conservo la ley psicológica fundamental de Keynes. En el mercado de trabajo: rechazó la teoría neoclásica, en el sentido de que la oferta de trabajo es independiente del salario real.
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Mercado de competencia perfecta. La economía no tiene relación con el exterior. Función de Producción Agregada (FPA) Solow plantea una función de producción Neoclásica agregada que permite sustitución entre los factores de manera que dicha función puede ser expresada de la siguiente manera:
Yt F K t , Lt ( I ) Donde: Yt : Producción agregada en el instante “t”.
Esta ecuación ( I ) representa el lado de la oferta de una economía simplificada y señala que el producto producido está en función de la acumulación de capital y del monto de mano de obra. Esta función esta sujeta a Rendimiento de Escala Constante (REC), es decir, si se aumentan o disminuyen, los factores de producción en determinada proporción, por ejemplo ( II ), el producto aumentaría o disminuiría en la misma proporción, o sea, ( II ). De ahí que la función de producción pueda ser rescrita de la siguiente manera:
Yt F .K t , .Lt .F K t , Lt ( II )
0
Como se sabe la función presenta rendimiento constante a escala14. Entonces 1 , nos da Yt F .K t , .Lt , si se invierte la desigualdad la función de producción agregada muestra rendimiento decrecientes a escala. Si
K Y 1 , reemplazado en la función t F t ,1 y t F k t ( FPI ) 15 Lt Lt Lt
1
Donde:
Ejer cicios de Crecimient o Económico
K t : Stock de capital agregado en el instante “t”. Lt : Fuerza de trabajo en el instante “t”.
Kt : Cantidad por trabajo en el instante “t”. Lt Y y t t : Producción por unidad de trabajo en el instante “t”. Lt
kt
La ecuación de la (FPI) expresa el producto por unidad de trabajo como una función del capital por unidad de trabajo solamente. Para entender la intuición de esta ecuación, supongamos un aumento en la escala de operaciones mediante un aumento proporcional en Lt y K t donde el producto por trabajador no cambiaría.
14
Como sabemos por microeconomía los rendimiento constante a escala da un numero de empresas que es indeterminado, esto quiere decir, que no esta determinado por el modelo. Y es nos permite trabajar con la función de producción en su forma intensiva. 15 FPI: función de producción intensiva
33
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico De manera que la producción por trabajador no depende del tamaño total de la economía sino, de la cantidad de capital por trabajad (persona activa). Como es sabido, la teoría de la producción se centra en los niveles de empleo de cualquier factor de producción para los que el producto marginal es positivo pero decreciente, de manera que para nuestra función de producción representada en la ecuación ( III ) tenemos:
y t f ( 0) 0
PMg k
dy t f (k ) 0 (CIO 16) dk t
Gráfica 2.3: La función de producción per cápita
En el Gráfico [2.3] podemos apreciar la función de producción intensiva, que cumple con las condiciones de primer y segundo orden de la función. La función es de buen comportamiento esto quiere decir que satisface las condiciones de INADA, es decir:
df f L 0 dLt
1
a) Sin factores productivos no hay producción. b) La magnitud de los productos marginales ( PMg ) son positivos.
df f K 0 dK t
c) La curva de los productos marginales son decrecientes. d) Cuando k t tiende al infinito, entonces el PMg k (t ) tiene al vector nulo.
Lím K ( t ) PMg K 0 e) Cuando Lt tiende al infinito, entonces el PMg L (t ) tiene al vector nulo.
Lím L ( t ) PMg L 0
16 17
CIO: Condición de primer orden para maximizar la función. CIIO: condición de segundo orden, y que nos asegura que
f (k )
Ejer cicios de Crecimient o Económico
dPMg k f ( k ) 0 (CIIO 17) dk 2
es cóncava y tiene un máximo.
34
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Cuando k t tiende al cero, entonces el PMg K (t ) tiene al infinito.
f)
Lím K ( t )0 PMg K Cuando Lt tiende al cero, entonces el PMg K (t ) tiene al infinito.
g)
Lím L ( t )0 PMg L n
Inversión neta por trabajador ( I ) Se plantea que la inversión neta por trabajador, va ser igual a la suma de la tasa de cambio por trabajador. Demostración:
Kt K t k t .Lt , Derivado con respecto al tiempo,”t”. Lt dK t dL dk 1 k t . t Lt . t K t k t . Lt Lt . k t x dt dt dt Lt
Ejer cicios de Crecimient o Económico
k
Kt Lt L k. t . k Lt Lt Lt
I n k .n k , la inversión por trabajador
I n k .g l k
Inversión neta por trabajador = Profundización del capital + Ampliación neta de capital Donde;
k t : Tasa de cambio de capital por trabajador en el instante “t”. k t : Capital por trabajador en el instante “t”. n : Tasa de crecimiento de la fuerza laboral. I n : Inversión neta. 2.3.2 Ecuación Fundamental de Solow
1
De la condición de equilibrio macroeconómico tenemos:
S I s.Y I n
s.F K t , Lt I n x
1 Lt
s. f (
Kt I ,1) t Lt Lt
s. f ( k t ) k t n.k t , la ecuación de Solow La versión de Branson de la ecuación fundamental de Solow
Si k t 0
f (k t ) n s. f (k t ) n.k t , se determina kt s
kt* y*
35
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Versión de Barro Nos dice que si partimos de la ecuación fundamental de Solow, y la dividimos entre el capital por trabajador nos dará la tasa de crecimiento proporcionado ( g k );
s. f ( k t ) k t n.k t , dividiendo entre k t
f (k t ) kt s. n kt kt
g k s.
f (k t ) n kt
Gráfica 2.5: La función de producción
1
Ejer cicios de Crecimient o Económico
Gráfica 2.4: El Diagrama de Solow
36
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico En el Gráfico [2.5], se puede apreciar que cuando, el crecimiento proporcionado g k es nulo, entonces g k 0
f (k t ) n , con lo cual se determina k t* . kt s
2.3.3 Crecimiento Proporcionado Es aquel crecimiento en que todas las variables agregadas crecen a la misma tas constante positiva.
gY g K g L
g y gk gl 0
gK gL gk 0
Proporcionado ocurre cuando las tasas de crecimiento de las variables por trabajador son
g y gk 0
nulas.
Crecimiento proporcionado Growth steady state: Crecimiento Balanceado
En el modelo de Solow el crecimiento proporcionado ocurre cuando; g k 0 k t 0 Luego la ecuación Fundamental deviene:
k t s. f ( k t ) n.k t
Puesto que crece proporcionado cuando: k t 0
0 s. f (k t ) n.k t s. f (k t ) n.k t
1
Con lo cual se determina el capital por trabajador de equilibrio. 2.3.4 Sobre la Estabilidad En una economía capitalista en el largo plazo tiende aun análisis de equilibrio dinámico de tipo estable, cualquiera que se a el valor inicial de la relación capital-trabajo ( k t ), se generan fuerzas internas que llevan a que la relación capital-trabajo tienda a la relación capital trabajo de equilibrio.
Ejer cicios de Crecimient o Económico
También se puede expresar en términos de variable por trabajador, donde el crecimiento
Caso I ( k 0 k )
En este caso vemos en el Gráfico [2.6] que, la economía tiene hoy un capital k 0 , la inversión por trabajador (ahorro neto por trabajador) supera a la ampliación neta de capita. Esto quiere decir que va ocurrir una profundización ( k 0 aumentara con el tiempo), hasta llegar a
igualarse con el capital por trabajador k t* , cuando k t 0 , las curvas originado un punto
n.k t s. f (k t ) , que es llamado el estado proporcionado, donde la cantidad de capital por trabajador permanece constante.
37
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
k 0 k t* Lím k ( 0 ) k
Caso II ( k1 k )
Si el capital por trabajador se encuentra a la derecha k t* , como se puede apreciar en el Gráfico [2.7], donde el capital por trabajador esta expresado como k1 .En esta región la ampliación neta de capital supera al ahorro por trabajador, esto quiere decir que el ahorro es menor a la cantidad necesaria para mantener la proporción capital-trabajo constante.
Como k t 0 , por consiguiente la cantidad de capital por trabajador k1 comienza a declinar hasta que se iguale con k t* .
1
Gráfica 2.7: La Estabilidad Caso (II)
Ejer cicios de Crecimient o Económico
Gráfica 2.6: La Estabilidad Caso (I)
k1 k t* Lím k (1) k 2.3.5 Beneficios, salarios y distribución del ingreso El modelo de Solow asume competencia perfecta en los mercados de bienes y de factores, plantea que para cualquier punto en la curva del producto se puede obtener lo siguiente:
38
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
En el Gráfico [2.8] podemos apreciar como k1 y k 2 que se encuentran en la curva, tienden a
k t , donde este punto nos da el estado proporcionado del modelo. También se puede apreciar en el Gráfico que en k1 , la tasa de cambio por trabajador es positiva, pero en k 2 , la tasa de cambio por trabajador es negativa.
: Relación capital-producto
Los parámetros
: Relación producto-capital k : Capital por trabajador
Las variables por trabajador
y : Producto por trabajador
1
W : Masa de salario La retribución de los factores
r : Tasa de interés
Ejer cicios de Crecimient o Económico
Gráfica 2.8: El Diagrama de Fases
Los precios relativos de los factores
:
W r
39
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
En el Gráfico [2.9] se aprecia como se a distribuido el ingreso entre la masa salarial ( W ) y el beneficio total ( r.K B ).
Analíticamente la ecuación fundamental de Solow; k t s. f ( k t ) n.k t , en el estado del
s. f (k t ) n.k t , se determina : k
crecimiento proporcionado, k t 0 entonces
f (k t )
n.k t , se determina : s
k
:
y
Mercado de capitales Como, y t f k t esta definido como:
Yt f (k t ) k t Lt . . K t k t K t
1
Yt f (k t ) Yt f (k t ).Lt , derivado con respecto a K t Lt 0 Yt f (k t ) L Lt . f (k t ) t K t k t K t K t Lt Yt Lt . f (k t ). K t k t
Yt 1 Lt . f (k t ). K t Lt PMgK t f (k t )
Ejer cicios de Crecimient o Económico
Gráfica 2.9: La Distribución del Ingreso
Mercado de Trabajo
PMgLt W
40
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico PMgLt f (k t ) f (k t ).k t
PMgLt f (k t ) r.k t
W f (k t ) f (k t ).k t 2.3.6 Distribución del Ingreso En esta parte veremos como se divide el ingreso, en masa salarial y beneficio.
Y W B Y w.L r.K ( )
1 , nos dará: Lt
Y w. r.k ( ) Producto x Trabajador = Tasa de salario + Beneficio neto x trabajador L Dividiendo a la ecuación ( ) entre y , nos dará:
1
w r.k y y
Donde:
w : Participación del salario en el ingreso nacional. y w w w.L W y Y /L Y Y r.k : Participación de los beneficios en el ingreso nacional. y
1
r.k r.K / L r.K B y Y /L Y Y
Ejer cicios de Crecimient o Económico
Dividiendo a la ecuación ( ) entre
2.4
Modelo de Solow – Swan
El modelo de crecimiento con función Cobb-Douglas, desarrollado por Solow y Swan de manera separada en 1956. Este modelo hace referencia a los supuestos, de ecuaciones fundamental, al examen de cómo se alcanza el equilibrio. Todavía en esta parte se supone que no existe progreso tecnológico en el siguiente Capítulo de este libro (III), veremos como influye la tecnología en el crecimiento de producción de un país. 2.4.1 Supuestos del modelo A los supuestos básicos del modelo de Solow se le añaden los siguientes supuestos particulares:
Utiliza una función de producción Cobb-Douglas.
El stock de capital se deprecia a una tasa constate exógena:
41
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Función de Producción agregada (FPA) La función de producción neoclásica, es homogénea de grado uno o linealmente homogénea, con rendimientos constantes a escala y, además, con rendimientos marginales de cada uno de los factores, positivos y decrecientes.
Yt F ( K t , Lt , A) A.K t .L1t ( I )
con: 0 1
Rendimientos de escala constante.18 s.a: Rendimientos decrecientes.
A : Índice de Nivel de tecnología19. : Elasticidad del producto respecto al capital. Yt : Producción agregada en el instante “t”.
K t : Stock de capital agregado en el instante “t”. Lt : Fuerza de trabajo agregada. Si multiplicado a la ecuación ( I ) por 0 , comprobaremos que la función es homogénea de grado uno.
.Yt A.K t . ..Lt
1
.Yt A. .K t .1 .L1t .Yt .A.K t .L1t
Por lo tanto queda comprobado que a función es homogénea de grado uno. Esta función también puede ser rescrita con la función de producción intensiva (FPI), de la siguiente forma: Dividiendo a la ecuación ( I ), entre Lt t
y t A.K .L
K y t A. t Lt
y t A.k t ( FPI )
1
Yt A.K t .L1t Lt Lt
Ejer cicios de Crecimient o Económico
Donde:
La productivaza marginal de capita ( k t ) es positiva.
df (k t ) f (k t ) .k t 1 0 dk t
La función es cóncava (por que la segunda derivada es negativa).
d 2 f (k t ) f (k t ) 1 .k t 2 0 2 dk t 18
Satisface las condiciones correspondientes a INADA (Inada, 1964).
Charles Cobb y Paul Douglas (1928) propusieron una función de producción, tal que los factores de producción cobran sus productos marginales. En su análisis de la manufactura de los EE.UU. Fue un matemático amigo de charles.
19
Fue senado por Illinois entre 1949-1966 y profesor de economía. Generalmente se supone o se asume que el índice de nivel de tecnológico es la unidad, donde A t = A.
42
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
1/
Límf ( k t ) k ( t ) .
1 k
1
0 1/ 0
Límf ( k t ) k ( t )0 .
1 k
1
Crecimiento poblacional Solow considera que toda la población está empleada y, además, crece a una tasa constante determinada exógenamente. Su forma funcional es:
2.4.2 Ecuación Fundamental de Solow - Swan De la ecuación fundamental de Solow con depreciación tenemos:
k t s. f ( k t ) n .k t , y t f k t Pero la función de producción Cobb-Douglas; y t A.k t f ( k t ) A.k t ( FPI ) Reemplazando la (FPI) en la ecuación de Solow.
k t s. Ak t n .k t , La Ecuación fundamental de Solow – Swan20 Esta ecuación diferencial de acumulación de capital, donde la tasa de cambio del capital por trabajador es igual al remanente del ahorro bruto por trabajador respecto a la ampliación bruta de capital.
1
2.4.3 Estado de Crecimiento Proporcionado Que lo traducen como estado estacionario (Growth steady state), en este estado de
crecimiento proporcionado, cuando k t 0 , entonces s. Ak t n .k t se determina k t . Hallando k t : 1
k s. A t n kt
s. A k t1 n
Ejer cicios de Crecimient o Económico
Lt n Lt
s. A 1 k t n
Donde el asterisco ( ) denota el valor de equilibrio de la variable.
20
Se recomienda al lector que trate de recordar esta ecuación ya que será utilizada a lo largo de este libro en los distintos modelos que se representaran en los capítulos siguientes.
43
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Reemplazando el k t hallado en la (FPI), nos da el valor de producto por trabajador de equilibrio ( y t ).
y t A.k
s. A 1 y n t
t
En el Gráfico [2.10] podemos apreciar que en el estado de crecimiento proporcionado se determina, k t e y t . Donde también se aprecia que la tasa de ahorro , s , donde esta determina el reparto entre consumo por trabajador ( ct ) y inversión por trabajador ( it ). En el
cualquier nivel de k t la producción es f k t , la inversión por trabajador es s. f k t , y el
1
consumo por trabajador es f k t s. f k t . Versión de Barro
A partir de la ecuación fundamental de Solow – Swan con depreciación;
k t s. f ( k t ) n .k t , dividiendo a esta ecuación entre el capital por trabajador de equilibrio ( k t ), tenemos:
kt k s. A. t n ( II ) kt kt
k s. A.
Ejer cicios de Crecimient o Económico
Gráfica 2.10: Estado Proporcionado de las variables
k t n , La ecuación fundamenta Solow-Swan-Barro kt
44
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico El miembro izquierdo de la ecuación ( II ) representa la tasa de crecimiento del capital per capita y es igual a la diferencia entre s.k t 1 (curva de ahorro) y ( n ) (curva de depreciación).
s. A.k t n , se determina k t . k
En el crecimiento proporcionado la g k 0 , entonces 1
Hallando k
t ;
s. A 1 k n
s. A k n k
t
En el Gráfico [2.11] podemos apreciar que la curva de ahorro es decreciente, tiende a cero cuando k t se aproxima a infinito y cuando k se acerca a cero (CONDICIONES INADA). En cuanto a la curva de depreciación es horizontal, es decir, es independiente de k . Considerando que ésta es estrictamente positiva y la curva s.k t 1 toma valores entre cero e infinito, las dos funciones (curvas) se cruzan una sola vez en la gráfica (punto Et ) y la k t correspondiente que representa a este punto es el capital per capita que existe en el estado proporcionado. 2.4.4 Acerca de la estabilidad La economía capitalista en el largo plazo tiende a un estado de crecimiento proporcionado, y esto lo veremos en dos casos:
Caso I ( k1 k )
En este caso vemos en el Gráfico [2.12] que, la economía tiene hoy un capital k 0 , la inversión por trabajador (ahorro neto por trabajador) supera a la ampliación neta de capita. Esto quiere decir que va ocurrir una profundización ( k1 aumentara con el tiempo), hasta
llegar a igualarse con el capital por trabajador k t* , cuando k t 0 , las curvas originado un
45
1
Gráfica 2.11: versión de Barro
Ejer cicios de Crecimient o Económico
k Donde: t k g k : Tasa de crecimiento del capital kt
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico punto n .k t s. f ( k t ) , que es llamado el estado proporcionado, donde la cantidad de capital por trabajador permanece constante.
k 0 k t* Lím k ( 0 ) k
Caso II ( k 2 k )
Si el capital por trabajador se encuentra a la derecha k t* , como se puede apreciar en el Gráfico [2.13], donde el capital por trabajador esta expresado como k 2 .En esta región la ampliación neta de capital supera al ahorro por trabajador, esto quiere decir que el ahorro es menor a la cantidad necesaria para mantener la proporción capital-trabajo constante.
Como k t 0 , por consiguiente la cantidad de capital por trabajador k1 comienza a declinar hasta que se iguale con k t* .
1
Gráfica 2.13: La Estabilidad Caso (II)
Ejer cicios de Crecimient o Económico
Gráfica 2.12: La Estabilidad Caso (I)
k 2 k t* Lím k ( 2 ) k
46
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 2.4.5 Dinámica de transmisión sobre la convergencia Se le da el nombre de “Dinámica de transmisión”, por que hace preediciones del modelo que se relaciona con las tasa de crecimiento. En este sentido el modelo neoclásico trata de explicar la rapidez con la cual, la economía evoluciona hacia el estado proporcionado. En esta parte trataremos de explicar las implicarías de los dos tipos de convergencia: (a)
Hipótesis de la convergencia Absoluta
Plantean que a largo plazo los países del mundo que solo difieran en su relación capital trabajo, tenderán a un mismo estado de crecimiento proporcionado. En este sentido, aquellas economías que se encontraban en una situación menos favorable (nivel de ingreso per cápita inferior), tenderían a mostrar tasas de crecimiento superiores a las economías más desarrolladas (nivel de ingreso per cápita superior)21. Implicancias Aquello países, que el mismo tiempo (inicio), tienen relativamente un menor capital por trabajador, crecen más rápido, que los países que tienen al inicio mayor capital por trabajador.
1
Gráfica 2.14: La Convergencia Absoluta
Ejer cicios de Crecimient o Económico
Esta primera hipótesis fue propuesta por historiadores económicos como Aleksander Gerschenkron (1952) y Moses Abramovitz (1986).
En el Gráfico [2.14], podemos apreciar que los países pobres que tienen menor capital por trabajador ( k tP ), en el largo plazo crecerán a una tasas mayores que los países ricos con mayor capital por trabajador ( k tR ).
k tP k tR g kP g kR Donde:
g kP : Tasa de crecimiento del país pobre. g kR : Tasa de crecimiento del país rico. P: Países pobres. R: Países ricos. William Baumol (1986), fue uno de los primeros en presentar evidencia documentada entre algunos países y la ausencia de convergencia de otros. 21
Finalmente, por lo que respecta al concepto, debe mencionarse que en el caso de que las economías sean lo suficientemente parecidas si podrá esperarse la existencia de convergencia absoluta.
47
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico La critica de Bradford De Long (1988), es que la convergencia de Baumol para países desarrollados en el siglo pasado, era una muestra sesgada (por que solo usaba países industrializados). En particular De Long observo dos cosas: Primero solo incluía países industrializado (de la década del 1980), segundo al incluir a Argentina en la muestra, que era más rico que Japón en 1870, no se cumplía la convergencia Absoluta. Robert Barro (1992), como se muestra a continuación utilizando una muestra de 98 países constata que la hipótesis de convergencia absoluta es invalidad.
La polémica en torno a la convergencia entre los países generó gran abundancia de estudios empíricos en la década de los noventa que buscaba determinar su existencia en diferentes grupos de países, presentamos un cuadro [1.1] con los resultados de algunos estudios22. Cuadro 1.1: La Convergencia en el mundo Series analizadas
Referencia
Convergencia absoluta
Convergencia condicional
Mundo (110 países)
Salan-i-Martín (1996)
No
Si
Mundo (98 países)
Barro (1991)
No
Si
Mundo (98 países)
Mankiw, Romer, Weill (1992)
No
Si
Barro y Salan-i-Martín (1992)
Si
Si
Mankiw, Romer, Weill (1992)
Si
Si
Pacífico del sur (9 islas)
Cashin y Loayza (1995)
Si
Si
América Latina (12 países)
José de Gregorio (1995)
No
Si
América Latina (23 países)
Corbo y Rojas (1994)
No se responde
Si
México (32 estados)
Navarrete (1994)
No evidente
Si
México (31 estados)
J.Ramon y R.Bátiz (1996)
Si
Si
(48
1
Estados Unidos estados) OCDE (22 países)
Ejer cicios de Crecimient o Económico
El argumento de la convergencia absoluta fue rechazado por la evidencia empírica, ya que si bien algunos países han logrado un alto nivel de crecimiento sostenido, alcanzando los niveles de ingreso per cápita de las economías desarrolladas, las diferencias presentes entre los países más pobres del planeta y los más ricos muestran un alto grado de persistencia.
(b)
Hipótesis de la convergencia Condicional
En el mundo existe una diversidad de economías que presenta un nivel de equilibrio particular, el cual depende de factores de carácter tecnológico, PBI per-cápita, tales como el nivel de alfabetismo y la esperanza de vida al nacer, institucional y social, hacia el cual se tiende a lo largo del tiempo. Según el criterio del PBI per cápita (PPA en dólares), pueden haber distinto grupos de países23. El PNUD, distingue los países según su PBI per-cápita, como se puede apreciar en el cuadro [1.2], de la quinta columna, donde los países capitalista tiene un ingreso por persona superior o igual a 23,928 dólares. 22
Véase la “Convergencia regional en América latina: 1980-2000” de Luís Fernando Cabrera Castellanos Blanca García Alamilla. 23 PPA: paridad de poder de adquisición.
48
Donde los países pobres no tienen necesariamente que alcanzar a los países más ricos en el estado estacionario; por el contrario, es probable que los países pobres tengan un stock de capital por trabajo efectivo muy cercano a “su correspondiente” estado estacionario. Esta hipótesis también implica que los países pobres. Planteamiento Cada grupo de países tiende a largo plazo, a su propio estado de crecimiento proporcionado. Aquello países que al inicio tenían relativamente un menor capital por trabajador, crecerán dentro de su propio grupo , más rápido que los otros países que al inicio tenían más capital por trabajador. Esto quiere decir que se dará la convergencia dentro de su propio grupo. Lo mismo se efectúa con los otros grupos de países si se constata que la convergencia condicional en plausible. Un ejemplo de esto son; Japón, Corea, Singapur y Hong Kong, que 1960, crecieron con mayor rapidez en los últimos treinta años, tal como se expresa la hipótesis de convergencia condicional. 2.4.6 La regla de Oro de la acumulación Esta regla nos quiere decir que el valor de k t del estado proporcionado que maximiza el consumo se le llama la regla de oro de la acumulación de capital y lo denotaremos con k tOro 24.
24
Así es como lo llama Phelps (1961) cuando hace referencia a la tasa de ahorro que maximiza el consumo en el estado proporcionado.
49
1
Para nuestro análisis de la convergencia condicional nos centraremos en quinta columna de este cuadro, donde distingue los grupos por ingresos por persona.
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Para encontrar el stock de capital que se refiere Phelps, lo primero que debemos hacer es
encontrar el estado proporcionado de la ecuación de Solow – Swan, por lo que k t 0 . Por lo que si reescribimos la ecuación, teniendo en cuenta que el ahorro es igual a la producción
menos el consumo. Para expresar al consumo de estado proporcionado, c t , con función del capital en el estado proporcionado.
0 f ( k t ) ct ( n).k t
ct f ( k t ) ( n).k t ( ) .
La ecuación [ ] nos dice que el consumo en el estado proporcionado, es igual a la producción menos la depreciación. Esto quiere decir que un aumento del capital aumentara f (k t ) , el consumo en el estado proporcionado y por ultimo aumenta la cantidad de
Para encontrar la regla mencionada ahora tenemos que maximizar el consumo en el estado proporcionado con respecto a k t , entonces derivando a ct de la ecuación ( ), con respecto a k t .
dct f (k t ) ( n) 0 dk t
f ( k tOro ) PMgk n ()
1
Gráfica 2.15: La regla de Oro
Ejer cicios de Crecimient o Económico
maquinas utilizadas en la producción, de esta manera se afecta a ( n).k t .
Como se puede apreciar en el Gráfico [2.15], que la ecuación ( ), expresa la pendiente de la curva, donde el punto de distancia entre las dos curvas es máxima y determina el Oro
consumo de oro ( c t
). Pero para alcanzar este punto es necesario encontrar el ahorro que Oro
haga que en el crecimiento proporcionado sea precisamente k t
.
Ahora analicemos que pasa con la economía según el Gráfico [2.15] si tenemos un stock de Oro
capital superior a k t ineficiente.
, entonces en este punto la economía se encontrara en un estado
50
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Esta economía podría aumentar su consumo si reduce la tasa de ahorro, a un nivel de la “regla de oro” ya que la tasa de ahorro esta relacionada con el consumo. Al reducir la tasa de ahorro, la curva de ahorro de la economía desplaza hacia abajo, durante este proceso el consumo queda definido como la diferencia entre la función de producción, f (k t ) , y la curva de ahorro s Oro . f ( k t ) . Para apreciar mejor como a evolucionado el consumo con esta disminución del ahorro pasa remos a observar el Gráfico [2.16].
1
Gráfica 2.16: Variación del consumo ante una reducción de s
Ejer cicios de Crecimient o Económico
Gráfica 2.15: Tasa de ahorro superior a la regla de Oro
Oro
A largo plazo la economía convergerá a k t , donde el consumo es superior y también es superior k t . Entonces si la economía encuentra un k t , entonces reducimos la tasa de ahorro a un s Oro y con esto conseguí aumentar el consumo en todos los momentos del tiempo. Entonces podemos concluir que el consumo en el estado proporcionado es máximo en el estado proporcionado de la regla de oro.
51
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 2.4.7 Política de Crecimiento ejercicios resueltos
a) Hallar la ecuación fundamental de Solow – Swan. b) Hallar el estado de crecimiento proporcionado. c) Hallar los valores de capital por trabajador y de producto por trabajador del estado proporcionado. d) Hallar la tasa de salario y la tasa de rendimientos bruto del capital y graficar los valores. e) Hallar la participación de los salarios y de los beneficios brutos en el ingreso nacional. Rpt: a) Hallar la ecuación fundamental de Solow – Swan. De los datos tenemos: s 0.30 , 0.08 , n 0.02 A 1 Yt A.K t3 / 5 .L2t / 5 , dividiendo la función de producción entre la cantidad de trabajadores ( Lt ) tenemos: Para operar con facilidad usaremos un viejo truco matemático Lt Lt .Lt , donde 1
K Yt A. t Lt Lt
Yt K t3 / 5 L2t / 5 A. 3 / 5 . 2 / 5 Lt Lt Lt
3/ 5
yt A.kt3 / 5 (FPI)
Ahora deduciremos la ecuación de Solow – Swan
I t K t .K t
C t (1 s ).F ( K t , Lt , A)
Yt C t I t F ( K t , Lt , A) (1 s ).F ( K t ,.Lt , A) K t .K t
K kt t Lt
1 Lt
k t f ( k t ) .k t ( I )
dk t K t .Lt L t .K t dt L2t
1
K t F ( K t , A.Lt ) .K t ...x
dk K t Lt Kt kt . t k t n.k t ( II ) Lt Lt Lt dt
Reemplazando la ecuación ( I ) en la ecuación ( II )
dk t ( f ( k t ) .k t ) n.k t dt
Ejer cicios de Crecimient o Económico
Problema #1 Suponga que existe una economía capitalista cuya función de producción agregada es Yt A.K t3 / 5 .L2t / 5 , y se sabe que la tasa de ahorro de esta sociedad es de 30% del producto agregado cada año, también se sabe que; La tasa de depreciación del capital es de 8% al año, la tasa de crecimiento de la fuerza de trabajo es del 2% al año y por ultimo se sabe que el índice de nivel de tecnología es la unidad. Se pide:
k t f ( k t ) ( n ).k t ( III )
La ecuación ( III ) representa la ecuación fundamental de Solow – Swan que hemos deducido por única vez, solo la mencionaremos y la aplicaremos de forma directa en las siguientes paginas del libro. Reemplazado los datos en la ecuación fundamental de Solow – Swan.
k t (0.30).(1) k t3 / 5 (0.10) k t , la ecuación de fundamental de Solow – Swan.
52
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico b) Hallar el estado de crecimiento proporcionado.
Para el crecimiento proporcionado tenemos que: k 0 k t 0 Dividiendo la ecuación de fundamental de Solow – Swan, entre el capital por trabajador ( k t ), tenemos:
1 0 0.30 2 / 5 0.10 kt
1 kt 1 (0.30).(1). 2 / 5 0.10 k 0.30 2 / 5 0.10 kt kt kt
c) Hallar los valores de capital por trabajador y de producto por trabajador del estado proporcionado. 5/ 2
Oro
k t
15.589
Ejer cicios de Crecimient o Económico
0.30 0.10
Despejando, k t , de la ecuación anterior, tenemos k t
Reemplazando, k t , en la función de producción intensiva (FPI)
y t (15.589) 3 / 5
y t 5.196
s Oro . f ( k t ) 1.5588
1
Gráfico del Problema #1
d) Hallar la tasa de salario y de rendimiento bruto de capital y graficar los valores. Mercado de capital:
d (k t3 / 5 ) 3 1 PMgk r PMgk . dk t 515.589 15.589
2/5
r 0.1999972
53
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Mercado de trabajo:
3 1 PMgL W PMgL f ( k t ) f ( k t ).k t W A.k t3 / 5 . A. 2 / 5 .( k t ) 5 kt W
2 2 . A.k t2 / 5 W .(1).(15.589) 3 / 5 5 5
W 2.079
e) Hallar la participación de los salarios y de los beneficios brutos en el ingreso nacional. La participación del salario:
La participación del beneficio:
r.k B (15.589)0.19999972 0.6 , la participación del beneficio en el ingreso nacional es y Y 5.196 del 60%.
1
Gráfico de la distribución del ingreso nacional
Ejer cicios de Crecimient o Económico
w W 2.079 0.40 , La participación del salario en el ingreso nacionales del 40%. y Y 5.196
Problema #2 Analice el impacto de una reducción permanente de la tasa de depreciación del stock de capital sobre el crecimiento. Rpt: Cuando se produce una reducción del stock de capital, entonces la curva de ampliación del capital, comenzara a rotar en sentido horario, como se muestra en el Gráfico, de tal modo que cuando se intercepto a la curva de ampliación neta de capital, determina el nuevo
54
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico estado de crecimiento proporcionado ( E 2t ), donde la tasa de crecimiento de largo plazo ( g kLP 0 ) es cero. En este punto existe mayor capital por trabajador ( k 2t* ) y un producto por trabajador ( y 2t* ) mayor que el inicial. En el Gráfico posterior podemos apreciar la versión de Barro, donde la reducción de la depreciación se desplaza así abajo, y cuando llega a interceptarse con la curva de ahorro determina mayor capital por trabajador ( k 2t* ) en equilibrio.
s. f (k 2t ) ( n).k 2t
Si: k 2t 0
d ( f ( k 2t )) k 2*t 0 d
Donde: k1*t k 2*t
Ejer cicios de Crecimient o Económico
k 2t s. f ( k 2t ) ( n).k 2t
1
Gráfico del problema #2
Problema #3 Suponga que existe una economía capitalista cuya función de producción agregada es Yt A.K t3 / 4 .L1t / 4 , y se sabe que la tasa de ahorro de esta sociedad es de 35% del producto agregado cada año, también se sabe que; La tasa de depreciación del capital es de 10% al año, la tasa de crecimiento de la fuerza de trabajo es del 1% al año y por ultimo se sabe que el índice de nivel de tecnología es la unidad. Se pide: a) Hallar la ecuación fundamental de Solow – Swan. b) Hallar el estado de crecimiento proporcionado. c) Hallar los valores de capital por trabajador y de producto por trabajador del estado proporcionado. d) Hallar la tasa de salario y la tasa de rendimientos bruto del capital y graficar los valores. e) Hallar la participación de los salarios y de los beneficios brutos en el ingreso nacional.
55
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Rpt: a) Hallar la ecuación fundamental de Solow – Swan. De los datos tenemos: s 0.35 , 0.10 , n 0.01 A 1 Yt A.K t3 / 4 .L1t / 4 , dividiendo la función de producción entre la cantidad de trabajadores ( Lt ) tenemos: Para operar con facilidad usaremos un viejo truco matemático Lt Lt .Lt , donde 1
Yt K t3 / 4 L1t / 4 A. 3 / 4 . 1 / 4 Lt Lt Lt
K Yt A. t Lt Lt
3/ 4
yt A.kt3 / 4 (FPI)
k t (0.35).(1) k t3 / 4 (0.11) k t , la ecuación de fundamental de Solow – Swan. b) Hallar el estado de crecimiento proporcionado.
Para el crecimiento proporcionado tenemos que: k 0 k t 0 Dividiendo la ecuación de fundamental de Solow – Swan, entre el capital por trabajador ( k t ), tenemos:
1 kt 1 (0.35).(1). 1 / 4 0.11 k 0.35 1 / 4 kt kt kt
0.11
1 0 0.35 1 / 4 kt
0.11
c) Hallar los valores de capital por trabajador y de producto por trabajador del estado proporcionado. 4
k t 102.5
1
0.35 Despejando, k t , de la ecuación anterior, tenemos k 0.11 t
Reemplazando, k t , en la función de producción intensiva (FPI)
y t (1).(102.5) 3 / 4
y t 32.21
Ejer cicios de Crecimient o Económico
Reemplazado los datos en la ecuación fundamental de Solow – Swan.
s * . f ( k t ) 11.27
56
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Ejer cicios de Crecimient o Económico
Gráfico del Problema #3
d) Hallar la tasa de salario y de rendimiento bruto de capital y graficar los valores. Mercado de capital:
d (k t3 / 4 ) 3 1 PMgk r PMgk . dk t 4 102.5
1/ 4
r 0.2357112
Mercado de trabajo:
W
1 1 . A.k t2 / 4 W .(1).(102.5) 3 / 4 4 4
1
3 1 PMgL W PMgL f ( k t ) f ( k t ).k t W A.k t3 / 4 . A. 1 / 4 .( k t ) 4 kt W 8.05347
e) Hallar la participación de los salarios y de los beneficios brutos en el ingreso nacional. La participación del salario:
w W 8.05347 0.25 , La participación del salario en el ingreso nacionales del 25%. y Y 32.21 La participación del beneficio:
r.k B (102.5)0.2357112 0.75 , la participación del beneficio en el ingreso nacional es y Y 32.21 del 75%.
57
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Problema #4 Imaginemos que China en la década de los 80 experimentos un incremento de su población, considerablemente, y debido a estos se quiere analizar este incremento permanente de la tasa de crecimiento de la población, sobre el crecimiento de su economía. Rpt: Con el aumento permanente de la tasa se crecimiento de la población ( n ), la curva de ampliación de capital rota en sentido antihorario, de tal modo que cuando se intercepto con la curva de ampliación neta de capital determina el nuevo estado de crecimiento proporcionado, con mayor capital ( k t* ) y con mayor producto por trabajador ( y t* ).
1
Gráfico del problema #4
Ejer cicios de Crecimient o Económico
Gráfico de la distribución del ingreso nacional
58
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico En la versión de Barro que se muestra en la parte inferior de nuestro Gráfico presentado, podemos apreciar, que el aumento de la tasa de crecimiento de la población hace que la curva de depreciación se desplace así arriba y al interceptarse con la curva de ahorro genere el nuevo punto de equilibrio ( E 2t ). En este punto existe un menor capital por trabajador. Nótese que este mismo aumento de la tasa de crecimiento potencial de la economía.
g Potencial _ LP n tasa _ progreso _ tecnológic o Si n g Potencial
Modelo de Crecimiento de Uzawa
El economista japonés Hirofumi Uzawa crea un modelo de crecimiento de dos sectores que propuso25. 2.5.1 Supuestos del modelo Sea una economía capitalista sin relación con el exterior. Dicha economía solo produce dos bienes: Bienes de consumo con un subíndice (ct) Bienes de capital con un subíndice (m) Habrán dos sectores productivos: Sector de bienes de consumo. Sector de bienes de capital. Cada sector produce con una función de producción Neoclásica. El sector de bienes de consumo es mas intensivo que el sector de bienes de capital. Los mercados de bienes y factores son mercados de competencia perfecta. Los trabajadores no ahorran PMg ( s w ) 0 . Los capitalistas ahorran todo su beneficio PMg ( s k ) 1 .
1
La fuerza de trabajo crece a una tasa constante ( n ). Nótese que todo modelo de crecimiento de dos bienes por su propia naturaleza es más complejo que el modelo de Solow. Ciertamente habrá precios relativos de los bienes, de los factores de capital por trabajador sectorial, etc.
Este modelo de equilibrio general de dos bienes es un modelo reducido. Obsérvese que Uzawa, simplifica el análisis con lo cual, los trabajadores no ahorran todo.
25
Ejer cicios de Crecimient o Económico
2.5
El titulo de su trabajo se llamo "On a Two-Sector Model of Economic Growth, I"(En Modelo de Dos-sector
de Crecimiento Económico, yo), 1961, RES.
59
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 2.5.2 Sector de bienes de consumo Se produce una función de producción Neoclásica de bienes de consumo.
Yc F ( K c , Lc ) Dividiendo la función entre LC , tenemos:
Yc K L F( c , c ) Lc Lc Lc
y c f (k c ) …Función de producción intensiva
consumo: Yc
c . Pc
Donde;
c : Consumo nominal de bienes de consumo. Pc : Precio del bien de consumo. c : Consumo real de bienes de consumo. Pc 2.5.3 El sector de bienes de capital Se produce una función de producción Neoclásica de buen comportamiento.
Ym F ( K m , Lm ) Dividiendo entre Lm , tenemos:
Ym K L F( m , m ) Lm Lm Lm
y m f (k m ) …Función de producción intensiva
1
Donde;
Ejer cicios de Crecimient o Económico
El producto del sector de bienes de consumo, Yc , es igual al consumo real de bienes de
I : Inversión nominal.
Pm : Precio de bien de capital. I : Inversión real de bienes de capital. Pm Subíndice: m representa el bien de capital (maquinaria). El producto del sector de bienes de capital Ym , es igual a la inversión real de bienes de capital: Ym
I . Pm
El equilibrio en el crecimiento proporcionado Se asume que se llega al estado de crecimiento proporcionado, los mercados de factores van estar en equilibrio.
60
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Mercado de trabajo Se plantea que existe el sector de mercado de consumo y el mercado de bienes de capital. a. Mercado de trabajo del sector de bienes de consumo Que las empresas capitalistas van a contratar trabajadores en aquella cantidad, donde el salario real se iguale al salario nominal. b. Mercado de trabajo del sector de capital Las empresas capitalistas contratan trabajadores hasta, que la cantidad de salario nominal de consumo se iguales al salario de bienes de capital.
a. Mercado de capital en el sector de bienes de consumo Las empresas maximizadotas de beneficios contratan maquinas, hasta que esta se iguale con la tasa de rendimiento real.
PMgK c
rc Pc
b. Mercado de capital de bienes de capital Se asume que el nivel de tasas de rendimiento nominal del capital, rC rm r y también se asume el pleno uso de los factores, Lc Lm L y K c K m K , donde:
PMK m
rm Pm
rc : Tasa de rendimiento real del capital en términos de bienes de consumo. Pc rm : Tasa de rendimiento real del capital en términos de bienes de capital. Pm
1
2.5.4 Ecuación fundamental de Uzawa
Ejer cicios de Crecimient o Económico
Mercado de capital
Partiendo de la condición de equilibrio macroeconómico, tenemos:
S real I real
S I Pm Pm
Asume todos los capitalistas ahorran todo su beneficio.
S B sK . Pm Pm
donde: s K PmgK capital 1
Reemplazando el valor que tenemos s K .
S B S r .K Pm Pm Pm Pm Reemplazando
r I .K (I ) Pm Pm
Dividiendo a la ecuación ( I ) entre L , tenemos:
61
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico r K I 1 . . ( II ) Pm L Pm L In Recordando que la inversión neta por trabajador esta definida como: k t n. k t , L reemplazando la inversión neta en la ecuación ( II ). r .k t k t n.k t ( III ) Pm
De la función de producción intensiva de
y m r f m () PMK m m k m Pm
k t f m .k t n.k t , la ecuación fundamental de Uzawa Esta ecuación diferencial del proceso de acumulación en una economía capitalista de dos bienes. Va significar que la tasa de cambio del capital por trabajador es un remanente del producto marginal del capital del sector de maquinas, respecto a la ampliación de capital. 2.5.5 Estado de crecimiento proporcionado En el estado de crecimiento proporcionado, la tasa de crecimiento del capital ( g k ) es nula, entonces si g k 0 , esto nos da: f m n , que determina k m .
1
Gráfica 2.17: Distribución del ingreso del modelo de Uzawa
Ejer cicios de Crecimient o Económico
Reemplazando en la ecuación ( III ), tenemos:
En el Gráfico [2.17] se puede apreciar la distribución del ingreso entre el sector de bienes capitalista y el sector de bienes de consumo, donde la función de producción de bienes de capital, es más intensiva que la función intensiva de bienes de consumo.
62
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Nótese:
k m k t k c k t .k m (1 ).k c
i c, m
Donde: k i : Capital por trabajador del sector i-ésimo.
y i : Producto por trabajador del i-ésimo sector.
Ejer cicios de Crecimient o Económico
Pi : Precio del bien i-ésimo. W : Salario real del bien i-ésimo. Pi r : Tasa de rendimiento real del capital en términos del bien i-ésimo. Pi w : Precio relativo de los factores. r Pc : Precio relativo de los bienes. Pm
1
Gráfica 2.18: Estado de crecimiento proporcionado de Uzawa
Dividiendo la ecuación fundamental de Uzawa entre k t , tenemos:
kt f m n kt
g k f m n
63
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 2.6
Modelo de Kaldor (Enfoque de Cambridge)
La historia de las leyes de Kaldor se remonta a los debates sobre las consecuencias de los rendimientos crecientes dinámicos y estáticos y sobre el papel de la demanda real en la determinación de la trayectoria de crecimiento de largo plazo de la economía.
Kaldor (1970 y 1981) examinó a fondo las implicaciones del principio de causación circular acumulativa y de los rendimientos crecientes en el desarrollo regional y en el comercio internacional. Distinguió entre actividades económicas basadas en la tierra y actividades basadas en procesos de transformación. En las primeras, los precios relativos constituyen el mecanismo de ajuste a los desequilibrios, mediante los efectos ingreso y sustitución. En las actividades industriales, el proceso opera de manera diferente Kaldor llegó incluso a afirmar que el libre comercio podía dejar al mundo en una situación peor que si hubiese algún tipo de regulación. Los hechos confirmaban su hipótesis. El comercio internacional entre países ricos se basaba en el intercambio dentro de las industrias y no entre industrias, lo que reafirmaba la idea clásica de que las fuerzas que llevan a la especialización son el comercio basado en bajos salarios (bienes primarios) y el comercio basado en conocimiento y tecnología (bienes industriales). Un país exitoso es aquel que exporta bienes con altas elasticidades ingreso de la demanda e importa bienes primarios con bajas elasticidades. Las exportaciones se convierten en el componente autónomo más importante del gasto en las economías desarrolladas porque les permite mantener altos niveles de utilización de la capacidad productiva en las manufacturas. 26 El resultado más importante del desarrollo del modelo de crecimiento y distribución de la renta de Kaldor es el llamado “teorema de Cambridge”, el cual establece que la tasa de beneficios (r) en la senda de crecimiento a largo plazo de una economía, es el cociente entre la tasa natural de crecimiento (gn) y la (pura) propensión al ahorro de los capitalistas (sc) 27. Este es un modelos Neokeynesianos, donde Kaldor efectúa una critica a los modelos Neoclásicos de crecimiento indicando que no se ciñen a los hechos esterilizados de
26
Álvaro Martín Moreno Rivas (2008 )Las leyes del desarrollo económico endógeno de kaldor: el caso colombiano 27
Título original: “The government sector in Kaldor-Pasinetti models of growth and income distribution” (El sector gubernamental en Kaldor-Pasinetti planea de crecimiento y distribución del ingreso) Journal of Post Keynesian Economics (El periódico de Post la Economía Keynesiana), vol. 15, N. 2, pag: 211-228.
64
1
Desde esta perspectiva analítica, lo importante es identificar los mecanismos de transmisión en los procesos de cambio estructural de las economías capitalistas. La explicación del desarrollo y del surgimiento y persistencia de polos de crecimiento y estancamiento exigía dejar de lado los modelos de un sector, y utilizar esquemas multisectoriales para estudiar las interrelaciones entre los sectores con rendimientos decrecientes (la agricultura) y con rendimientos crecientes (la industria.
Ejer cicios de Crecimient o Económico
Podríamos decir que los trabajos que Kaldor publicó después de 1966 constituyen una especie de reversión de la técnica analítica. En primer lugar, descarta el método de equilibrio por irrelevante, pues el desarrollo económico es ante todo un proceso de desequilibrio. En segundo lugar, complementa el enfoque de la oferta con el de la demanda, y hace de ésta una fuerza esencial en la determinación del ritmo de crecimiento de la economía en el corto y en el largo plazo. Por último, opta por un análisis cualitativo antes que cuantitativo, ya que privilegia el enunciado de leyes empíricas y busca explicaciones endógenas y bicausales de los hechos estilizados, relegando la determinación de los valores de las variables a un lugar secundario.
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico crecimiento, frente a lo cual, plantea un modelo de crecimiento que considere las clases sociales, distribución del ingreso y la tasa de ahorro de la sociedad en forma endógena. 2.6.1 Supuestos del modelo Sea una economía capitalista en el cual existen dos clases sociales:
Capitalista con un subíndice (c).
Trabajadores con un subíndice (w).
Dicha economía se halla en pleno empleo. La inversión no es exógena. Cada clase social tiene su propio ahorro que depende de su ingreso, su producto
El producto marginal de los capitalistas supera al producto marginal de los trabajadores esto puede ser escrito mejor como: 0 s w s c 1 . La economía no tiene relación con el exterior. Desarrollo del modelo (a) Identidades El producto por el lado del ingreso es igual a la suma de la masa de salario y la masa de beneficio.
Y W B
Su producto agregado es igual al ingreso nacional. El ahorro agregado, S, se desdobla entre el ahorro de los capitalistas ( s c ) y el ahorro de los trabajadores ( s w ).
S s w sc
1
(b) Ecuación de comportamiento El ahorro de los capitalistas ( s c ), depende directamente de su ingreso de los beneficios dado su producto marginal ahorrar de los capitalistas ( PMgs c ), donde; PMgs c 1 .
S c s c .B
0 sc 1
El ahorro de los trabajadores ( s w ) depende directamente de su ingreso laboral, masa de salario w, dado su producto marginal ahorrar ( PMgs w ) de los trabajadores.
S w s w .W
Ejer cicios de Crecimient o Económico
marginal ( PMgs ) de cada clase.
0 sw 1
Ecuación de ahorro de Kaldor Plantea que el ahorro agregado va depender directamente del ingreso nacional y de los beneficios dado el producto marginal ahorrar ( PMgs ) de las clases sociales. De la identidad Y W B W Y B , reempezando en la siguiente ecuación que se muestra
S Sc Sw
65
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico S s c .B s w .W S s c .B s w .(Y B) S s w .Y ( s c s w ).B Tasa de ahorro de la sociedad
S s w .Y ( s c s w ).B Dividiendo la ecuación anterior entre Y, tenemos.
S B s w ( s c s w ). Y Y B K s s w ( s c s w ). . K Y
s f (r )
Ejer cicios de Crecimient o Económico
s s w ( s c s w ).r.v Dado s w , s c , r
2.6.2 Ecuación de beneficios De la condición de equilibrio macroeconómico tenemos;
SI s w .Y ( s c s w ).B I
B
1 .I s w .Y , Ecuación de beneficio sc s w
Participación de los beneficios en el ingreso nacional De la ecuación de beneficio tenemos;
B
1 .I s w .Y ( I ) sc s w
Dividiendo entre Y:
1
B 1 I . s w ( II ) Y sc s w Y Esto significa que depende directamente del coeficiente de inversión dado las diversas propensiones marginales ahorrar. Tasa de beneficio De la ecuación ( I ), tenemos;
B
1 .I s w .Y sc s w
Dividiendo entre K
B 1 I Y . s w . ( III ) K sc s w K K Estos significan que la tasa de beneficios de la sociedad depende directamente de la tasa de crecimiento de capital, dad la tecnología y las proporciones marginales ahorrar. Donde:
66
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico B r : Tasa de beneficio. K I K : Tasa de crecimiento del stock de capital gk K K Y : Relación producto-capital. K Es una teoría de la distribución que señala que las clases sociales y se basa en su producto marginal que lo genera. 2.6.3 Crecimiento Económico De la condición de equilibrio macroeconómico tenemos:
Ejer cicios de Crecimient o Económico
SI s w .Y ( s c s w ).B I Dividiendo entre el stock de capital la ecuación anterior, tenemos:
sw .
Y B I s c s w . K K K
s w . . s c s w .
B I K K
: Relación producto-capital y es el reciproco de la relación capital-producto 1 / v . s w . . s c s w .r g K gK
s w ( s c s w ).r.v ( IV ) v
Nótese que el numerador de la ecuación ( IV ) es la tasa de ahorro de la sociedad ( s r ).
gK
s(r ) v
s (r ) : Es endógeno.
gY
1
En el crecimiento proporcionado: g K g Y
s(r ) v
Nótese, Que Kaldor halla que la tasa de crecimiento del producto es igual a la tasa de ahorro de la sociedad es endógena y permite que se igualen a la tas de crecimiento efectivo.
gw ge Es un modelo donde hay una tasa de ahorro de la sociedad es endógena.
67
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 2.6.4 Caso Límite En este caso nos dice que la economía capitalista en la cual los trabajadores no ahorran, esto significa que PMgs trab s w 0 , trabajadores no ahorran de la ecuación de beneficio ( I ), reemplazando s w 0 tenemos:
B
I (I ) sc
En una economía capitalista donde los trabajadores no ahorran, los beneficios dependen del volumen de inversión dado el producto marginal de los capitalistas. Kalecki: Señala que los capitalistas guardan todo lo que gana y los trabajadores gastas todo lo que ganan, esto quiere decir que s w 0 .
B 1 I . ( II ) Y sc Y En una economía en que los trabajadores no ahorran su beneficio depende directamente del coeficiente de inversión dado su propensión marginal. De la ecuación de beneficio deviene:
B 1 I . K sc K
r
gk ( III ) sc
En una economía capitalista en los que los trabajadores no ahorran, la tasa de beneficio depende directamente del stock de capital, dado la propensión marginal de los capitalistas. Ecuación de crecimiento De la ecuación numero ( IV ), tenemos la ecuación de crecimiento, donde deviene:
g K gY
s c .rY (VI ) v
1
g Y s c .r , Ecuación de crecimiento Cambridge 28.
Ejer cicios de Crecimient o Económico
De la ecuación de beneficio ( II ), tenemos:
La economía capitalista en el largo plazo, cuando los trabajadores no ahorran la tasa de crecimiento del producto depende directamente de la tasa de beneficio, dado el producto marginal ahorrar de los capitalistas ( PMgs c ). 2.6.5 Tres leyes de crecimiento de kaldor En primer lugar, mostró la importancia de los análisis desagregados y multisectoriales para explicar las diferencias de crecimiento per cápita entre países. En segundo lugar, propuso una explicación imaginativa y general para explicar el bajo desempeño económico de Inglaterra después de la posguerra. Aunque luego modificó algunas de sus hipótesis, mantuvo la formulación de las tres leyes del crecimiento endógeno a pesar de las agudas controversias posteriores a su enunciado conjunto de 1966. Como dijo en su artículo de ese año: “la hipótesis que intento examinar es que las rápidas tasas de crecimiento económico están asociadas con tasas rápidas de crecimiento del sector secundario de la economía 28
El teorema de Cambridge fue primero atacado principalmente por escritores como Meade (1963, 1966), Meade y Hahn (1965) y Samuelson y Modigliani (1966) que trataron de desarrollar un “teorema dual” o “anti – Pasinetti”, abandonando el supuesto que contiene el 0 < sw < sc < 1. En breve, el “teorema dual” dice que el ratio producto-capital (Y/K) en la senda de crecimiento equilibrado es igual al cociente de la tasa
68
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico principalmente el sector de las manufacturas y que esto es un atributo de una etapa intermedia del desarrollo económico: es la característica de la transición de la ‘inmadurez’ a la madurez” (Kaldor, 1966) Kaldor nos dice en su libro “Causa de crecimiento de de UK” (1966), nos da las tres “leyes” del crecimiento de Kaldor. En su planteamiento, Kaldor hace referencia a los efectos sobre el resto de la economía de una expansión en el sector manufacturero dice: PRIMERA LEY DE KALDOR Existe una fuerte relación de causalidad que va del crecimiento del producto manufacturero al crecimiento del PIB.
g Y c z ( g m g nm ) Donde g Y : Representa la tasa de crecimiento del PIB.
g m : Representa la tasa de crecimiento industrial. g nm : Representa la tasa de crecimiento no manufacturero. z ( g m g nm ) : Esta expresión busca reducir los efectos espurios, por eso se expresa en función de la diferencia entre las tasas de crecimiento industrial g m y de crecimiento no manufacturero g nm . Kaldor consideraba que la correlación era significativa y que no podía atribuir al simple hecho de que la producción industrial hace parte del PIB. Propuso dos razones para apoyar esta ley: la reasignación de recursos subutilizados en el sector primario o de servicios, donde había desempleo disfrazado o subempleo y menor productividad, lo que permitía aumentar la producción sin reducir la oferta de los demás sectores; y la existencia de rendimientos crecientes a escala estáticos y dinámicos en la industria manufacturera. Los primeros hacen referencia al tamaño óptimo de la empresa (producción a gran escala); los segundos, a los procesos de aprendizaje en el oficio y a las economías externas producto de la especialización industrial. Estos últimos son esenciales, pues su carácter macroeconómico convierte al sector industrial en motor del crecimiento. SEGUNDA LEY DE KALDOR Existe una fuerte relación positiva entre el crecimiento de la productividad en la industria manufacturera y la tasa de crecimiento del producto. Existen varias maneras de expresar esta ley. Aquí usamos las dos expresiones de Kaldor (1966).
Pm .g m s.a : 0 1 em (1 ) g m Donde Pm : Representa el crecimiento de la productividad del trabajo.
69
1
g Y c dg m
Ejer cicios de Crecimient o Económico
Formalmente, se puede expresar así:
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico em : Representa la tasa de crecimiento del empleo en la industria. g m : Representa la tasa de crecimiento del PIB industrial. Esta relación también se conoce como “ley de Verdoorn” (1948). Un coeficiente menor que 1 indica rendimientos crecientes a escala. El punto controversial es la relación de causalidad. Algunos autores sostienen que va en sentido contrario, es decir, del crecimiento de la productividad al crecimiento del producto industrial, y aluden a la importancia de la brecha tecnológica en la explicación de la productividad (Gomulca, 1983).
Formalmente, se puede expresar como:
Ptot c kg m jenm Donde Ptot : Representa la tasa de crecimiento de la productividad total.
g m : Representa la tasa de crecimiento del PIB industrial. enm : Representa la tasa de crecimiento del empleo en los sectores no manufactureros Kaldor analiza las causas de las diversas causas de crecimiento del producto manufacturero. Factor por el lado de la demanda Factor por el lado de la oferta (T). 2.7
I (inversión) C (consumo) X (exportaciones) Dotación de factores: capital (K), trabajo (L) y tecnología
Modelo de Pasinetti
En su trabajo de 1962, va ser un balance del modelo de Kaldor donde hay aciertos y definiciones. En los aciertos señala que hay clases sociales y el producto marginal ahorrar ( PMgs ) es endógeno y en las diferencias descubre, que hay una limitación en una economía capitalista, donde los propietarios del ahorro son dueños del interés (el ahorro de los trabajadores genera interés), que pertenece a los trabajadores29. Concluye que existen beneficios de los trabajadores y capitalistas, por eso su finalidad es corregir el modelo de Kaldor.
29
La tasa de crecimiento del producto (gy) dividida por la propensión al ahorro de los trabajadores (sw), esto es: Y /K = gY / sw.
70
1
Cuanto más rápido es el crecimiento del producto manufacturero más rápida es la tasa de transferencia de trabajo de los sectores no manufactureros a la industria, de modo que el crecimiento de la productividad total de la economía está asociado positivamente con el crecimiento del producto y del empleo industrial y correlacionado negativamente con el crecimiento del empleo fuera del sector manufacturero.
Ejer cicios de Crecimient o Económico
TERCERA LEY DE KALDOR
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 2.7.1 Supuestos del modelo A los supuestos de Kaldor Pasinetti le añade los siguientes supuestos: El ahorro de los trabajadores genera un interés que pertenece a los trabajadores. Existen beneficio de los capitalistas y beneficios de los trabajadores. La economía considerada es cerrada, sin actividad gubernamental, y en la senda de crecimiento equilibrado con pleno empleo a largo plazo. La cuantía de la inversión (I), dad exógenamente, esta fijada al nivel necesario para asegurar el pleno empleo en el equilibrio a largo plazo. La fuerza de trabajo medida en unidades de eficiencia (L) crece de forma exponencial a
trabajadores ( Pw ) y beneficios asignados a los capitalistas ( Pc ). Del mismo modo el ahorro total neto (S) se divide entre el ahorro de los trabajadores ( s w ) y el de los capitalistas ( s c ), y el capital total (K) es, en parte, propiedad de los trabajadores ( K w ) y en parte de los capitalistas ( K c ). Adicionalmente, 0 s w s c 1 .
El ahorro agregado de la sociedad se desdobla, en ahorro de los capitalistas ( s c ) y ahorro de los trabajadores ( s w ).
S Sc Sw
El beneficio total se desdobla en beneficio de los capitalistas ( Bc ) y beneficio de los trabajadores ( B w ).
B Bc B w
El producto agregado por el lado del ingreso, se desdobla en masa de salario ( W ), y masa de beneficio ( B ). El ingreso de los trabajadores se desdobla en masa de salario ( W ), y beneficio de los trabajadores ( B w ).
Y W Bw Donde: El subíndice (c) representa a los capitalitas. El subíndice (w) representa a los trabajadores. Ecuación de comportamiento
El ahorro de los capitalistas ( s c ), es una proporción de sus beneficios ( Bc ), dado el producto marginal ahorrar ( PMgs ) de los capitalistas.
S c s c .Bc
El ahorro de los trabajadores
( s w ), es una proporción de su ingreso ( Yw ), dado el
producto marginal ahorrar ( PMgs ) de los trabajadores.
71
1
Los ingresos netos totales (Y) se dividen en salarios (W), beneficios asignados a los
Ejer cicios de Crecimient o Económico
la tasa de crecimiento natural de Harrod.
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico S w s w .Yw
0 sw sc 1
S w sw (W Bw ) 2.7.2 Función de ahorro de Pasinetti El ahorro agregado depende directamente del ingreso nacional y de los beneficios de los capitalistas, dado el producto marginal ahorrar ( PMgs ) de las clases sociales.
S S (Y , Bc ) S Sc Sw S s c .Bc s w .Yw ( I ) Y W Bc B w
Y B W Bw Yw (II )
Ejer cicios de Crecimient o Económico
De. Y W B
Reemplazando la ecuación ( II ) en ( I ):
S s c .Bc s w .Yw
S s c .Bc s w .(W Bw ) S s c .Bc s w .(Y Bc ) S sY .Y ( s c s w ).Bc Tasa de ahorro de la sociedad De la forma de ahorro agregada, dividiendo entre: Y
B S sY ( s c s w ). c Y Y Donde la tasa de ahorro de la sociedad es endógena S S ( Bc / Y ) . La función de beneficio de los capitalistas Partiendo de la condición de equilibrio macroeconómico, tenemos:
1
SI
s w .Y ( s c s w ).Bc I 1 Bc .I s w .Y sc s w Razón de beneficio de los capitalistas respecto al ingreso nacional De la función de beneficios de los capitalistas
Bc
1 .I s w .Y sc s w
Dividiendo entre Y, tenemos:
Bc 1 I . s w ( III ) Y sc s w Y Razón de beneficio de los capitalistas respecto al stock de capital De la función de beneficios de los capitalistas
Bc
1 .I s w .Y sc s w
72
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Dividiendo entre k, tenemos:
Bc 1 I . s w ( IV ) K sc s w K De la relaciones
B Bc B w Dividiendo entre stock de capital (K)
B Bc B w K K K Multiplicando y dividiendo entre K w / K
Ejer cicios de Crecimient o Económico
B Bc B w K w . K K Kw K B Bc K rw . w (V ) K K K Así mismo de la relación
B Bc B w Dividiendo entre stock de capital (y)
B Bc B w Y Y Y Multiplicando y dividiendo entre K w / K
B Bc B w K w K . . Y Y Kw K Y B Bc K K rw . w . (VI ) Y Y K Y Donde: rw : Tasa de rendimiento de capital por trabajador
1
K w / K : Razón de capital de los trabajadores al capital agregado Obteniendo algebraicamente K w / K tenemos: En un equilibrio dinámico, tenemos que:
Kw Sw K S
K w s w .Y (VII ) K S Reemplazando la Condición S I , y la ecuación ( II ), en la ecuación ( IV ) nos da:
K w s w .(Y Bc ) K s .Y s .(Y Bc ) w w w K I K I I Despejando el beneficio de los capitalistas ( Bc ), tenemos:
73
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 1 .I s w .Y sc s w Dividiendo la ecuación anterior entre la inversión ( I ), tenemos: Bc
Bc 1 s w .Y .1 I sc s w I
Reemplazando y resolviendo, tenemos la parte de capital correspondiente a los trabajadores en situación de equilibrio.
Reemplazando K w / K y la ecuación ( IV ), en la ecuación ( VIII ) La participación de los beneficios en el stock de capital es:
s .s sc B Bc ( IX ) rw . c w K Y s s s s w c w c Reemplazando K w / K en la ecuación ( VI ), tenemos:
s .s Y sc K B Bc . ( X ) rw . c w . Y Y sc s w I sc s w Y 2.7.3 Supuesto de largo plazo En el largo plazo se da la igualdad de las diversas tasas de ganancia y el interés, esto quiere decir que:
1
Bc B B w i Kc Kw K
Ejer cicios de Crecimient o Económico
Kw s .s Y sc w c . (VIII ) K sc s w I sc s w
rc rw r i La implicaría de este supuesto, se puede notar si reemplazados el supuesto de largo plazo en la ecuación ( IX ) y simplificando nos da:
B 1 r . K sc K En una economía capitalista donde los trabajadores ahorran y son propietarios de sus intereses en el largo plazo la tasa de beneficio, va depender directamente de la tasa de crecimiento del capital dado la propensión marginal ahorrar ( PMgs c ) de los capitalistas. Ahora aplicando dicho supuestos se tiene, que la ecuación ( X ) y simplificando se tiene:
B 1 I . Y sc Y En una economía capitalista donde los trabajadores ahorran y son propietarios de sus intereses, la participación de los beneficios en el ingreso nacional depende directamente del coeficiente inversión.
74
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Así mismo se tiene que B
I , los beneficios dependen directamente del volumen de sc
inversión dado en producto marginal de los capitalistas. Tasa de crecimiento Este resultado es estrictamente válido en una economía cerrada con dos clases (trabajadores y capitalistas.) en la que la cuantía de la inversión está fijada al nivel necesario para asegurar el pleno empleo, en el sentido que se crece a la tasa del stock de capital ( g K ) y la (pura) propensión al ahorro de los capitalistas ( s c ), esto es:
gK g K s c .r sc
En el crecimiento proporcionado, donde g K g Y , esto nos da reemplazando en la ecuación anterior la tasa de crecimiento del producto.
g Y s c .r , la ecuación de crecimiento de Cambridge En una economía capitalita en donde los trabajadores ahorran en el largo plazo, la tasa de crecimiento del producto depende directamente de la tas de beneficio, dado el producto marginal ( PMgs c ) de los capitalistas. Importancia El modelo de Kaldor presenta un caso límite y hace un supuesto extremo, que los capitalistas no ahorran. En cambio el modelo de Pasinetti no necesita sumir que los trabajadores no ahorran, sino que el considera que los trabajadores no ahorran y son propietarios de sus intereses, llegando al mismo resultado de Kaldor, significa que en una economía capitalista no es importante el ahorro de los trabajadores sino la propensión marginal ahorrar de los capitalistas, por eso se destaca la gran importancia de la PMgs c de los capitalistas.
Modelo de Kalecki
1
2.8
Ejer cicios de Crecimient o Económico
r
Economista polaco Michal Kalecki, nos presenta en su obra quizá más importante titulado “Theory of Economic Dynamics: An essay on cyclical and long- run changes in capitalist economy”1954 (La teoría de Dinámica Económica: Un ensayo en cíclico y largo - ejecute los cambios en la economía del capitalista). En este ensayo nos muestra una economía capitalista que solo produce tres bienes de consumo, de lujo y de inversión30. Kalecki nos dice el desarrollo de largo plazo, o mejor dicho al crecimiento, es relativamente escaso en la economía. Donde Atribuye que el desarrollo de largo plazo de una economía capitalista a las innovaciones, pero no realiza un examen detallado de las mismas en un marco capitalista, en sentido de que hay una tendencia inherente al capitalismo a impulsar el constante crecimiento de la productividad del trabajo. Por tanto postula una teoría del crecimiento exógeno. Kalecki sostenía que el desarrollo a largo plazo no era algo inherente a la economía capitalista, si no que la concurrencia de “factores del desarrollo” específicos que apunten en tal dirección, particularmente las innovaciones, y en especial aquellas que impliquen un 30
A quienes les interese revisar Kalecki, M. (1956): Teoría de la dinámica económica, Fondo de Cultura Económica.
75
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico mayor volumen de capital. Es por eso que su análisis se concentra particularmente en un estudio y el análisis de largo plazo. Recordemos que la afirmación de que el largo plazo no es más que una larga sucesión de cortos. Una característica central del estudio del crecimiento en el largo plazo en Kalecki es que parte del supuesto de que la economía funciona en términos generales con una subutilización del stock de capital. No es arriesgado afirmar que fue el primero que trabajó bajo este supuesto (y ciertamente, uno de los pocos) 31. 2.8.1 Supuestos del modelo Existen tres sectores que producen: Sector I :Sector productor de bienes de inversión, esta representara con un subíndice: 1. Sector II: Sector productor de bienes de consumo de lujo, esta representara con un subíndice; 2. Sector III :Sector productor de bienes de consumo necesario, esta representara con un subíndice; 3. Existe integración vertical de cada sector. Existen solo dos clases sociales que son:
Trabajadores, representados con un subíndice; c .
Capitalistas, representados con un subíndice; w .
Los capitalistas ahorran una proporción de su beneficio. Los trabajadores no ahorran. La economía no tiene relación con el exterior. Las mercancías se venden a un precio que coincide con su valor. El producto bruto final se desdobla en salario y beneficio. El producto bruto final sectorial por el ingreso se desdobla en salario y beneficio sectoriales.
1
Análisis
Ejer cicios de Crecimient o Económico
Del sistema de valores, tenemos el valor de la mercancía32. Valor de la mercancía = C+V+P
valores _ de _ mercancia C V P
Producto social = C + V + P Kalecki hace la transición hacia el sistema de valores hacia el sistema de precios.
VBP insumo depreciaci ón salarios beneficios _ netos VBP depreciaci ón VAB
VBP insumo
VAB PNB
31
Estos párrafos están basados en la Serie de documentos de apoyo a la docencia, Michal Kalecki “Ciclo y Tendencia” (2006), Por Pablo Bortz de la Universidad Nacional de Luján de la Republica de Argentina. 32 Para mejor entendimiento del valor de la mercancía y su sistema de precios, el lector interesado puede revisar, Paúl Sweezy, “Teoría del desarrollo capitalista”, Fondo Cultura Económica. México, 1973.
76
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Donde: VAB: Valor agregado bruto. PNB: Producto nacional bruto. P: Precio. Enfoque de Kalecki
Ejer cicios de Crecimient o Económico
En este enfoque a fin de expresar el producto bruto del sector privado, empecemos por el ingreso nacional. La participación del salario en el ingreso se supone en general bastante estable en el curso del ciclo, pero no puede decirse lo mismo de la suma de salarios y sueldos.
Donde: Wi : Salarios sectoriales.
Bib : Beneficio bruto sectorial.
Yi : Producto bruto final del sectorial. C K : Consumo de los capitalistas. C w : Consumo de los trabajadores.
1
I b : Inversión bruta. Subíndice: c (capitalistas), w (trabajadores) y b (bruto).
C CK Cw
C K c K .B b C w c w .W 2.8.2 Análisis de Corto Plazo Sabemos que Y W B b , pero también es igual Y C I b , igualando las dos ecuaciones tenemos:
W Bb C I b
W B b C K C w I b (I )
77
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Debido a que los trabajadores no ahorran s w 0 , esto implica que los trabajadores destinen todo su ingreso al consumo c w 1 ( PMgc w 1 ), por que, s w c w 1 0 c w 1 , nos da
C w c w .w C w (1).W reempleando el consumo de los trabajador que es iguala la masa de salario en la ecuación ( I ).
W B b C K (W ) I b
Kalecki nos dice que el consumo de los capitalistas es una proporción de sus beneficios, entonces expresando el consumo de los capitalistas tenemos:
C K c K .B b Reemplazando el consumo agregado de los capitalitas que se extrae de la ecuación anterior, tenemos:
C K c K .B b B b I b c K .B b B b
Ib ( II ) 1 ck
La ecuación ( II ), nos da el beneficio bruto que depende directamente del volumen de inversión, donde trabajadores gastan todo lo que gana y los capitalistas gana todo lo que gastan. Ecuación de Intercambio Fundamental Sabes que de la ecuación de beneficio tenemos:
Bb C K I b
1
B b Y2 Y1
Ejer cicios de Crecimient o Económico
B b C K I b (I ) , la ecuación de beneficios
B1b B2b B3 W2 B2 W1 B1
B3 W1 W2 , la ecuación de intercambio fundamental b
Los capitalistas en el sector III, luego de pagar a los trabajadores se quedan con todo el excedente de la forma de consumo necesario y lo intercambian con los salarios del sector II. Determinación del producto de bienes de consumo necesario: Y3 Como sabemos que los trabajadores no ahorro, sino que todo su ingreso lo destinan al consumo, tenemos que:
C w c w .W , como los trabajadores no ahorran, s w 0, c w 1 , reemplazando en la ecuación anterior del consumo de los trabajadores tenemos: C w W .
78
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Del producto bruto final de sector de bienes necesario tenemos que:
Y3 W1 W2 W3 Asiendo un artificio multiplicando y dividiendo entre el producto de cada sector tenemos:
Y3
W W1 W .Y 1 2 .Y2 3 .Y3 ( III ) Y1 Y2 Y3
Donde:
W1 1 : Participación de los salario del sector 1 en el producto bruto final del sector Y1 . Y1
Ejer cicios de Crecimient o Económico
W2 2 : Participación de los salario del sector 2 en el producto bruto final del sector Y2 . Y2 W3 3 : Participación de los salario del sector 3 en el producto bruto final del sector Y3 . Y3 i : Parámetro de la distribución del ingreso del sector i-ésimo i 1,2,3 Reemplazando las variables anteriores en la ecuación ( III )
Y3 1 .Y1 2 .Y2 3 .Y3 ( I )
Y3 .(1 3 ) 1 .Y1 2 .Y2
Entonces el producto de sector Y3 , es:
Y3
1 .Y1 2 .Y2 1 3
Donde: Y3 C w , Y1 I b y Y2 C K . Reemplazando en la ecuación del sector Y3 , nos da el producto de bienes necesario.
1.I b 2 .C K 1 3
1
Cw
Determinación del producto de bienes agregados De la demanda efectiva y de una economiza cerrada tenemos la condición de equilibrio macroeconómico donde el producto es igual al consumo mas la inversión. Y = Demanda efectiva
Y C Ib Y Cw CK Ib
Y
1 .I b 2 .C K C K I b ( IV ) 1 3
Esta ecuación nos quiere decir que el producto agregado de equilibrio va depender directamente del volumen de inversión bruta y del volumen de consumo de los capitales dado los parámetros de distribución del ingreso ( 1 , 2 , 3 ).
79
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Y
1 .I b 2 .C K (1 3 ).C K (1 3 ).I b 1 3
YK
[1 3 2 ].C K [1 . (1 3 )].I b 1 3 YK
1 . [1 3 2 ].C K [ 1 . (1 3 )].I b 1 3
2.8.3 Análisis de Largo plazo Kalecki nos dice que en el largo plazo el consumo de los capitalistas depende directamente de la inversión bruta. La Función de Largo Plazo Plantea la función de largo plazo del consumo C
K LP
f (I b )
K Sea una función de consumo lineal C LP m.I b (V ) K C LP c K .B b (VI )
Donde: c K : Producto marginal de los capitalistas ( PMg )
s K : Producto marginal ahorrar de los capitalistas.
Se tiene que B b K C LP
Ib , reemplazando esta ecuación en la ecuación ( VI ). sK
cK b .I sK
1
:
K C LP m.I b
Donde:
m
cK : Razón del producto marginal del consumo de los capitalistas entre el producto sK
marginal del ahorro de los capitalistas.
: Tasa de depreciación del stock de capital Ecuación de acumulación bruta de capital K I b I n I LP
Ejer cicios de Crecimient o Económico
Se determina la producción de equilibrio a partir de los esquemas de reproducción amplia del producto. Se determina a partir de la demanda efectiva, y este modelo se considera las clases sociales.
I b K .K
80
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Ib
K .K .K K
I b g K .K .K
I b ( g K ).K , la ecuación de la ecuación bruta de capital
Determinación del producto agregado a largo plazo De la ecuación ( IV ), tenemos:
Y
1 .I b 2 .C K CK Ib 1 3
Asumiendo C K m.I b
Reemplazando en la ecuación Y , tenemos
Ejer cicios de Crecimient o Económico
2 .m Y I b . 1 m 1 1 3
1 .I b 2 .I b Y m.I b I b 1 3
2 .m YLPK g K K . 1 m 1 , producto agregado de lago plazo 1 3 2.8.4
Crecimiento económico en el largo plazo
Del producto de equilibrio en el largo plazo ( Y ) , multiplicando i dividiendo entre K , tenemos: 2 .m K YLP g K K . 1 m 1. K 1 3 K YLP Y K K
Y Y g K . K K .K K Y g K . K .K K
1 g K . n I /Y
gK an
1
YLP g Y K. K gK K
Y g K . n I
g K a n . , la ecuación de Kalecki
Donde:
In a n : Coeficiente de inversión neta. Y
81
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Asumiendo el crecimiento proporcionado tenemos: g K g Y , reemplazando de Kalecki.
g Y a n . , la ecuación de Domar-Kalecki Donde:
1 / : Representa la relación producto – capital, que es el reciproco de capital – producto. Reemplazando la relación anterior en la ecuación de Kalecki, se tiene:
an , la ecuación de Harrod-Kalecki v
1
Podemos apreciar que la ecuación de Harrod y Domar contienen el producto marginal ahorrar, mientras que el modelo de Kalecki en su ecuación fundamental contiene el coeficiente de inversión.
Ejer cicios de Crecimient o Económico
gY
82
1
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
83
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Crecimiento con progreso tecnológico y tasa de ahorro exógena “Toda teoría depende de su suposiciones que no son totalmente ciertas. Por eso son teorías. El arte de elaborar teorías con éxito consiste en hacer las inevitables suposiciones simplificadoras en forma tal que los resultados finales no sean muy sensibles”.
Robert Solow (1956), Pág.: 56.citado
1
Por: Charles Jones (2000), Pág.:18
Ejer cicios de Crecimient o Económico
Capítulo III
84
1
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
85
3.1
Definición de técnica, tecnología, cambio técnico y progreso tecnológico
(a)
Técnica: Es un método de producción en el cual existen una determinada proporción entre los factores de producción e insumos para producir un determinado bien.
(b)
Tecnología: Esto hace referencia a un fondo social de conocimiento sobre el arte de la producción y la técnica. Es el conjunto de conocimientos y técnicas.
(c)
Cambio Técnico: Es la modificación de los factores e insumos para producir un determinado bien.
(d)
Progreso Tecnológico: Son todos los avances cualitativos y cuantitativos del fondo social de conocimiento sobre el arte de la producción y la técnica.
3.1.1 Schumpeter y los componentes del progreso tecnológico Los conceptos introducidos por Schumpeter que más influencia ha tenido es el de innovación. Según él, existe un estado de no crecimiento, el «circuito» económico, y un estado de crecimiento, la «evolución». El paso del «circuito» a la «evolución» se efectúa por medio de las innovaciones, que constituyen el motor del crecimiento. El nos señala que el progreso tecnológico que tiene varios componentes: Proceso de Invención. Proceso de Innovación. Proceso de Difusión. Proceso de Invención
1
Es aquella fase en la cual se efectúan los grandes descubrimientos de la humanidad.
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Proceso de Innovación Es aquel proceso de convertir los grandes inventos de la humanidad y las grandes ideas en mercancía que puedan ser utilizados por la población. Proceso de Difusión Implicaría del progreso tecnológico: Aumento significativo de la producción elevando la productividad. Se reducen los costos significativamente de producción. Schumpeter plantea que el progreso de innovación se va caracterizar por: Creación y producción de nuevos bienes. Formulación y aplicación de nuevos métodos de producción. Aseguramiento de los mercados de materias primas. Conquista de nuevos mercados.
86
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 3.1.2 Progreso tecnológico exógeno y desincorporado Es aquel tipo de progreso tecnológico que no explica las causas ni los orígenes del progreso tecnológico simplemente asumen que se dio el progreso tecnológico en forma exógena. Así mismo asume que el progreso tecnológico se concentra en nuevas maquinarias y mejoramientos de los trabajadores. Representación Analítica La función reproducción dinámica es aquella función que considera explícitamente el bien. Función de producción dinámica desplazable.
Función de Producción Dinámica desplazable Es aquella función dinámica que con progreso tecnológico se traslada la función en forma ascendente, como se puede apreciar en el Gráfico [3.1]. Gráfico [3.1]: Desplazamiento de la función Dinámica
La función de producción dinámica aumenta de la eficiencia de los factores
1
Es aquella función de producción dinámica que con el progreso tecnológico lleva aun aumento de la productividad de los factores.
Ejer cicios de Crecimient o Económico
Función de producción dinámica aumentativa de la eficiencia de los factores.
Analíticamente Yt F ( At , K t , B( t ) .Lt ) Donde: Yt Producción agregada en ele instante “t”.
K t Stock de capital agregado en el instante “t”. At Factor aumentativo de la eficiencia del capital. At A0 .e m.t Con las propiedades: Si t =0 entonces At 0 1 Si t >0 entonces At 0 1
A >0, tasa de progreso tecnológico debido a la eficiencia de capital
87
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
g A( t )
A(t ) A(t )
mK
A( t ) .K t : El stock de capital eficiente o eficaz.
A(t ) .K t A0 .e mK .t K te K t
Lt : Fuerza de trabajo agregada en el instante “t”. B(t ) : Factor aumentativo de la eficiencia del trabajo. Bt B0 .e mL .t
Ejer cicios de Crecimient o Económico
Con las propiedades: Si t =0 entonces Bt 0 1 Si t >0 entonces Bt 0 1
B >0, tasa de progreso tecnológico debido a la eficiencia del trabajo.
g B (t )
B( t ) B( t )
mL
B( t ) .Lt : Fuerza de trabajo eficiente o eficaz.
B(t ) .Lt B0 .e mL .t Let Lt 3.1.3 Clasificación del progreso tecnológico Progreso tecnológico neutral. Progreso tecnológico sesgado. Progreso tecnológico rentable. Progreso tecnológico radical. Progreso tecnológico exógeno.
1
Progreso tecnológico endógeno. Progreso tecnológico no rentable. Progreso tecnológico desincorporado. Progreso tecnológico incorporado. Progreso tecnológico neutral Es te tipo de progreso tecnológico que debe introducirse en la practica, donde nos permite producir la misma cantidad del producto con menor cantidad de capital. Esto nos dice que ahorra capital en relación con el trabajo necesario para producir. Y estos progresos tecnológicos se clasifican como: (a)
Progreso tecnológico a lo Hicks Hicks nos indica que la innovación tecnológica era neutral (neutralidad de Hicks) con respecto al capital y al trabajo y solo si la relación entre productividades marginales de los factores se mantiene constante para cada factor será ahorrador de capital de trabajo, si el producto marginal del trabajo aumenta mas que el producto marginal del trabajo cuando la relación capital y trabajo permanece constante y esto por una innovación tecnológica.
88
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
(b)
Este progreso técnico neutral a los Hicks puede escribirse: Donde se plantea que At Bt Progreso tecnológico neutral a lo Harrod Harrod nos dice que el progreso técnico es insesgado, y según esto la innovación tecnológica es neutral (neutralidad de Harrod). Donde nos dice que la misma cantidad de capital y una cantidad menor de trabajo se obtienen el mismo producto.
(c)
Progreso Tecnológico neutral a lo Solow En la ecuación de producción dinámica aumentativa de la eficiencia de los factores se tiene: Donde B( t ) 1 , luego
Yt F ( A( t ) K t , Lt ) Con este tipo de progreso tecnológico neutral a lo Solow únicamente ocurre un aumento en la productividad del capital. 3.1.4 Clasificación general del progreso tecnológico Sea una economía capitalistas que solo tiene capital y trabajo, como podemos apreciar en el Gráfico [3.2] se puede notar los tipos de progreso tecnológico de Solow, Harrod y Hicks también con un mejor progreso tecnológico el mapa de isocuanta se contrae.
1
Gráfico [3.2]: Clasificación del progreso
Ejer cicios de Crecimient o Económico
Phelps (1962,1966), nos dice que una condición necesaria y suficiente para la existencia del estado proporcionado en una economía con progreso tecnológico exógeno y neutral en el sentida de Harrod esto quiere decir que es potenciador de trabajo.
Nótese: Que en el nuevo punto óptimo I es existe progreso tecnológico. III : Es el progreso tecnológico neutral a lo Hicks por que la productividad del capital aumenta en la misma proporción que el ahorro de capital y trabajo. II : Progreso tecnológico neutral a lo Harrod, donde se mantiene la relación capitalproducto ( v0 ).
89
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico IV : Progreso tecnológico neutral a lo Solow, se mantiene invariable la relación trabajoproducto ( u 0 ). Área I: Progreso tecnológico intensivo en capital y ahorrador de trabajo. Área II: Progreso tecnológico relativamente ahorrador de trabajo. Con este trabajo se ahorra tanto capital como trabajo, pero se ahorra más relativamente de trabajo. Área III: Progreso tecnológico ahorrar de capital. Con este tipo de progreso tecnológico se ahorra capital y trabajo, pero se ahorra relativamente más capital. Área IV: Progreso tecnológico es intensivo en trabajo y ahorrador en capital.
Solow con progreso tecnológico exógeno y desincorporado
En esta parte hablaremos de la mejora tecnológica y del crecimiento de largo plazo, por que se permite introducir el progreso tecnológico de largo plazo. Supuestos del modelo A los supuestos básicos de Solow se le añaden los siguientes supuestos: Sea una economía con progreso tecnológico. Sea un progreso tecnológico exógeno, se asume que la tasa de progreso tecnológico es constante. Sea un progreso tecnológico desincorporado. Existe un progreso tecnológico neutral a lo Harrod. Análisis Sea la función de producción dinámica aumentativa de la eficiencia de los factores.
Yt F ( A( t ) .K t , B( t ) Lt ) Puesto que se asume que el progreso tecnológico neutral a lo Harrod A( t ) 1 .
Yt F ( K t , B( t ) Lt )
1
Si dividimos entre la fuerza de trabajo eficiente ( B( t ) Lt ).
Ejer cicios de Crecimient o Económico
3.2
Yt B( t ) Lt
F(
K t B( t ) Lt , ) B( t ) Lt B( t ) Lt
y t f ( k te ,1)
y t f ( k te ) ( FPI ) en unidades eficiente
Donde:
B(t ) : Factor aumentativo de la eficiencia de trabajo. B( t ) Lt : Fuerza de trabajo eficiente.
Yt B( t ) Lt
yt y t y e : Producto por trabajador eficiente. B( t )
Kt k t k t k e : Capital por trabajador eficiente. B(t ) Lt B(t ) Subíndice e: Es eficiente.
90
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Inversión neta por trabajador eficiente
k te
kt Kt B(t ) B(t ) Lt
K t k te .B(t ) Lt
Dividiendo entre B( t ) Lt
e d ( B(t ) Lt ) e In 1 d k t .B(t ) Lt . k te .k t B(t ) Lt B(t ) Lt dt dt
k e In t ( n m).k te B( t ) Lt t
Sb Ib s.Y I n I rep
s.F ( K , B(t ) L) I n .K Dividiendo entre B( t ) L
s.F (
K B( t ) L In K , ) . B( t ) L B( t ) L B( t ) L B( t ) L
s. f (k e )
s. f (k e ,1)
k te (n m L ).k e .k e t
k te (n m L ).k e , la ecuación fundamental de solow con progreso tecnológico t
Donde: : Tasa de depreciación del stock de capital. Es una ecuación del proceso de acumulación de capital y del progreso tecnológico en una economía capitalista. Señala que la tasa de cambio del capital por trabajador eficiente será igual al remante del ahorro bruto por trabajador eficiente, respecto a la ampliación bruta de capital considerando el progreso tecnológico. Crecimiento proporcionado El crecimiento proporcionado se da cuando
k t 0 , entonces reemplazado en la ecuación t
de Solow con progreso tecnológico, tenemos: Si
k t 0 , entonces s. f (k e ) (n m L ).k e .k e , se determina el capital por trabajador k . t
Como se puede apreciar en el Gráfico [3.3].
91
1
De la condición de equilibrio macroeconómico, tenemos:
Ejer cicios de Crecimient o Económico
Ecuación fundamental de Solow con progreso tecnológico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Ejer cicios de Crecimient o Económico
Gráfico [3.3]: Diagrama de Solow con progreso tecnológico
Versión de Barro Dividiendo la ecuación fundamental de Solow con progreso tecnológico entre k t .
1 k t s. f (k t ) . (n m L ) k t t kt
k
s. f (k t ) (n m L ) kt
En el estado de crecimiento proporcionado k es nulo. Si k 0 entonces
s. f (k t ) (n m L ) , se determina k t kt
1
Gráfico [3.4]: Versión de Barro con progreso tecnológico
3.3
Solow –Swan con progreso tecnológico exógeno
Para generar el crecimiento sostenido se introduce el progreso tecnológico. Para genera el crecimiento de largo plazo que no se podía explicar en el Capítulo anterior.
92
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 3.3.1
Supuestos del modelo
A los siguientes supuestos básicos se le añaden el siguiente supuesto particular. Existe una función de producción Cobb-Douglas. Análisis Puesto que se asume el supuesto tecnológico neutral a lo Harrod
Yt F ( K t , B( t ) Lt ) Se asume que existe una función de producción Cobb-Douglas.
Yt K t .( B( t ) Lt ) ( FP )
Ejer cicios de Crecimient o Económico
Rendimiento decreciente s.a
Rendimientos a escala constante 1
Donde: B(t ) : Factor aumentativo de la eficiencia de trabajo.
B( t ) Lt : Fuerza de trabajo eficiente. : Elasticidad del producto respecto al capital. : Elasticidad del producto respecto al trabajo eficiente. Yt : Producto agregado.
K t : Stock de capital. Lt : Fuerza de trabajo agregada. Dividiendo la función de producción entre el trabajo eficiente ( B( t ) Lt ).
k yt t B( t ) B( t ) y t k t (FPI )
B( t ) Lt ) Kt . B( t ) Lt [ B( t ) Lt ] [ B( t ) Lt ] 1
Yt
y te ( k te )
3.3.2
1
Donde: El superíndice e de las variables en unidades eficientes. Ecuación fundamental de Solow-Swan con progreso exógeno y desincorporado
De la condición de equilibrio macroeconómico sabemos:
F ( K t , B( t ) Lt ) C t I t
F ( K t , B(t ) Lt ) (1 s ).F ( K t , B(t ) Lt ) K t .K t
0 s.F ( K t , B(t ) Lt ) K t .K t x
1 B(t ) .Lt
e
0 s. f (k ) k t .k te e t
e
Despejando k t , tenemos: e
k t s. f (k te ) .k te ( I ) Para saber el comportamiento de k te , calcularemos su derivada con respecto al tiempo
93
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
k te [ K t / B(t ) Lt ] K t .B(t ) Lt K t .B(t ) L t K t . B (t ) Lt t t B(t ) Lt 2
k te Kt L Kt B (t ) K t t. . t B( t ) Lt Lt B( t ) Lt B( t ) B( t ) Lt
k te e k t n.k te m L .k te ( II ) t e
k te s. k te t
(n m L ).k te , la ecuación fundamental de Solow-Swan con progreso tecnológico.
Es una ecuación diferencial que refleja la dinámica de la acumulación de capital en una economía capitalista con progreso tecnológico. 3.3.3
Estado de crecimiento proporcionado
La tasa de crecimiento per cápita a largo plazo es positiva cuando la tecnología mejora de forma continua. Existe un estado de crecimiento proporcionado, en donde la tecnología debe estar multiplicando el factor trabajo, esto quiere decir que la tecnología hace más eficiente el trabajo.33 Imaginemos que la tecnología mejora como se puede apreciar en el Gráfico [3.5], donde la curva de ahorro se ubica en el equilibrio ( E1t ) y se desplaza a la derecha hasta interceptarse con la curva de depreciación hasta el punto de equilibrio ( E 2t ) y si el crecimiento con una tasa de crecimiento positiva es continuo se ubicara en ( E3t ) con un capital por trabajador
k t*** 34.
33
Revise Sala-i-Martín(1994) “Apuntes de Crecimiento Económico” Editorial: Antoni Bosch, pp. 39-43 Si a largo plazo no existe un nuevo aumento de B (t) la economía converge a un estado proporcionado con un stock de capital superior, pero con crecimiento nulo. 34
94
1
k te e k t n.k te m L .k te ( II ) t k te s. f (k te ) (n m L ).k te t
Ejer cicios de Crecimient o Económico
Reemplazando k t , que lo hallamos en la ecuación (I ) y reemplazando la FPI de nuestro modelo tendremos:
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
En el estado de crecimiento proporcionado se tiene que
k te es nulo. t
k te Si 0 , entonces s.( k te ) ( n m L ).k te , se determina el capital por trabajador en t estado de crecimiento proporcionado ( k te ) .
s ke e n m L (k t )
s (k te )1 n m L 1
1 s (k te ) n m L
1
De la función de producción intensiva se tiene y te ( k te ) , si reemplazamos en la ecuación anterior tenemos:
Ejer cicios de Crecimient o Económico
Gráfico [3.5]: Versión de Barro aumento de la tecnología
1 s ( y te ) n mL Donde Asterisco denota el valor de equilibrio de las variables
95
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Versión de Barro De la ecuación fundamental de Solow – Swan dividimos entre el capital por trabajador eficiente kte .
1 dkte s (kte ) kte . ( n m ) L kte dt kte kte ke
s (kte ) kte ( n m ) L kte kte
En el crecimiento proporcionado de largo plazo, la tasa de crecimiento de capital es nula e
esto quiere decir que kLP 0 . Si 0 entonces
s (kte ) kte (n mL ) e , esta ecuación determina el capital por kte kt
1
e k
Ejer cicios de Crecimient o Económico
Gráfico [3.6]: Diagrama con tecnología
trabajador en equilibrio ( kte ) como se aprecia en el gráfico [3.7]. Gráfico [3.6]: Gráfico de la versión de Barro
96
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 3.3.4
Política de crecimiento ejercicios resueltos
Problema #1 Su Suponga que existe una economía capitalista cuya función de producción dinámica: 1/ 2 Yt K t1 / 2 B( t ) Lt y se sabe que la tasa de ahorro de esta sociedad es de 24% del producto
agregado cada año, también se sabe que la tasa de depreciación del capital es de 5% al ano, la tasa de crecimiento de la fuerza de trabajo es del 1.5% y por ultimo se sabe que la tasa de progreso tecnológico debido a la eficiencia del trabajo es de 1.5% al año.
Rpt: a) Hallar la ecuación fundamental de Solow – Swan con progreso tecnológico. De los datos tenemos s 24, 0.05, n 1.5%, mL 1.5%
Yt K t1 / 2 B( t ) Lt
1/ 2
, dividiendo a la función de producción entre la cantidad de trabajadores
eficientes B( t ) Lt
K t1 / 2 B(t ) Lt B(t ) Lt 1 / 2 Yt
B(t ) Lt B(t ) Lt
1/ 2
K t1 / 2 y yte (kte )1 / 2 ( FPI ) 1/ 2 B(t ) Lt e t
De la condición de equilibrio macroeconómico sabemos:
F ( K t , B( t ) Lt ) Ct I t
F ( K t , B(t ) Lt ) (1 s ) F ( K t , B(t ) Lt ) K t K t Dividiendo entre la cantidad de trabajadores eficientes
0 sF ( K t , B(t ) Lt ) K t K t
1 B(t ) Lt
e
1
0 sf (kte ) k t kt e
Despejando k t , tenemos: e
e
e
k t sf (k t ) k t ( I ) Para saber el comportamiento de kte , calcularemos su derivada con respecto al tiempo
K t .B(t ) Lt K t .B(t ) Lt K t . B (t ) Lt kte K t / B(t ) Lt t t B(t ) Lt 2
Ejer cicios de Crecimient o Económico
a) Hallar la ecuación fundamental de Solow – Swan con progreso tecnológico. b) Determinar el estado de crecimiento proporcionado con su respectivo gráfico. c) Hallar los valores de equilibrio por unidad de trabajo eficiente. d) Hallar la tasa de salario y la tasa de rendimientos bruto de l capital y graficar los valores. e) Hallar la participación de los salarios y de los beneficios brutos en el ingreso nacional.
kte Kt Lt K B (t ) K t . t . t B( t ) Lt Lt B( t ) Lt B( t ) B( t ) Lt
kte e k t n.kte mL .kte ( II ) t
97
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico e
Reemplazando k t , que lo hallamos en la ecuación (I) y reemplazamos en la FPI de nuestro modelo tenemos:
kte e k t n.kte mL .kte ( II ) t kte sf (kte ) (n mL ).kte t Nos da la ecuación fundamental de Solow – Swan con progreso tecnológico.
kte s (kte ) (n mL ).kte ( III ) t
kte 0.24(kte )1 / 2 0.08kte , la ecuación fundamental con progreso tecnológico t b) En el estado de crecimiento proporcionado se obtiene dividiendo la ecuación anterior (ecuación fundamental de Solow - Swan) entre el capital por trabajador eficiente e igualándolo a la tasa de crecimiento que es nula ke 0 .
1 kte 0.24(kte )1 / 2 . 0.08 kte t kte
ke
0.24(kte )1 / 2 0.08 kte
Donde la tasa de crecimiento del capital es nula ke 0 . En el estado proporcionado esta dado por la siguiente ecuación:
0
0.24(kte )1 / 2 0.08 kte
0.24(kte )1 / 2 0.08 kte
1
c) Hallar los valores de equilibrio por unidad de trabajo eficiente.
kte 9
Remplazando kte , en la FPI tenemos el producto por trabajador eficiente:
yte (9)1 / 2
Ejer cicios de Crecimient o Económico
Reemplazando los datos en la ecuación (III)
yte 3
98
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
d) Hallar la tasa de salario y la tasa de rendimientos bruto de l capital y graficar los valores. Mercado de capital:
1/ 2
d kt1 / 2 11 Pmgk R Pmgk dkt 29 e
R r 0.16666
1
Mercado de trabajo:
Ejer cicios de Crecimient o Económico
Gráfico del problema #1
1 1 pmgL W e Pmgk f ( kte ) f ( kte ).kte W e ( kte )1 / 2 . 1 / 2 .kt 2 kt We
1 1/ 2 1 kt W e (9)1 / 2 2 2
W e 1 .5
e) Hallar la participación de los salarios y de los beneficios brutos en el ingreso nacional.
we W 1.5 0.5 50% , la participación del beneficio en el ingreso nacional es del 50%. ye Y 3 La participación del beneficio:
R e k e B (0.16666) x9 0.498 50% , la participación del beneficio en el ingreso ye Y 3 nacional es del 50%.
99
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Examine el impacto de un aumento permanente en la tasa de inversión sobre el crecimiento de la economía en el modelo de Solow – Swan con progreso tecnológico. Rpt: Como en la economía se decidido aumentar de forma permanente la tasa de inversión, desde “ s1t ” hasta “ s2t ”. La respuesta de esta economía como se puede ver el gráfico del problema #2. Que el aumento de la inversión se desplaza en forma ascendente de s1t . f ( k1et ) hasta la curva, llegando al equilibrio E2t , con esto la nueva inversión ( k2et ) supera a la inversión anterior por trabajado eficiente, esto significa que la economía comienza de nuevo la profundización, hasta llegar a igualarse s2t f ( k 2et ) ( n mL ) k 2et . Por lo que la función de producción eficiente llega a un valor más alto que el capital por trabajador eficiente con una producción per -capita más alta.
s. f (k2t ) (n mL ).k2t
d ( f ( k2t )) k2t 0 dt
Donde k1t k2t
100
1
Problema #2
Ejer cicios de Crecimient o Económico
Gráfico de la distribución del ingreso nacional
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
1
Ejer cicios de Crecimient o Económico
Gráfico del problema #2
s. f (kte ) (n mL ) te 0 e kt Si s 0
s kte n mL
1
s yte n mL
1
101
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Problema #3 Suponga que existe una economía capitalista cuya función de producción agregada es 4/9 Yt K t5 / 9 B(t ) Lt , y se sabe que la tasa de ahorro de esta sociedad es de 36% del
Rpt: a) De los datos tenemos: s 0.36, 0.08, n 2%, mL 2%
Yt K t5 / 9 B(t ) Lt
4/9
, dividiendo la función de producción entre la cantidad de trabajadores
eficientes B( t ) Lt , tenemos:
K t15 / 9 B(t ) Lt B(t ) Lt 5 / 9 Yt
B(t ) Lt B(t ) Lt
4/9
K t4 / 9 y yte (kte )5 / 9 ( FPI ) 49 B(t ) Lt e t
De la condición de equilibrio macroeconómico sabemos:
F ( K t , B( t ) Lt ) Ct I t
F ( K t , B(t ) Lt ) (1 s ) F ( K t , B(t ) Lt ) K t K t Dividiendo entre la cantidad de trabajadores eficientes
0 sF ( K t , B(t ) Lt ) K t K t
1 B(t ) Lt
e
0 sf (kte ) k t kt
1
e
Despejando k t , tenemos: e
e
e
k t sf (k t ) k t ( I ) Para saber el comportamiento de kte , calcularemos su derivada con respecto al tiempo
K t .B(t ) Lt K t .B(t ) Lt K t . B (t ) Lt kte K t / B(t ) Lt t t B(t ) Lt 2
Ejer cicios de Crecimient o Económico
producto agregado cada año, también se sabe que; La tasa de depreciación del capital es de 8% al año, la tasa de crecimiento de la fuerza de trabajo es del 2% al año y por ultimo se sabe que la tasa de progreso tecnológico debido a la eficiencia del trabajo es de 2% al año. a) Hallar la ecuación fundamental de Solow – Swan con progreso tecnológico. b) Determine el estado de crecimiento proporcionado. c) Halle el valor de equilibrio de capital por unidad trabajo eficiente y del producto por unidad eficiente y graficar. d) Halle la remuneración de los factores. e) Hallar la participación de los salarios y de los beneficios brutos en el ingreso nacional y por ultimo grafique todos los datos encontrados en un solo gráfico.
kte Kt Lt K B (t ) K t . t . t B( t ) Lt Lt B( t ) Lt B( t ) B( t ) Lt
kte e k t n.kte mL .kte ( II ) t e
Reemplazando k t , que lo hallamos en la ecuación (I) y reemplazamos en la FPI de nuestro modelo tenemos:
102
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico kte e k t n.kte mL .kte ( II ) t kte sf (kte ) (n mL ).kte t Nos da la ecuación fundamental de Solow – Swan con progreso tecnológico.
kte s (kte ) (n mL ).kte ( III ) t
kte 0.36(kte )5 / 9 0.12kte , la ecuación fundamental con progreso tecnológico t
b) En el estado de crecimiento proporcionado se obtiene dividiendo la ecuación anterior (ecuación fundamental de Solow - Swan) entre el capital por trabajador eficiente e igualándolo a la tasa de crecimiento que es nula ke 0 .
1 kte 0.36(kte )5 / 9 . 0.12 kte t kte
ke
0.36(kte )5 / 9 0.12 kte
Donde la tasa de crecimiento del capital es nula ke 0 . En el estado proporcionado esta
0
c)
1
dado por la siguiente ecuación:
0.36(kte )5 / 9 0.12 kte
Hallar los valores de equilibrio por unidad de trabajo eficiente.
0.36(kte )5 / 9 0.12 kte
kte 11.845
Remplazando kte , en la FPI tenemos el producto por trabajador eficiente:
yte (11.845)5 / 9
Ejer cicios de Crecimient o Económico
Reemplazando los datos en la ecuación (III)
yte 3.948
103
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
d) Hallar la tasa de salario y la tasa de rendimientos bruto de l capital y graficar los valores. Mercado de capital:
d kt5 / 9 5 1 Pmgk R Pmgk dkt 9 kt e
4/9
R r 0.1852
Mercado de trabajo:
We
4 5/9 4 kt W e (11.845)5 / 9 9 9
1
5 1 pmgL W e Pmgk f ( kte ) f ( kte ).kte W e ( kte )5 / 9 . 4 / 9 .kt 9 kt
Ejer cicios de Crecimient o Económico
Gráfico del problema #3
W e 1.754
e) Hallar la participación de los salarios y de los beneficios brutos en el ingreso nacional.
we W 1.754 0.445 50% , la participación del beneficio en el ingreso nacional es del ye Y 3.948 44.5%. La participación del beneficio:
104
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico R e k e B (0.1852) x11.845 0.555 55.5% , la participación del beneficio en el ingreso ye Y 3.948 nacional es del 55.5%.
Problema #4
1
Imaginemos en el país “A” se ha producido un aumento de la población debido a la no planificación familiar esto ha aumentado la tasa de crecimiento poblacional, considerablemente, y debido a estos se quiere analizar este aumento permanente de la tasa de crecimiento de la población, sobre el crecimiento de su economía.
Ejer cicios de Crecimient o Económico
Gráfico de la distribución del ingreso nacional
Rpt: Un aumento permanente de la tasa se crecimiento de la población ( n ), la curva de ampliación de capital rota en sentido antihorario, de tal modo que cuando se Intercepta con la curva de ampliación neta de capital determina el nuevo estado de crecimiento proporcionado, con menor capital ( k2et ) y menor producto por trabajador ( y2et ), como se puede ver en el gráfico del problema #4. En el corto plazo el capital por trabajador eficiente comienza a disminuir, como se puede apreciar en la versión de Barro, teniendo una tasa de crecimiento negativa, hasta llegar el equilibrio ( E2t ) donde la tasa de crecimiento proporcionado es nula. También podemos apreciar en la grafica que con mayor “ n ” se obtiene un nuevo consumo por trabajador eficiente ( c2t ), y un nuevo ingreso per cápita por trabajador ( k2et ).
105
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Si n 0 1
1 s s 1 yte kte n m n mL t Por lo tanto una aumento de la tasa crecimiento de la población afecta de manera negativa al capital por trabajador eficiente, el nivel de producción por trabajador, y nos da una tasa de Crecimiento negativa.
106
1
sf (kte ) (n mL ) te 0 e kt
Ejer cicios de Crecimient o Económico
Gráfico del problema #4
1
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
107
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Crecimiento con progreso tecnológico y tasa de ahorro endógena “El enunciado de una ley es un resultado de la inteligencia, una síntesis del esfuerzo de la razón ilustrada para establecer regularidades que se detectan en la realidad natural, cultural o social. Las leyes no son necesariamente causales y tampoco requieren o exigen una explicación causal”
1
Bunge (1959)
Ejer cicios de Crecimient o Económico
Capítulo IV
108
1
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
109
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 4.1
Modelo de Hicks
Sir John R. Hicks economista, británico ganador del premio Nobel de Economía en 1972, junto Arrow Kenneth, por sus teorías sobre el equilibrio general económico y el bienestar. Hicks nos plantea un modelo con progreso tecnológico inducido por los precios relativos de los factores. Nos plantea en una economía capitalista va existir un incremento de los precios de los factores si existe progreso tecnológico
4.1.2 Proposición / Aplicaciones Precio del petróleo Un ejemplo es el petróleo que en 1973 cuadruplico su precio pasando de 3 dólares el barril a 12 dólares, esto fue ocasionado por la escasez del petróleo. Como plantea Hicks si existe un estimulo económico para generar un progreso tecnológico ahorrador de petróleo generara: Autos más pequeños con menor consumo de petróleo, creación de motores de cuatro cilindros y desarrollo de energías alternativas (energía solar, eolica, biocombustible, atómica, gasifera, etc.). Agricultura de EEUU Agricultura de granjeros donde hay abundancia de tierra y capital y escasez de mano de obra. Elevado precio relativo de los salarios en relación de los servicio de otros factores, se propiciar la mecanización del agro y esto genera una intensificación del capital. Agricultura de de Japón En este país existe escasez de tierra de cultivo, pero existe abundancia de capital y de mano de obra, existe un relativo encarecimiento de la renta por el factor respecto a las otras retribuciones de los factores de producción. Agricultura de Perú La agricultura de la costa de Perú presenta escasez de tierras de regadío, escasez de agua, abundancia relativa de capital y escasez de mano de obra. Hicks nos dice que existe un estimulo para generar un progreso tecnológico intensivo en capital y ahorrador de agua. Agricultura de la Sierra En el caso de la selva existe abundancia de tierras de secano, escasez de tierras de regadío, abundancia de mano de obra y escasez de capital. Hicks nos dice si se da un estimulo económico para generar un progreso tecnológico ahorrador de tierras de regadío e intensiva mano de obra. Traerá como benéficos: semillas mejoradas, nuevos f fertilizantes y camellones (chacras hundidas que tiene la forma de lomo de un camello de hay el nombre).
110
1
En una economía capitalista, en el cual tienen determinada dotación de factores de producción y un determinado nivel de tecnología, tendrá un de terminado precio relativo de los factores. Ante una determinada escasez de un factor de producción, esto quiere decir que dicho factor de producción se encarece elevando su precio relativo de lo factores, lo cual genera un estimulo a un progreso tecnología o endógeno que ahorre tal factor de producción que se ha encarecido relativamente.
Ejer cicios de Crecimient o Económico
4.1.1 Planteamiento
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Agricultura de la selva En el caso de la selva donde existe abundancia de recursos naturales, existe escasez de tierras de regadío, la tierra es pobre para la agricultura recordando que también hay abundancia forestal que dificulta la agricultura.
4.2
Modelo de Aprendizaje de Arrow
El inconveniente para nuestros objetivos es que el supuesto clave del modelo de Arrow permite la agregación de máquinas de distintas edades. En efecto, cuando los nuevos equipos realizan la misma contribución al stock de conocimientos que los equipos heredados del pasado remoto, como ocurre en el modelo de Arrow, la heterogeneidad temporal sencillamente se omite, al menos si se acepta como en Romer (1986) que el stock de conocimiento también se deprecia.35 En este artículo desarrollamos los fundamentos de la teoría del crecimiento endógeno con vintage capital a partir de estos antecedentes, y con el objetivo de mejorar nuestra comprensión del papel que juega la edad del capital en el crecimiento. En primer lugar, se introduce una versión ampliada del modelo de Arrow de LBD que anida las distintas variantes que se discuten en el artículo. A partir de este marco general se motiva el modelo AK con vintage capital, puesto que la dinámica del modelo de Arrow bajo ciertas especificaciones converge a la del modelo AK con capital homogéneo, lo que facilita la discusión acerca de las consecuencias para la dinámica de hipótesis alternativas. Además, resulta natural iniciar el análisis a partir del modelo de crecimiento endógeno más simple: el modelo AK. Suponemos que la contribución al conocimiento de la inversión en una determinada cosecha se deprecia con la edad, entonces podemos escribir una versión ampliada del modelo de LBD de Arrow, en la que la integración respecto al tiempo no puede sustituirse por la integración con respecto al conocimiento, y que por tanto preserva la heterogeneidad del capital en el tiempo y respecto al stock de conocimientos. Nos vamos a referir al supuesto que recoge la depreciación de los efectos de la experiencia como forgetting, y al modelo que anida el de Arrow y con ello por tanto el modelo AK estándar como de Learning by doing but forgetting.36
35
En un estudio posterior Romer (1986) supone implícitamente que el conocimiento se deprecia a la misma tasa que lo hace el capital, de manera que los productores de los bienes de capital olvidan el conocimiento pasado a medida que el tiempo pasa. Las dos diferencias claves del Arrow y Romer. En primer lugar, en Arrow el conocimiento y el stock de capital son diferentes conceptos, mientras que en Romer son idénticos conceptos. En segundo lugar, el progreso técnico se distribuye sobre todos los equipos en Romer, mientras que está incorporado a las nuevas máquinas en Arrow 36
Crecimiento económico y generaciones de capital (2007) Autores: Raouf Boucekkine, Omar Lisandro y Luís A. Puch. Financiación de la Fundación Ramón Areces
111
1
Para probar su teoría Arrow va visitar una fabrica de aviones y va a estudiar la evolución del fuselaje, en ella encuentra que la relación de fuselaje, para producir el fuselaje de un avión en términos de ahorras de trabajo estaba en una relación inversa con la producción de dichos fuselaje. Por este y otros trabajo Arrow gano el Premio Nobel de Economía en 1972.
Ejer cicios de Crecimient o Económico
El modelo de Arrow (1962) de Learning by Doing (LBD) resulta ser la herramienta de partida para analizar la relación entre la edad media de las máquinas y la tasa de crecimiento: Arrow introduce progreso técnico endógeno en una tecnología de vintage.
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 4.2.1 Planteamiento El número de horas de trabajo para producir un bien depende inversamente de la cantidad de producción de dicho bien. El número de horas de trabajo para producir un bien depende inversamente de la cantidad de producción de dicho bien.
aij : Contenido de trabajo por unidad de producción Obs: En los modelo de crecimiento el coeficiente técnico es un parámetro como tal, es un coeficiente fijo ahora en el modelo de Arrow, el coeficiente técnico deviene endógeno.
Ejer cicios de Crecimient o Económico
aij f ( x j )
1
Gráfico [4.1]: El aprendizaje según Arrow
4.2.2 Hipótesis H1: El crecimiento económico depende directamente del crecimiento de la productividad del trabajo. H2: El crecimiento de la productividad del trabajo depende directamente del aprendiz aje en el puesto de trabajo. H3: El aprendizaje depende directamente de la experiencia de los trabajadores. H4: La experiencia de los trabajadores depende de la cantidad de producción producida en dicho bien. Hicks nos dice que el aumento de la producción y con ello aumenta el aprendizaje de los trabajadores, lo cual eleva el crecimiento de la productividad del trabajo.
112
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Inversión La inversión privada es realizada por empresa capitalista que tiene como objetivo maximizar su beneficio. La inversión social es la inversión de toda la sociedad. Arrow plantea que la inversión social es un Proxy (aproximado) de la experiencia de los trabajadores a lo largo de los años.
El Marco general: Learning-by-doing
Su supuesto clave es que el stock de conocimientos está asociado con Learning by Doing en el sector de bienes de capital. La producción de bienes de capital aumenta el conocimiento de los productores de dichos bienes, lo que les permite mejorar la productividad del trabajo de las nuevas máquinas. Sin embargo, la especificación de Arrow es de alguna manera muy extrema: se supone que detener la producción de bienes de capital no tiene efectos negativos sobre el stock de conocimiento de los productores. 4.3
La función de progreso técnico
Kaldor efectúa una crítica a los modelos neoclásicos de crecimiento con progreso exógeno desincorporado, y señala que es un error separar los efectos del progreso tecnológico y los efectos de la acumulación de capital, debido a que en progreso tecnológico de bienes incorpora en una nueva maquina. 4.3.1 Planteamiento En una economía capitalista existen bienes de capital heterogéneos, y por eso el progreso tecnológico se va expresar en una nuevas maquinas, los mismo que van ampliar los bienes de capital heterogéneos. Si los bienes de capital son heterogéneos no se puede utilizar la función de producción agregada pero si la función de producción de cada empresa. En vista de esta situación Kaldor formula, el planteamiento de la función de producción de progreso técnico.
1
Función de progreso técnico
Ejer cicios de Crecimient o Económico
El marco general corresponde al óptimo social de una versión del modelo de Arrow (1962) de Learning by Doing. El modelo de Arrow (1962) es un precursor de los modelos de crecimiento endógeno.
En una economía capitalista, donde existen bienes de capital heterogéneos y a la vez existe progreso técnico incorporado se da, que la tasa de crecimiento del producto por trabajador depende directamente de la tasa de crecimiento del capital por trabajador.
113
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
4.3.2 Características La curva de progreso técnico es de magnitud positiva. La curva de la función de progreso técnico es cóncava hacia el eje de la abscisa. Tiene intercepto con la ordenada cuyo significado nos dice que existe otros factores que explican también el crecimiento de las curvas de progreso técnico y la recta de 45 grados genera: La tasa de crecimiento de capital por trabajador de equilibrio: g k
o
La tasa de crecimiento del producto por trabajador de equilibrio: g y
1
o
Ejer cicios de Crecimient o Económico
Gráfico [4.2]: Función de progreso técnico
Existe una máxima tasa de crecimiento del producto por trabajador: g kMáx
114
1
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
115
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Capítulo V Óptimo “Dadme solamente las ecuaciones de movimiento y os mostraré el futuro del universo”
1
Laplace
Ejer cicios de Crecimient o Económico
Modelos Neoclásicos de crecimiento
116
1
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
117
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
E
n este Capítulo estudiaremos las decisiones de las familias de como toman sus decisiones de consumo y ahorro. Un supuesto del modelo neoclásico que parecía poco realista, es que en el modelo neoclásico las familias eran a la vez consumidoras y productoras, como si se tratase de Robinson Crusoe.
Como sabemos en la vida real las empresas y los consumidores son instituciones separadas que interactúan en un lugar llamado mercado. Las familias distribuyen su renta entre consumo y ahorro. Las empresas contratan trabajo a cambio de un salario y venden el producto a cambio de un precio. Empresas y familias se encuentran en el mercado y los precios del trabajo y el capital son tales que los tres mercados se vacía. (Modelo de equilibrio general de Ramsey (1928)). 5.1
Modelo de Ramsey-Cass-Koopmans
Se basa en el modelo de Ramsey (1928) y que, posteriormente perfecciona por Cass (1965) y Koopmans (1965), donde incorpora la función de producción neoclásica y va considerar también el modelo de Solow. El modelo de Ramsey-Cass-Koopmans también es conocido como el modelo d e horizonte infinito y para los economistas, este modelo es la continuación del modelo de Solow, pero desarrollado en un contexto de optimización de los agentes económicos (firmas, familias). Algunas características de este modelo son: Que las firmas competitivas rentan capital y contratan trabajo para producir, un numero fijo de familias que viven por siempre, ofrecen la fuerza laboral, consumen y ahorran, excluye todas las imperfecciones de los mercados. 5.1.1 Supuestos del modelo
1
A los supuestos básicos del modelo de Solow se le añaden los siguientes supuestos:
Ejer cicios de Crecimient o Económico
También analizaremos las decisiones que toman los agentes económicos, consumidores y empresas. Por un lado, analizaremos como las familias toman sus decisiones de consumo y ahorro. Paralelamente analizaremos las decisiones de inversión y contratación de mano de obra que hacen las empresas. El objetivo es estudiar cual es el resultado que obtiene una economía en la que dejamos que sean los consumidores los que toman sus decisiones de consumo y las empresas sus decisiones de inversión. En el contexto de esta economía estaremos preocupados por analizar cuales son los determinantes del crecimiento económico.
Existe una función neoclásica agregada de buen comportamiento. Las familias son consumidoras y productoras (tipo Robinson Crusoe). Las familias son de linaje y viven muchos años, esto quiere decir que los agentes de este modelo son de dinastía o familias, siendo Lt la dinastía del modelo. Existe una función de utilidad de los individuos, que depende del consumo por trabajador
U t U (c t ) .
La magnitud de la función de utilidad marginal del consumo es positiva esto quiere
decir es una función es cóncava. La concavidad de la utilidad refleja el deseo de la gente de tener trayectorias de consumo más o menos lisas o suaves en el tiempo. Que la función de utilidad sea lisa, significa que los consumidores prefieren consumir un poco cada día que consumir un poco mucho y otro nada. La relación entre concavidad de la función de utilidad y
118
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico el deseo de alisar el consumo (es decir querer consumir mas o menos lo mismo cada día) se puede apreciar en el gráfico [5.1].
c c U (c1 ) U (c2 ) U 1 2 2 1 U (c1 ) U (c2 ) U c1c2 2 2
ct c1 c2 La utilidad derivada de consumir ct , es mayor cuando el consumo total se ha repartido, que cuando no se reparte. Sea la función utilidad37 :
U (ct )
ct1 1 1
En esta función, es una constante que representa el grado de concavidad de la función de utilidad. Contra mayor sea , mayor será la concavidad de la función de utilidad, mayor serán los deseos de los agentes de suavizar el consumo en el tiempo. Si 0 , no querrían suavizar su consumo en el tiempo y en caso:
37
Típicamente se usa una forma específica para la función de utilidad instantánea. Para la forma en este caso se denomina utilidad con aversión relativa al riesgo constante (ARRC).
119
1
Que la función de utilidad se cóncava quiere decir que:
Ejer cicios de Crecimient o Económico
Gráfico [5.1]: Concavidad de la Utilidad
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico c c2 U (c1 ) U (c 2 ) 2U 1 2 La curva de utilidad marginal es decreciente. Existen una función de preferencias intertemporal, siendo la tasa de descuento 0 38. 5.1.2 Ecuación de movimiento De la condición macroeconómica tenemos:
Yt Ct I tb
Despejando k t de la ecuación (I)
k t f ( kt ) ct ( n ) kt ( I ) Donde:
k t : Representa la tasa de cambio por trabajador.
ct : Consumo por trabajador. yt : Producto por trabajador. kt : Capital por trabajador. : Tasa de descuento.
n : Tasa de crecimiento de la población. Otro método de cómo obtener a ecuación de movimiento es mediante la maximización de la empresa. Decisión de la empresa Definimos los beneficios de la empresa en términos per cápita.
K f ( kt ) w ( r ) t Lt Lt
Decisión de inversión de la empresa:
Máx : f (kt ) w (r )kt
38
Para Ramsey esta tasa se debe a su aparición exclusivamente a la debilidad de la imaginación, por que los individuos aunque altruistas tienen un egonismo paterno dentro de un mundo de altruismo generacional. Pero veremos que para solucionar el problema de la convergencia tendremos que utilizar el factor de descuento que tiene el término 0 .
120
1
Ib yt ct f (kt ) ct k t (n )kt ( I ) Lt
Yt Ct I tb Lt Lt Lt
Ejer cicios de Crecimient o Económico
Dividiendo la condición entre el numero de trabajadores de la sociedad ( Lt ) tenemos;
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
C.P.O :
0 f ( kt ) r ( II ) kt
Decisión de contratación de la empresa:
Máx : Lt f ( kt ) wLt ( r ) K t
f kt 0 f ( kt ) Lt w0 Lt kt Lt
f ( kt ) Lt f ( kt ) kt
f (kt ) f (kt )kt w( III )
1 w Lt
Al igual que vimos en el modelo de Solow - Swan, en una economía cerrada la inversión es igual al ahorro, por eso en esta economía se tiene que cumplir que la cantidad de capital que
compran las empresas que denotamos por k t es igual al ahorro de las familias que es igual
a b t . Así, teniendo en cuenta que ahorro es igual a inversión la ecuación que describe el comportamiento del capital per-capita es la siguiente:
k t w ct ( r n) kt ( IV )
Que se obtiene de reemplazar b t por k t en la restricción presupuestaria de las familias. Sustituyendo la ecuación (III) en la (IV) nos queda lo siguiente:
k t f ( kt ) f ( kt ) kt ct ( r n) kt (V ) Sustituyendo la ecuación (II) en la ecuación (V):
1
k t f ( kt ) ct ( n ) kt , Ley de evolución del capital per cápita
Ejer cicios de Crecimient o Económico
C.P.O :
5.1.3 El problema de la convergencia Esto se refiere a que en esta economía se va maximizar la función de utilidad social a través del tiempo.
Máx :
J
U (ct ) dt e t 0
Si consideramos a la población. La Población Sea que la población que tenga una tasa de crecimiento exógena y constante: n
Pt P0 .e nt Si P( 0 ) 1
Pt e nt
Sea que la fuerza de trabajo agregada Lt , crezca a una tasa constante exógena: n
121
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Lt Lo e nt Demostración que la tasa de crecimiento es constante, tenemos:
dLt L t nL( 0 ) e nt , dividiendo esta ecuación entre Lt , tenemos: dt
nt L t nL( 0 )e n Lt L( 0 )e nt
Si L( 0 ) 1
Lt e nt
Se asume que toda la población trabaja, luego se incorpora la población a la función “ J ”.
J U (ct ) Lt e t dt 0
Reemplazando: Lt Pt
Máx :
J U (ct )e nt .e t dt 0
Máx :
J U (ct ).e ( n )t dt 0
Esta sociedad maximiza su utilidad a través del tiempo. En esta sociedad cada individuo busca su propio interés y sin proponérselo de ante mano, busca maximizar la función de bienestar general a través del tiempo, para ello busca determinar la trayectoria general optima del consumo por trabajador a través del tiempo. 5.1.4 Planteamiento del problema
Máx :
J U (ct ).e ( n )t dt (Función Objetivo)
1
0
Ejer cicios de Crecimient o Económico
Máx :
s.a : k t f ( kt ) ct ( n ) kt (Ecuación de Movimiento) k (t0 ) k0 (Condición Inicial) k0 0 : Dado 0 ct f (kt ) 0t Para solucionar el problema se debe cumplir que: n es decir que la tasa de descuento tiene que ser mayor que la tasa de crecimiento de la población. 1) Comenzaremos a solucionar el problema de control optimo por el método que nos dejo Pontryagin, que se basa en la metodología del Hamiltoniano, para esto pasaremos a plantear el hamiltoniano.
H (ct , kt , t , t ) U (ct ).e ( n ).t t f ( k k ) ct ( n ) kt
122
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Donde kt : Variable de estado.
ct : Variable de control. t : Variable de coestado. Condición de Primer Orden (CIO) 2) Tomando la derivada del Hamiltoniano con respecto de la variable de control e
H U t t 0 ct ct ct
U (ct ) t ( I ) e( n )t
H e ( n ) t .U (ct ) t ( 1) 0 ct
Valor actual de la utilidad = Multiplicador Dinámico
3) Tomando la derivada del Hamiltoniano con respecto a la variable de estado e imponiendo la igualdad al negativo de la derivada del multiplicador con respecto al tiempo. H t kt
t f ( kt ) ( n ) t
f (kt ) (n ) t ( II ) t 4) Tomando la derivada con respecto al multiplicado lagrangiano, tenemos:
H kt kt
f (kt ) ct (n ) k t
1
f (kt ) ct (n ) k t ( III )
Ejer cicios de Crecimient o Económico
igualándolo a cero.
Condición de Segundo Orden (CIIO)
2H e ( n )t .U (ct ) 0 ct2 >0 x 0< Esta condición nos asegura un consumo máximo y La concavidad del consumo. 5) La condición de transversalidad-multiplica la variable de estado por el precio implícito de capital (multiplicador de Lagrange) en el momento terminal y pone igual a cero. Condición de Transversalidad
Lím t kt 0 t
Esto quiere decir que t 0 (el precio implícito de capital en el periodo final) o que kt 0 (el stock de capital en el momento que muere).
123
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Lím t t
(1 / ) 0 1
Lím t 0
e( n )
t
De la ecuación (II) tenemos f (kt ) (n ) g Pmgk (n ) g Aplicando logaritmo neperiano a la ecuación (I) tenemos:
1 ( n)t. ln e ln U (ct ) ln t
( n)t ln U (c y ) ln t
( n.
dt d ln U (ct ) d (ln t ) dt dt dt
1 dU (ct ) ct t ( n) . . U (ct ) ct dt t
1 t ( n) .U (ct ). c t U (ct ) t
A la ecuación anterior multiplicaremos y dividiremos entre el consumo por trabajador ( ct )
1 1 ct t ( n) .U (ct ). . U (ct ) ct ct t
1
ct t ( n) . ( ) ct t Donde
1 1 .U (ct ). : Representa la elasticidad de la utilidad marginal con respecto al U (ct ) ct
consumo por trabajador. Multiplicando por -1 a ala ecuación ( ), tenemos:
ct t ( n) . ( IV ) ct t Igualando las ecuación (II) con la ecuación (IV)
Ejer cicios de Crecimient o Económico
Aplicando la derivada temporal (derivada con respecto a “t”) a la ecuación tenemos:
t ct f (kt ) (n ) ( n) . t ct
124
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
ct Despejando , tenemos: ct
ct f (kt ) ( ) (V ) , La proposición Ramsey - Keynes ct
c
1 f (kt ) ( ) : Evolución del consumo por unidad de trabajo efectivo.
Así mismo se puede expresar la ecuación como: c t
1 f (kt ) ( )ct (VI )
5.1.5 Sistema de Ecuaciones Diferenciales (Diagrama de fases) Existen dos ecuaciones diferenciales que nos ayudan a graficar el diagrama de fases de este modelo son:
1er Ecuación diferencial: k t f ( kt ) ct ( n ) kt
2da Ecuación diferencial: c t
1 f (kt ) ( )ct
Encontrando la curva: k 0
1
De la 1er Ecuación diferencial
Ejer cicios de Crecimient o Económico
Esta ecuación nos dice que la tasa óptima del consumo por trabajador es la razón del producto marginal del capital menos la tasa de depreciación y la tasa de descuento intertemporal dividido sobre la elasticidad de la utilidad marginal con respecto al consumo por trabajador.
Si k t 0
0 f (kt ) ct (n )kt Entonces ct f (kt ) (n )kt
Gráfico [5.2]: Comportamiento de k 0
125
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Si nos situamos por encima de la curva k t 0 , vemos que un pequeño movimiento de ct irá
asociada a una disminución de k t 0 . Dado que la 1er Ecuación diferencial, donde el
consumo aparece con signo negativo, entonces concluimos que por encima de la k t 0 , el
capital decrece k t 0 . Denotamos el movimiento de flechas así la izquierda, tal como aparece en el gráfico [5.2]. Las flechas se dirigen en forma horizontal por que en el eje horizontal aparece kt . Derivando la primera ecuación diferencial con respecto a ct se obtiene:
Donde se demuestra que al aumentar el valor de ct disminuye el valor de k t De la misma manera analizaremos que pasa si ubicamos un vector por debajo de la curva
k t 0 , las flechas apuntan así la derecha, diciéndonos que por debajo de la curva k t 0 , el
capital crece k t 0 , en este caso las flechas apuntan hacia la derecha.
Encontrando la curva: c 0 De la 2da ecuación diferencial
Si c t 0
0
ct f (kt ) ( )
Entonces f ( kt ) ( )
1
Pmgk ( ) , Representa la ecuación de una recta que es paralela al eje de ordenadas
Ejer cicios de Crecimient o Económico
d kt 1 0 dct
Gráfico [5.3]: Comportamiento de c 0
126
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Esto quiere decir si nos encontramos por encima de la curva c t 0 , por un aumento de un
poquito de kt , Dado que f (kt ) es una función creciente, por lo que el valor de c de la 2da
Ecuación diferencial pasa hacer negativo c t 0 . Concluimos que a la derecha de la curva, el consumo decrece, por lo que se dibuja las flechas apuntando hacia abajo. Para demostrar esto pasaremos a derivar la segunda ecuación con respecto a kt
d ct 1 .U (ct ). f (k ) 0 dkt U (ct )
De la misma manera una disminución de kt hará que c t 0 sea positivo. Esto significa que
nos encontramos a la izquierda de c t 0 , las flechas apuntarán hacia arriba como se
aprecia en el gráfico [5.3], donde las flechas positivas se denota por c t 0 . 5.1.6 Análisis Cualitativo Ahora antes de juntar los dos diagramas de fases en un solo pasaremos a hallar el consumo
Oro de oro modificado cmod , que es aquel consumo que maximiza el bienestar de los agentes de la sociedad en su conjunto y también se tendrá un nuevo capital por trabajador modificado con en nuevo consumo.
Para esto de la 2da Ecuación diferencial c t
1 f (kt ) ( )ct , reemplazando el valor de
c t 0 , con esto 0 f (kt ) ( ) , entonces f (kt ) ( ) es el punto de tangencia de la función f (kt ) que es estrictamente decreciente y como se puede apreciar en el gráfico [5.4] la función f (kt ) es estrictamente de creciente y convexa. Al cortarse estas la tangencia
1
Oro con la función generan un punto que se llama el capital de oro modificado ( k mod ), al
Oro proyectar este punto, al grafico inferior nos da el consumo de oro modificado óptimo ( cmod ) que estábamos buscando.
En el caso de una función Cobb-Douglas, nos da un capital por trabajador de oro modificado 1
Oro
óptimo k mod
Ejer cicios de Crecimient o Económico
Lo que nos dice que a la derecha de c t 0 será c t 0
A 1 .
Oro Donde k mod esta representado por una línea vertical. El lector habrá notado que el stock de capital por trabajador hallado es menor que el stock de capital de oro y eso es por que n y f (kt ) es una función decreciente.
127
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
1
Ejer cicios de Crecimient o Económico
Gráfico [5.4]: El consumo de Oro óptimo modificado
5.1.7 Estado de crecimiento proporcionado
El estado de crecimiento proporcionado, se halla cuando las curvas c t 0 y k t 0 se cruzan y esto se puede observar en el grafico [5.5], que se curtan en tres puntos. El primer punto que esta representado por de un sol de color naranja, es el eje de
coordenadas donde c t 0 y k t 0 . El segundo punto que representa al estado proporcionado, que esta representado por un Oro sol de color verde fosforescente, es el punto , que corresponde a la intersección kmod
128
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
de k t 0 , de la 1er Ecuación diferencial k t f ( kt ) ct ( n ) kt , reemplazando k t 0 y Oro Oro ct 0 obtenemos el capital kmod que satisface f ( kmod ) ( n ) kt , donde este capital esta a
la derecha del capital máximo.
El tercer punto es en la intersección de k t 0 y k1t en este punto esta representado en el grafico con un solo de color amarillo. El capital en este punto en el largo plazo esta economía converge necesariamente a un estado de proporcionado que conlleva a cantidades positivas del consumo.
c cte si y solo si, kt kt 1 lo que implica que k 0 El stock de capital no cambie se tiene que cumplir que el consumo per cápita no varíe.
k cte si y solo si, ct ct 1 lo que implica que c 0 En el estado de crecimiento proporcionado: k 0 y c 0 Si c 0
Akt (1 )
A Oro kmod
1 1
Stock de capital del estado proporcionado
El PIB per capita de estado estacionario, se obtiene sustituyendo el capital de estado proporcionado en la función de producción:
ymod
A 1 Producción en el estado proporcionado A
1
Oro
Sabiendo que el consumo per cápita es la renta menos el ahorro, lo calculamos como:
A Oro cmod (1 s ) A
Ejer cicios de Crecimient o Económico
En el estado proporcionado es una situación en que las variables per cápita crecen a una tasa constante. Se describe el comportamiento del consumo, para que el consumo crezca una tasa constante el capital tiene que ser siempre el mismo:
1
Consumo per cápita en el estado proporcionado
129
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
La dinámica que esta representada por las flechas como se observa en el grafico [5.5], donde en el origen existe un estado inestable, por que nunca llegamos a un estado proporcionado. El segundo estado proporcionado, k1t es estable en todas sus flechas que existen alrededor apuntan hacia este punto. Oro El tercer estado proporcionado es k mod con estabilidad este punto es llamado “punto de silla” en estado trayectoria llamamos “saddle paht stability” o “trayectoria estable” que converge a un estado proporcionado. Este tercer punto también genera el punto de silla, por que existen líneas aerodinámicas que convergen y divergen alrededor del punto.
La dinámica de transmisión nos dice que si aumentara el consumo, el capital en el largo plazo, la Oro economía converge hacia un estado proporcionado k mod .
130
1
5.1.8 Dinámica
Ejer cicios de Crecimient o Económico
Gráfico [5.5]: El equilibrio en el modelo de Ramsey
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 5.2
Modelo de Ramsey con progreso tecnológico
Es esta parte introduciremos el progreso tecnológico exógeno en el modelos de crecimiento, dicho progreso es potenciados del trabajo, este es el nuevo supuesto que se agrega al modelo. Entonces pasaremos a introducir el progreso tecnológico en 1er
Ecuación diferencial
k t f ( kt ) ct ( n mL ) kt , planteamos nuestra función de utilidad agregada de la sociedad.
Máx :
J U (ct ).e ( n )t dt (Función Objetivo) 0
s.a : k t f ( kt ) ct ( n mL ) kt (Ecuación de Movimiento) k (t0 ) k0 (Condición Inicial) k0 0 : Dado 0 ct f (kt ) 0t Para solucionar el problema se debe cumplir que: n (1 )mL es decir que la función de utilidad este acotada en este caso. 1) Comenzaremos a solucionar el problema de control optimo por el método que nos dejo Pontryagin, que se basa en la metodología del Hamiltoniano, para esto pasaremos a plantear el hamiltoniano.
H (ct , kt , t , t ) U (ct ).e ( n ).t t f ( k k ) ct ( n mL ) kt Donde kt : Variable de estado.
1
ct : Variable de control. t : Variable de coestado. Condición de Primer Orden (CIO) 2) Tomando la derivada del Hamiltoniano con respecto de la variable de control e igualándolo a cero.
H U t t 0 ct ct ct
H e ( n ) t .U (ct ) t ( 1) 0 ct
Ejer cicios de Crecimient o Económico
U (ct ) t ( I ) e( n )t Valor actual de la utilidad = Multiplicador Dinámico
3) Tomando la derivada del Hamiltoniano con respecto a la variable de estado e imponiendo la igualdad al negativo de la derivada del multiplicador con respecto al tiempo.
131
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico H t kt
t f ( kt ) ( n mL ) t
f (kt ) (n mL ) t ( II ) t 4) Tomando la derivada con respecto al multiplicado lagrangiano, tenemos:
H kt kt
f (kt ) ct (n mL ) k t
Condición de Segundo Orden (CIIO)
2H e ( n )t .U (ct ) 0 2 ct >0 x 0< Esta condición nos asegura un consumo máximo y La concavidad del consumo. 5) La condición de transversalidad-multiplica la variable de estado por el precio implícito de capital (multiplicador de Lagrange) en el momento terminal y pone igual a cero. Condición de Transversalidad
Lím t kt 0 t
Esto quiere decir que t 0 (el precio implícito de capital en el periodo final) o que kt 0 (el stock de capital en el momento que muere).39
t
e( n )
Lím t 0 t
1
Lím t
(1 / ) 0 1
De la ecuación (II) tenemos f ( kt ) ( n mL ) g Pmgk ( n mL ) g Aplicando logaritmo neperiano a la ecuación (I) tenemos:
1 ( n)t. ln e ln U (ct ) ln t
( n)t ln U (c y ) ln t
Aplicando la derivada temporal (derivada con respecto a “t”) a la ecuación tenemos:
( n. 39
Ejer cicios de Crecimient o Económico
f (kt ) ct (n mL ) k t ( III )
dt d ln U (ct ) d (ln t ) dt dt dt
En la economía de Ramsey se supone que los individuos “fenecen” en el infinito.
Lím t 0 , t
esto
indica que el valor del stock de activasen el ultimo momento del horizonte temporal debe ser cero.
132
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
1 dU (ct ) ct t ( n) . . U (ct ) ct dt t
1 t ( n) .U (ct ). c t U (ct ) t
A la ecuación anterior multiplicaremos y dividiremos entre el consumo por trabajador ( ct )
ct t ( n) . ( ) ct t Donde
1 1 .U (ct ). : Representa la elasticidad de la utilidad marginal con respecto al U (ct ) ct
consumo por trabajador. Multiplicando por -1 a ala ecuación ( ), tenemos:
ct t ( n) . ( IV ) ct t Igualando las ecuación (II) con la ecuación (IV)
t ct f (kt ) (n mL ) ( n) . t ct
1
ct Despejando , tenemos: ct
ct f (kt ) ( mL ) (V ) , La proposición Ramsey - Keynes ct Esta ecuación nos dice que la tasa óptima del consumo por trabajador es la razón del producto marginal del capital menos la tasa de depreciación, la tasa de aumento tecnológico debido a la eficiencia del trabajo y la tasa de descuento intertemporal dividido sobre la elasticidad de la utilidad marginal con respecto al consumo por trabajador.
c
Ejer cicios de Crecimient o Económico
1 1 ct t ( n) .U (ct ). . U (ct ) ct ct t
1 f (kt ) ( ) : Evolución del consumo por unidad de trabajo efectivo.
Así mismo se puede expresar la ecuación como: c t
1 f (kt ) ( mL )ct (VI )
133
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 5.2.1 Sistema de Ecuaciones Diferenciales (Diagrama de fases) Existen dos ecuaciones diferenciales que nos ayudan a graficar el diagrama de fases de este modelo son:
1er Ecuación diferencial: k t f ( kt ) ct ( n mL ) kt
2da Ecuación diferencial: c t
1 f (kt ) ( mL )ct
Encontrando la curva: k 0
0 f (kt ) ct (n mL )kt Entonces ct f ( kt ) ( n mL ) kt
Gráfico [5.6]: Diagrama de fases con progreso tecnológico de k 0
Si nos situamos por encima de la curva k t 0 , vemos que un pequeño movimiento de ct irá
asociada a una disminución de k t 0 . Dado que la 1er Ecuación diferencial, donde el
consumo aparece con signo negativo, entonces concluimos que por encima de la k t 0 , el
capital decrece k t 0 . Denotamos el movimiento de flechas así la izquierda, tal como aparece en el gráfico [5.6]. Las flechas se dirigen en forma horizontal por que en el eje horizontal aparece kt . Derivando la primera ecuación diferencial con respecto a ct se obtiene:
d kt 1 0 dct
Donde se demuestra que al aumentar el valor de ct disminuye el valor de k t
134
1
Si k t 0
Ejer cicios de Crecimient o Económico
De la 1er Ecuación diferencial
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico De la misma manera analizaremos que pasa si ubicamos un vector por debajo de la curva
k t 0 , las flechas apuntan así la derecha, diciéndonos que por debajo de la curva k t 0 , el
capital crece k t 0 , en este caso las flechas apuntan hacia la derecha.
Encontrando la curva: c 0 De la 2da ecuación diferencial
Si c t 0
0
ct f (kt ) ( mL )
Pmgk ( mL ) , Representa la ecuación de una recta que es paralela al eje de ordenadas
Gráfico [5.7]: Diagrama de fases con progreso tecnológico de c 0
Esto quiere decir si nos encontramos por encima de la curva c t 0 , por un aumento de un
1
poquito de kt , Dado que f (kt ) es una función creciente, por lo que el valor de c de la 2da
Ecuación diferencial pasa hacer negativo c t 0 . Concluimos que a la derecha de la curva, el consumo decrece, por lo que se dibuja las flechas apuntando hacia abajo. Para demostrar esto pasaremos a derivar la segunda ecuación con respecto a kt
d ct 1 .U (ct ). f (k ) 0 dkt U (ct )
Ejer cicios de Crecimient o Económico
Entonces f (kt ) ( mL )
Lo que nos dice que a la derecha de c t 0 será c t 0
De la misma manera una disminución de kt hará que c t 0 sea positivo. Esto significa que
nos encontramos a la izquierda de c t 0 , las flechas apuntarán hacia arriba como se
aprecia en el gráfico [5.7], donde las flechas positivas se denota por c t 0 .
135
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Ahora antes de juntar los dos diagramas de fases en un solo pasaremos a hallar el consumo
Oro de oro modificado cmod , que es aquel consumo que maximiza el bienestar de los agentes de la sociedad en su conjunto y también se tendrá un nuevo capital por trabajador modificado con en nuevo consumo.
Para esto de la 2da Ecuación diferencial c t
1 f (kt ) ( mL )ct , reemplazando el
valor de c t 0 , con esto 0 f (kt ) ( mL ) , entonces f (kt ) ( mL ) es el punto de tangencia de la función f (kt ) que es estrictamente decreciente y como se puede apreciar en el gráfico [5.4] la función f (kt ) es estrictamente de creciente y convexa. Al cortarse estas la tangencia con la función generan un punto que se llama el capital de oro
Oro modificado óptimo ( cmod ) que estábamos buscando.
En el caso de una función Cobb-Douglas, nos da un capital por trabajador de oro modificado 1
Oro
óptimo kmod
1 A . mL
Oro Donde k mod esta representado por una línea vertical. El lector habrá notado que el stock de capital por trabajador hallado es menor que el stock de capital de oro y eso es por que n y f (kt ) es una función decreciente.
5.2.2 Estado de crecimiento proporcionado
El estado de crecimiento proporcionado, se halla cuando las curvas c t 0 y k t 0 se cruzan y esto se puede observar en el grafico [5.5], que se curtan en tres puntos. El primer punto que esta representado por de un sol de color naranja, es el eje de
1
coordenadas donde c t 0 y k t 0 . El segundo punto que representa al estado proporcionado, que esta representado por un Oro sol de color verde fosforescente, es el punto kmod , que corresponde a la intersección de
k t 0 , de la 1er Ecuación diferencial k t f ( kt ) ct ( n mL ) kt , reemplazando k t 0 y Oro Oro ct 0 obtenemos el capital kmod que satisface f ( k mod ) ( n mL ) kt , donde este capital
esta a la derecha del capital máximo.
El tercer punto es en la intersección de k t 0 y k1t en este punto esta representado en el grafico con un solo de color amarillo. El capital en este punto en el largo plazo esta economía converge necesariamente a un estado de proporcionado que conlleva a cantidades positivas del consumo. En el estado proporcionado es una situación en que las variables per cápita crecen a una tasa constante. Se describe el comportamiento del consumo, para que el consumo crezca una tasa constante el capital tiene que ser siempre el mismo.40 40
Ejer cicios de Crecimient o Económico
Oro modificado ( k mod ), al proyectar este punto, al grafico inferior nos da el consumo de oro
En este el estado proporcionado, la tasa de crecimiento de las variables en términos per cápita es
mL .
136
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
1
Ejer cicios de Crecimient o Económico
Gráfico [5.8]: El equilibrio en el modelo de Ramsey con progreso tecnológico
137
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Enfoques recientes de crecimiento endógeno “Entender es relacionar, encontrar la unidad bajo la diversidad. Un acto de inteligencia es darse cuenta de que la caída de una manzana y el movimiento de la Luna, que no cae, están regidos por la misma ley.”
1
Ernesto Sabato (1945)
Ejer cicios de Crecimient o Económico
Capítulo VI
138
1
Ejer cicios de Crecimient o Económico
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
139
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
E
n los años 70, la teoría del crecimiento entro en decadencia, debido a que solo se centraba en modelos de crecimiento exógeno. Ha mediados de la década de los 80 un grupo de economistas como: Romer, Lucas, Barro, etc. Plantearon que debería investigarse las causas y orígenes del crecimiento económico y que era necesaria plantear un modelo de crecimiento con progreso tecnológico endógeno. 6.1
Modelos AZ
Los modelos AZ t no cumplen con las propiedades de los modelos neoclásicos, como veremos. 6.1.1 Supuestos del modelo Sea una economía capitalista que no tiene relación con el exterior. Existe un capital compuesto Z t , que es una combinación de capital físico y capital humano. Existe rendimientos constantes del capital compuesto o amplio. Exhibe rendimientos constantes a escala; dado que A(Z t ) AZ t Yt . Tiene rendimientos positivos pero no decrecientes de capital. Tiene una función de producción AZ t . Función de producción agregada (FPA) Este modelo describe una función agregada que se encuentra representada por el gráfico [6.1].
Yt A.Z t ( FPA) Donde
Yt : Producto agregado en el periodo “t”. Z t : Stock de capital compuesto en el periodo “t”. A : Índice de nivel de tecnología. Si queremos representar el producto marginal del capital compuesto, solo basta con aplicar la derivada de la función de producción agregada con respecto al stock de capital.
41
Este modelo
AZ t , también es llamado “modelo de tecnología AK t ”, la introducción de este modelo a la
literatura economica se la debemos Romer (1987) Rebelo (1991), cuando introduce el capital compuesto en los años ochenta.
140
1
Donde Z t : Capital compuesto con tecnología lineal.
Ejer cicios de Crecimient o Económico
Son aquellos modelos de crecimiento que tiene una tecnología lineal y utilizan una función de producción AZ t , donde considera un capital compuesto, capital amplio que considera un capital físico y capital humano y estas se combinan en proporciones fijas.41 La ausencia de rendimientos decrecientes y va existir rendimientos constantes del capital compuesto.
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
PmgZ
dYt A dZ t
Podemos ver que el producto marginal de la función es una constante, y en el grafico [6.2], se encuentra representado como una línea recta horizontal. Gráfico [6.2]: El producto marginal del modelo AZ
Yt Z A. t Lt Lt
1
De la ecuación (FPA) dividiendo entre la cantidad de trabajadores obtenemos:
Ejer cicios de Crecimient o Económico
Gráfico [6.1]: La función de producción agregada
yt A.zt ( FPI )
En el grafico [6.3], podemos ver la representación de la función de producción intensiva. Gráfico [6.3]: La función de producción intensiva
141
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Donde en el grafico [6.4] esta representado el producto marginal de la función de producción intensiva.
Pmgz
dyt A dzt
Observación: Donde las variables minúsculas representan variables por trabajador, y las variables mayúsculas, representan valores agregados. 6.1.2 Ecuación fundamental Asume que el ahorro agregado es una proporción del ingreso nacional, dado el producto marginal ahorrar ( Pmgs ). Suponiendo que el stock de capital se deprecia a una tasa constante . Sea que la función de fuerza agregada crezca a una tasa constante y exógena n . Sea n el tamaño de la población total. De la condición de equilibrio macroeconómico tenemos:
S Ib
1
sYt I Kn I Krep
s. AZ t Z T .Z t Dividiendo la ecuación entre el número de trabajadores
Z ZT Z s. A t t Lt Lt Lt
ZT s. Azt .zt ( I ) Lt
Z dz d ( Z t / Lt ) Z t Lt L t Z t Sabemos que: zt t t Lt dt dt ( Lt ) 2
Ejer cicios de Crecimient o Económico
Gráfico [6.4]: El producto marginal de la FPI
dzt Z t Lt Z t Zt z t nzt (II ) dt Lt Lt Lt Lt
Reemplazando la ecuación (II) en la ecuación (I) y despejando z t tenemos:
142
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
z t s. Azt ( n ) zt La ecuación fundamental de Rebelo Es una ecuación dinámica del proceso de acumulación del capital compuesto, en una economía capitalista, donde existe en forma combinada el capital físico y el capital humano. Esta ecuación nos dice que la tasa de cambio del capita l por trabajador va ser el remanente del ahorro bruto por trabajador, respecto a ala ampliación bruta de capital compuesto. En el grafico [6.5], podemos apreciar la grafica de la curva de ahorro bruta por trabajador y de la curva de ampliación bruta de capital compuesto.
6.1.3 Dinámica de transmisión
1
Debido a que esta economía tiene una tecnología muy productiva, va ocurrir que en el largo plazo no se genera un estado de crecimiento proporcionado, si no que e n el largo plazo se va generar un estado de crecimiento progresivo, es aquel estado o situación en el largo plazo en el que se genera una tasa de cambio de capital compuesto.
Ejer cicios de Crecimient o Económico
Gráfico [6.5]: El estado de crecimiento progresivo
En el largo plazo el estado de crecimiento progresivo: z t 0
Si z t 0 entonces s. A ( n ) , lo cual genera que sea indeterminado zt y esto ocurre por que no existe rendimientos constantes del capital compuesto. Versión Barro De la ecuación fundamental de Rebelo
z t s. Azt ( n ) zt Dividiendo esta ecuación entre el capital compuesto
zt s. A (n ) zt
z s. A (n )
Donde
z : La tasa de crecimiento del capital por trabajador.
143
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico En el estado de crecimiento progresivo si z 0 entonces s. A ( n ) , con lo cual se determina zt* . Dicho de otra manera, observamos que la tasa de crecimiento de esta economía es constante y va ser la diferencia entre dos números. En esta economía la curva de ahorro es una línea recta horizontal, si nuestra economía es productiva como para que s. A ( n ) , la tasa de crecimiento será constante y positiva
y s. A (n ) . En este modelo también el consumo crece a la misma tasa que la tasa de crecimiento per cápita y c s. A (n ) .
Ejer cicios de Crecimient o Económico
Gráfico [6.6]: Versión de Barro del modelo AZ
Determinación de y c De la función de producción intensiva (FPI) tenemos:
Ln( yt ) Ln( A) Ln( zt ) , aplicando una derivada temporal 0 dLn ( yt ) dLn ( A) dLn ( zt ) dt dt dt y z
1
yt Azt
De Ct Pmgc.Yt Dividiendo entre Lt
Ct Y Pmgc. t Lt Lt
c y
c y z
6.1.4 Característica del modelo a) La tasa de crecimiento del modelo puede ser positiva sin necesidad de suponer, que las variables crecen continuamente y exógenamente.
144
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico b) Un aumento de la tasa de ahorro provoca un incremento de la tasa de crecimiento, como se puede ver en el gráfico [6.7], donde un aumento de las tasa de ahorro hace saltar a la curva de ahorro hacia arriba y la distancia entre las dos curvas aumenta.
d) El modelo predice que no existe relación entre la tasa de crecimiento de la economía y el nivel alcanzado, por lo que el modelo no alcanza convergencia, ni condicional, ni absoluta. e) El modelo AZ t predice que los efectos recesivos temporal serán permanente, esto quiere decir que el capital, disminuye temporalmente por una causa exógena. f) Un aspecto de este modelo es el que menciona Saint-Paul (1992), que la tecnología AZ t , no puede haber demasiada inversión. Como la tasa de crecimiento per cápita es igual z* s. A (n ) , la tasa de crecimiento agregado es z* s. A (n ) , la tasa de crecimiento agregada esta expresada como
Y* *y L *y n S . A (n ) , para que exista eficiencia r *y , donde la tasa de interés siempre es igual a r A , entonces A s. A recordemos que la desigualdad no puede darse por que la tasa de ahorro es siempre inferior a 1 ( 0 s 1 ), por lo que A es siempre mayor que s. A , por lo tanto con tecnología AZ t pues no puede ser dinámico ineficiente. 6.1.5 Modelo AZ con la función de producción Cobb-Douglas Este modelo va considerar la producción tiene una función de producción Cobb-Douglas Función de producción agregada (FPA)
Yt AZ t Lt (FPA) 42
Esto quiere decir que el modelo AZ carece de un estado proporcionado, por lo que la curva de ahorro no se corta con la curva de depreciación y por ende el modelo no converge.
145
1
c) Esta economía carece de una transición hacia el estado proporcionado, por que siempre crece a una tasa constante igual z* s. A (n ) , sin importar el valor que adopte el stock de capital.42
Ejer cicios de Crecimient o Económico
Gráfico [6.7]: Aumento de la tasa de ahorro
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Dividiendo la función de producción agregada entre Lt
Yt Z t Lt A Lt Lt Lt Lt
yt Azt Lt 1 ( FPI )
De la condición de equilibrio macroeconómico tenemos:
S Ib
sYt I Kn I Krep
s.Yt Z T .Z t
Y ZT Z s. tt t Lt Lt Lt
ZT s. yt .zt ( I ) Lt
Z dz d ( Z t / Lt ) Z t Lt L t Z t Sabemos que: zt t t Lt dt dt ( Lt ) 2
dzt Z t Lt Z t Zt z t nzt (II ) dt Lt Lt Lt Lt
Reemplazando la ecuación (II) en la ecuación (I) y despejando z t
z t s. yt ( n ) zt Reemplazando la función de producción intensiva (FPI) en la ecuación fundamental
1
z t s. Azt Lt 1 ( n ) zt , la ecuación fundamental con una función Cobb-Douglas
Ejer cicios de Crecimient o Económico
Dividiendo la ecuación entre el número de trabajadores
Gráfico [6.8]: Estado de crecimiento progresivo
En el gráfico [6.8] se puede apreciar la dinámica de transmisión en el estado de
crecimiento progresivo z t 0 , entonces indeterminado.
s. Azt Lt 1 ( n ) zt implica tener un zt*
146
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Versión de Barro Dividiendo la ecuación fundamental entre zt
z
s. Azt Lt 1 (n ) zt
Como se puede apreciar en el gráfico [6.9] en el estado de crecimiento progresivo z 0 , entonces s. Azt Lt 1 ( n ) zt esto implica obtener un zt* indeterminado.
En el grafico [6.9] se puede observa que la curva de ahorro es representado como una línea recta horizontal y la curva de depresión también, por esto este modelo no alcanza un estado de crecimiento proporcionado, sino un estado de crecimiento progresivo. Observación Si Yt AZ t Lt se tiene que la elasticidad del producto respecto a los trabajadores no
1
calificados es nulo entonces 0 y 1 se tendrá una función Yt AZ t .
Ejer cicios de Crecimient o Económico
Gráfico [6.9]: Versión de Barro del modelo AZ
147
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 6.2
Modelo de crecimiento con sector Físico y Humano
Este modelo es una extensión de los modelo de crecimiento y que va considerar explícitamente el capital físico y el capital humano. 6.2.1 Supuestos del modelo A los supuestos básicos se le añaden los siguientes supuestos: Sea una economía sin relación con el exterior. Existe un stock de capital físico que se encuentra representado con el subíndice K. Existe un stock de capital humano que se encuentra representado con un subíndice H.
Existe una función de producción Cobb-Douglas. Función de producción agregada (FPA) Sea una función de producción Cobb-Douglas en la que los dos factores de producción son capital físico, K, y capital humano, H.
Yt BK t H t1 ( FPA) Siendo 0 1 Donde
Yt : Producción agregada en el instante “t”. K t : Stock de capital físico agregado en el instante “t”. H t : Stock de capital humano agregado en el instante “t”. B : Índice de nivel de tecnología.
: Elasticidad producto respecto al capital físico. Esta ecuación dinámica de acumulación de capital físico y de capital humano, en una economía capitalista a través del tiempo. 6.2.2 Ecuación Dinámica fundamental De la condición de equilibrio macroeconómico
Yt Ct I b Yt Ct I Kn I Krep
BK t H t1 Ct K t K H H t
Resolviendo para: H t K t
K t H t BK t H t1 C ( K K t H H t ) La ecuación fundamental
148
1
H K .
Ejer cicios de Crecimient o Económico
Ambos stock de capital se deprecian a una misma tasa constante y exógena
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Donde K : Tasa de depreciación del stock de capital físico.
H : Tasa de depreciación del stock de capital humano. 1 : Elasticidad producto respecto al capital humano. Esta ecuación dinámica de acumulación de capital físico y de capital humano, en una economía capitalista a través del tiempo. La ecuación establece que la tasa de cambio del capital físico mas la tasa de cambio del capital humano, son iguales al remanente del producto agregado, respecto al consumo agregado y a la inversión en reposición del capital físico y del capital humano.
Las empresas capitalistas maximizan sus beneficios contratando aquella cantidad de capital físico hasta que iguale al producto marginal del capital físico con la tasa de rendimiento bruto de capital.
PmgK físico RK , la condición de optimización de beneficios
Donde
RK : Tasa de rendimiento neto de capital físico. rK : Tasa de rendimiento del capital físico. RK rK K De la función de producción obtenemos, el producto marginal del capital físico:
Yt BK t H t1 K t
1
K t 1 PmgKt B Ht Kt
Ejer cicios de Crecimient o Económico
Mercado de capital físico
PmgKt PmeKt
149
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
1
Gráfico [6.11]: El producto agregado del capital físico con capital humano constante
Ejer cicios de Crecimient o Económico
Gráfico [6.10]: El producto medio del capital físico
Mercado de capital humano Las empresas capitalistas maximizan sus beneficios contratando aquella cantidad de capital humano hasta que iguale al producto marginal del capital humano con la tasa de rendimiento bruto de capital.
PmgH RH , la condición de optimización de beneficios
Donde
RH : Tasa de rendimiento neto de capital humano. rH : Tasa de rendimiento de capital humano. RH rH H De la función de producción obtenemos, el producto marginal del capital humano:
150
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Yt (1 ) BK t H t H t
PmgH t BKt
H t1 Ht
PmgH t (1 ) PmeH
1
Gráfico [6.13]: El producto agregado del capital humano con capital físico constante
Ejer cicios de Crecimient o Económico
Gráfico [6.12]: El producto medio del capital humano
6.2.3 Transformación de la agregada Cobb-Douglas De la condición de equilibrio macroeconómico
Yt Ct I b Yt Ct I Kn I Krep
BK t H t1 Ct K t K H H t
Resolviendo para: H t K t
151
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
K t H t BK t H t1 C ( K K t H H t ) La ecuación fundamental Donde K : Tasa de depreciación del stock de capital físico.
H : Tasa de depreciación del stock de capital humano. 1 : Elasticidad producto respecto al capital humano. Para hallar esta transformación lo primero que tenemos que hacer es, igualar las tasas de rendimiento neto de capital.
De: RH rH H rH RH H Luego se sabe por uno de los supuestos del modelo que:
rK rH RK K RH H Puesto que asumimos por simplicidad que las diversas tasas de interés son iguales, tenemos de la igualdad:
K H Reemplazando esta igualdad en la ecuación anterior se tiene:
RK RH RK RH PmgK pmgH .PmeK (1 ) pmeH
Yt Y (1 ) t Kt Ht
1
Ejer cicios de Crecimient o Económico
De: RK rK K rK RK K
Resolviendo la ecuación anterior para
Ht , qué es la razón de capital humano con respecto Kt
al capital físico
Ht 1 Kt
1 Ht Kt
Donde la ecuación obtenida representa el stock de capital humano es una proporción del stock de capital físico. Ahora para transformar la función de producción:
1 Yt BK t H t1 , pasaremos a reemplazar H t K t en la función:
152
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 1
1
1 Yt BK K t
1 Yt BK
t
t
K t1
1
1 Yt B
Kt
1
1
cte A , si reemplazamos este valor en la ecuación obtenemos:
Como B
Obtenemos la famosa función AK o como nosotros lo hemos venido llamando en este libro el modelo AZ. Este en un motivo también consideran al modelo AZ, como un modelo en el coexisten capital físico y capital compuesto. 6.2.4 Ejercicios resueltos Problema #1 Del modelo de un sector con capital físico y capital humano, se tiene la siguiente función de producción agregada: Yt BK t3 / 4 H t1 / 4 asuma que las tasas de depresión son iguales a) Hallar la ecuación dinámica fundamental del modelo b) Analice el mercado de capital físico. c) Analice el mercado de capital humano.
Ht . Kt
d) Halle la razón
1
Rpt:
Ejer cicios de Crecimient o Económico
Yt AK t
a) De la condición de equilibrio macroeconómico tenemos:
Yt Ct I b Yt Ct I Kn I Krep
BK t H t1 Ct K t K H H t
Resolviendo para: H t K t Asumiendo que las tasas de interés i depreciación son iguales K H
K t H t BK t3 / 4 H t1 / 4 C ( K t H t ) La ecuación fundamental
153
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico b) Mercado de capital físico El mercado de capital físico es de tipo competencia perfecta esto implica:
PmgK RK (Rendimiento bruto del capital) Yt 3 BK t3 / 4 H t1/ 4 K t 4 Kt 3 Yt 4 Kt
Ejer cicios de Crecimient o Económico
PmgK
Yt 3 Yt 3 PmeK K t 4 K t 4
c) Mercado de capital Humano El mercado de capital físico es de tipo competencia perfecta esto implica:
PmgK RK (Rendimiento bruto del capital) Yt 1 BK t3 / 4 H t1 / 4 H t 4 Ht PmgH
Yt 1 Yt 1 PmeH H t 4 H t 4
1 Yt 4 Ht
d) En el equilibrio y bajo el supuesto tenemos:
1
rK rH r rK RK K rH RH H Asumiendo que la depreciación es la misma para los dos mercados K H
RH H RK K
RK RH PmgK PmgH 3 Yt 1 Yt 4 Kt 4 H t
Ht 4 Kt 3
e) De la función de producción tenemos:
Yt BK t3 / 4 H t1 / 4 Reemplazando H t en la función
154
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Yt BK
3/ 4 t
4Kt 3t
1/ 4
1/ 4
4 Yt B 3
Kt
1/ 4
4 Si consideramos a B 3
cte A
Reemplazando en la función nos da; Yt AK t que es la nueva función que tiene la forma del modelo AZ, visto en este libro o como muchos libros lo llaman la función AK.
Del modelo de un sector con capital físico y capital humano, se tiene la siguiente función de producción agregada: Yt BK t3 / 5 H t2 / 5 asuma que las tasas de depresión son iguales a) Hallar la ecuación dinámica fundamental del modelo b) Analice el mercado de capital físico. c) Analice el mercado de capital humano.
Ht . Kt
d) Halle la razón
Rpt: a) De la condición de equilibrio macroeconómico tenemos:
Yt Ct I b Yt Ct I Kn I Krep
BK t H t1 Ct K t K H H t
Resolviendo para: H t K t
1
Asumiendo que las tasas de interés i depreciación son iguales K H
Ejer cicios de Crecimient o Económico
Problema #2
K t H t BK t3 / 5 H t2 / 5 C ( K t H t ) La ecuación fundamental b) Mercado de capital físico El mercado de capital físico es de tipo competencia perfecta esto implica:
PmgK RK (Rendimiento bruto del capital) Yt 3 BK t3 / 4 H t1 / 4 K t 5 Kt PmgK
Yt 3 Yt 3 PmeK K t 5 K t 5
3 Yt 5 Kt
155
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico c) Mercado de capital Humano El mercado de capital físico es de tipo competencia perfecta esto implica:
PmgK RK (Rendimiento bruto del capital humano) Yt 2 BK t3 / 4 H t1 / 4 H t 5 Ht 2 Yt 5 Ht
Ejer cicios de Crecimient o Económico
PmgH
Yt 2 Yt 2 PmeH H t 5 H t 5
d) En el equilibrio y bajo el supuesto tenemos:
rK rH r rK RK K rH RH H Asumiendo que la depreciación es la misma para los dos mercados K H
RH H RK K
RK RH PmgK PmgH 3 Yt 1 Yt 4 Kt 4 H t
Ht 2 Kt 3
e) De la función de producción tenemos:
Yt BK
3/5 t
2Kt 3
2/5
2 Si consideramos a B 3
2 Yt B 3
1
Yt BK t3 / 5 H t2 / 5 Reemplazando H t en la función 2/5
Kt
2/5
cte A
Reemplazando en la función nos da; Yt AK t que es la nueva función que tiene la forma del modelo AZ, visto en este libro o como muchos libros lo llaman la función AK.
156
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 6.3
Modelo de Romer con externalidad del capital
En la década de los años 70 hasta la década de los años 80, se había generado un estancamiento en la teoría del crecimiento, debido a los modelos de crecimiento con progreso tecnológico exógeno. Pero Romer en 1986 con su tesis doctoral, formula un modelo de crecimiento en el que se busca hallar las causas y los orígenes del progreso tecnológico, apara ello Romer considera explícitamente los rendimientos decrecientes del capital así como las externalidades del capital. Con este articulo Paul Romer impulso a la literatura del crecimiento económico, por que introdujo la función de producción con externalidades.
Romer
abandona los supuestos de la función de producción agregada sujeta a
rendimientos de escala constante, así mismo abandona el supuesto de rendimientos constantes de capital. Romer asume una función de producción agregada sujeta a los rendimientos de escala constantes y así mismo va asumir rendimientos crecientes de capital. Supone que existe una externalidad de capital y por simplificación se asume que la población es constante. Se asume que también toda la población trabaja en esta economía. Función de producción agregada La función que refleja las externalidades de la economía es:
Yt AK t L1t t ( FPA) Donde
1
Yt : Producto agregado en el instante “t”.
Ejer cicios de Crecimient o Económico
6.3.1 Supuestos del modelo
K t : Stock de capital agregado en el instante “t”. Lt : Fuerza de trabajo agregada en el instante “t”. t : Representa la externalidad del capital en el instante “t”. A : Índice de nivel de tecnología. : Elasticidad producto respecto a la externalidad del capital.
: Elasticidad producto respecto al capital. 1 : Elasticidad producto respecto al trabajo. Si 0 , entonces es una función de producción Cobb-Douglas. Si 0 , entonces expresa el grado de importancia de la externalidad del capital con lo cual 1 1.
157
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Propiedades de la función agregada 1º.
F K t , Lt AK t L1t t Si multiplicamos a la función por un 0
F K t , Lt A(K t ) (Lt )1 t
F K t , Lt .Yt
La función presenta rendimientos de escala constante cuando t permanece constante 2º.
Los productos marginales del capital y trabajo son positivos.
+ + Yt PmgL (1 ) AK t Lt t 0 Lt + + La derivada de los productos marginales es decreciente y negativa.
2Yt PmgK ( 1) AK t 2 L1t t 0 2 K t K t + + Recordemos 0 1 , entonces 0 1 1 1 1 0 es una constante negativa.
2Yt PmgL (1 ) AKt Lt (1 ) t 0 L2tt Lt - + + Recordemos que 0 1 , entonces 0 1 x 1 1 0 1 es una constante positiva 0 1 1 . Veremos que los límites requeridos por las condiciones de INADA se cumplen:
(1 / ) 0
Lím PmgK K
Lím PmgK K 0
1 K t1 1 K
1 t
1
3º.
Ejer cicios de Crecimient o Económico
Yt PmgK AK t 1L1t t 0 K t
. t L1t 0 (1 / 0)
. t L1t
(1 / ) 0 1 Lím PmgL (1 ) K t t 0 L Lt (1 /) 1 Lím PmgL (1 ) K t t L0 Lt Con esto se demuestra que la función cumple con las propiedades neoclásicas
158
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Romer asume que la externalidad de capital es igual al stock de capital agregado, esto quiere decir que:
t kt Dividiendo a la función de producción entre el numero de trabajadores ( Lt )
Yt L1 K AKt t t yt A t t Lt Lt Lt Sabemos que kt t K t / Lt K t kt Lt ( )
yt Akt t (I )
yt Ak y Lt (FPI )
yt Akt ( kt Lt )
6.3.2 Ecuación fundamental De la ecuación fundamental de Solow – Swan mencionada y demostrada en páginas anteriores de este libro tenemos:
k t sf ( kt ) ( n) kt Donde la FPI se yt Ak y Lt (FPI ) y la población es constante: g pob n 0 Lo que nos da la siguiente ecuación:
k t s. Ak y Lt ( )kt , la ecuación fundamental de Romer Esta ecuación dinámica del proceso de acumulación del capital en una economía capitalista, donde existe una función de producción con rendimientos a escala constantes así como una economía que existe externalidad de capital.
1
6.3.3 Tipología
Ejer cicios de Crecimient o Económico
Reemplazando ( ) en la ecuación (I)
En el desenvolvimiento de esta economía depende crucialmente de la suma de los paramentos , que es inferior o superior o igual a uno, se puede distinguir los siguientes casos. Caso A: 1 Esto significa que la externalidad no es muy grande, 0 y que la suma de las elasticidades del capital y de la externalidad del capital es menor a la unidad, esto nos dice que presenta rendimientos decrecientes de capital. En el largo plazo se va llegar a un estado de crecimiento proporcionado, teniendo un equilibrio dinámico de tipo estable, donde el exponente del capital, en la función de ahorro es negativo.
k
s. ALt kt1
159
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Versión de Barro Dividiendo entre kt a la ecuación fundamental nos da:
k t s. Ak y Lt kt kt
k
s. Ak y Lt kt
En el estado de crecimiento proporcionado k es nulo. Si k 0 entonces
s. Ak y Lt kt
se determina el capital por trabajador óptimo kt* de la
economía. 1
1
Por lo que la curva de ahorro toma valores infinitos, cuando kt se aproxima a cero, es decreciente y cuando se aproxima a cero kt va hacia el infinito, y como vemos en el grafico [6.14], la curva de depreciación en corta en un solo punto a la curva de ahorro y esto genera un estado de crecimiento proporcionado en la economía. Cuando nos ubicamos a la izquierda del punto, la tasa de crecimiento es positiva, en la economía. La dinámica del modelo nos dice, que si nos movemos un poquito a la derecha y esto genera una tasa de crecimiento positiva en el corto plazo, y a largo plazo es nulo kLP 0 .
1
Gráfico [6.14]: Caso cuando 1
Ejer cicios de Crecimient o Económico
sALt kt
En este caso, señala que la tasa de crecimiento del capital por trabajador esta correlacionado con el tamaño de la población.
k f (tamaño _ de _ la _ población)
160
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Esta hipótesis fue falsa debido a que no coincidía con la realidad, por lo que Romer nos dice que este efecto escala es falsa. Por lo que Romer asume que la población es constante n 0 .43 Efecto Escala En esta parte hablaremos del efecto escala, que nos dice que la tasa de crecimiento esta correlacionada positivamente con el tamaño de la población.
Esta predicción es falsa como se puede revisar en Bakus, Kehoe y Kehoe (1992), que realiza un estudio para ver los efectos escala, donde tomo los datos los años posteriores a la segunda guerra mundial, donde indico que la tasa de crecimiento per -capita no esta correlacionada ni positivamente ni negativamente con el tamaño del país.44 Caso B: 1 En este caso las externalidades del capital son grandes y positivas, tal que la suma de las elasticidades del capital y de la externalidades es igual a la unidad, lo cual significa que presenta rendimiento constantes del capital.
1
Gráfico [6.15]: Caso cuando 1
Ejer cicios de Crecimient o Económico
La predicción de este modelo dice que los países con mayor población como: China, Mongolia, Rusia, México, Brasil o la India, que deberían crecer mucho más rápido que los que los países con menor población como: Suecia, Japón, Chile, Manama, Argentina o Perú. Esta predicción se le conoce como “El efecto escala”, en conclusión lo que nos quiere decir es que los países con mayor escala de población deberían crecer mas.
Entonces la tasa de crecimiento en la versión de Barro pasa a ser k s. A , esta tasa de crecimiento coincide con el modelo AK, y nos da un Y=AK. Esto significa que en el largo plazo habrá una esta de crecimiento progresivo como se puede apreciar en la grafica [6.15] lo cual implica que el capital por trabajador es indeterminado. En conclusión en el largo plazo se alcanza un crecimiento progresivo entonces k 0 se no alcanza un capital por trabajador por lo que queda indeterminado. 43
Esta hipótesis fue desmentida por que, en la vida real no se puede dar el caso que la economías que tengan tasas de crecimiento vayan aumentando en el tiempo o que el capital desaparezca con el paso de los años. 44 Para comprender mejor este efecto léase: Sala-I-Martin Xavier, (1999) "Apuntes de Crecimiento Económico". Segunda edición. Anthoni Bosch editor, Pág.: 150 -152
161
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Caso C: 1 En este caso las externalidad del capital es muy grande, tal que la suma de las elasticidades del capital y de la externalidad es mayor que la unidad, con lo cual se presentan rendimientos decrecientes. Implicaría es que la economía en el largo plazo, tiende a un estado de crecimiento proporcionado, teniendo la característica central que presenta un equilibrio dinámico estable, donde la tasa de crecimiento es positivo.
una sola vez, esto genera un estado proporcionado, donde existe un único kt* . El estado proporcionado es inestable como lo hemos mencionado, por que si el stock de capital es un poco superior a kt* , entonces el crecimiento es positivo. Pero si el stock de capital un inferior a kt* , entonces la tasa de crecimiento es negativa, el capital disminuye y la economía se aproxima a la extinción (por que existe capital). Como se puede apreciar en el grafico [6.17], donde la función de ahorro de la sociedad es creciente, y la curva de inversión neta por trabajador es una recta con pendiente positiva. Ente caso la economía converge hacia un punto de equilibrio que se encuentra representado en la grafica como Et, por encima de este punto, ósea el capital que se encuentra a la derecha de este punto obtiene tasa de variación del capital por trabajador positiva, pero si disminuimos un poquito el capital por trabajador, nos ubicaremos al izquierda del punto de equilibrio inestable y en este caso la tasa de variación de capital por trabajador será negativa y menor que la existía originalmente en el equilibrio.
162
1
Como se puede apreciar en el grafico [6.16], la curva de ahorro pasa por el origen y es creciente y va hacia el infinito cuando kt va hacia el infinito. Como las dos curvas se cruzan
Ejer cicios de Crecimient o Económico
Gráfico [6.16]: Caso cuando 1
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Gráfico [6.17]: Función de ahorro por trabajador para el caso cuando
6.4
Modelo de Lucas
Es un modelo sobre la acumulación de capital humano, rendimientos crecientes del capital y donde se considera la externalidad del capital, así como va tomar en cuenta la externalidad que genera la acumulación de capital humano sobre el crecimiento, este modelo es mas complejo que el modelo de Romer, por que considera crecimiento optimo. 6.4.1 Supuestos del modelo Lucas abandona los supuestos de rendimientos a escala constantes y los rendimientos decrecientes del capital.
1
Asume que los rendimientos debe ser a escala creciente y los rendimientos crecientes de capital. Existe una externalidad que es del capital humano. Nos dice que la educación va generar dicha externalidad.
Ejer cicios de Crecimient o Económico
1
Función de producción agregada
Sea una función de producción agregada tipo Cobb-Douglas, sujeta a rendimientos crecientes a escala.
Yt AK t L1t t ( FPA) s.a : (1 ) 1 Donde
Yt : Producto agregado en el instante “t”. K t : Stock de capital agregado en el instante “t”. Lt : Fuerza de trabajo agregada en el instante “t”. t : Representa la externalidad del capital en el instante “t”. A : Índice de nivel de tecnología.
163
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico : Elasticidad producto respecto a la externalidad del capital. : Elasticidad producto respecto a la externalidad del capital humano. 1 : Elasticidad producto respecto al trabajo. Para empezar asumiremos, siguiendo a Lucas (1988) asume que la externalidad de capital es igual al stock de capital agregado, esto quiere decir que:
t ktt Dividiendo a la función de producción agregada entre la cantidad de trabajadores de la economía tenemos:
Ejer cicios de Crecimient o Económico
1 Yt Lt AK t t Lt Lt
Reemplazando este supuesto en la función de producción agregada nos da:
K t L1t yt A 1 t Akt t Lt Lt
yt Akt (FPI )
6.4.2 Ecuación fundamental De la ecuación fundamental de Solow – Swan mencionada y demostrada en páginas anteriores de este libro tenemos:
k t sf ( kt ) ( n) kt Donde la FPI se yt Ak y (FPI ) Lo que nos da la siguiente ecuación:
1
k t s. Ak y ( n)kt , la ecuación fundamental de Lucas
Esta ecuación dinámica de proceso de acumulación del capital en una economía capitalista, con rendimientos de escala creciente, externalidad del capital humano y con acumulación de capital humano. 6.4.3 Análisis En el desenvolvimiento de esta economía depende crucialmente de la suma de los paramentos , que es inferior o superior o igual a uno, se puede distinguir los siguientes casos. Caso A: 1 Esto significa que la externalidad del capital humano no es muy grande, 0 0 y que la suma de las elasticidades del capital humano y de la externalidad del capital físico es menor a la unidad, esto nos dice que presenta rendimientos decrecientes de capital.
164
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Cuya consecuencia es que dicha economía en el largo plazo tiende a un estado de crecimiento proporcionado como se puede apreciar en la grafico [6.18], donde se llega a un estado de crecimiento proporcionado en Et. En dicho estado de crecimiento proporcionado la
variable k t es nulo.
Si k t 0 entonces s. Akt ( n ) kt se determina el capital por trabajador óptimo kt* 1
s. A 1 k n
k s. A t n kt
Gráfico [6.18]: La función de ahorro por trabajador y la curva ampliada bruta de capital
Versión de Barro Dividiendo entre kt la ecuación fundamental del modelo
s. Ak t k ( n) kt
1
k t s. Ak t ( n) kt kt
En el estado de crecimiento proporcionado k es nulo. Si entonces
Ejer cicios de Crecimient o Económico
* t
s. Ak t ( n) , se determina el capital por trabajador óptimo ( kt* ) de la kt
economía. 1
s. A 1 kt* n Por lo que la curva de ahorro toma valores infinitos, cuando kt se aproxima a cero, es decreciente y cuando se aproxima a cero kt va hacia el infinito, y como vemos en el grafico [6.19], la curva de depreciación en corta en un solo punto a la curva de ahorro y esto genera un estado de crecimiento proporcionado en la economía.
165
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Cuando nos ubicamos a la izquierda del punto, la tasa de crecimiento es positiva, en la economía. La dinámica del modelo nos dice, que si nos movemos un poquito a la derecha y esto genera una tasa de crecimiento positiva en el corto plazo, y a largo plazo es nulo kLP 0 .
Caso B: 1 En este caso la elasticidad de la externalidad de capital humano es, de magnitud regular, tal que la suma de las elasticidades del capital físico y de la externalidades de dicho capital humano es igual a la unidad. Versión de Barro Dividiendo la ecuación de Lucas entre kt obtenemos:
k
s. Ak y kt
1
k t s. Ak y ( n) kt kt
( n)
En este caso existe un estado de crecimiento progresivo por que las curvas de ahorro y depreciación no se cortan en un punto. Si la tasa de crecimiento es positiva k 0
Ejer cicios de Crecimient o Económico
Gráfico [6.19]: Caso cuando 1
s. Ak y kt
( n)
En conclusión en el largo plazo se alcanza un crecimiento progresivo k 0 , pero el capital por trabajador queda indeterminado en este caso.
166
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Caso C: 1 En este caso la externalidad del capital humano es grande, de tal modo que la suma de las elasticidades del capital físico y de la externalidad supera a la unidad, con lo cual se presenta rendimientos decrecientes del capital. Cuya implicancia es que dicha economía en el largo plazo, modo se puede a preciar en el grafico [6.21], va tender a un estado de crecimiento proporcionado en Et, con la característica clave de presentar un equilibrio dinámico de tipo inestable, como señala el gráfico de este caso.
1
Gráfico [6.21]: Caso cuando 1
Ejer cicios de Crecimient o Económico
Gráfico [6.20]: Caso cuando 1
Versión de Barro El estado proporcionado es inestable como lo hemos mencionado, por que si el stock de capital es un poco superior a kt , entonces el crecimiento es positivo, como se aprecia en el gráfico [6.22]. Pero si el stock de capital un inferior en el kt , entonces la tasa de crecimiento es negativa, el capital disminuye y la economía se aproxima a la extinción (por que existe capital).
167
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Dividiendo a la ecuación fundamental de Lucas – Martín entre kt
k t s. Ak y ( n) kt kt
k
s. Ak y kt
( n)
En el estado de crecimiento proporcionado tasa de crecimiento es nula
kt
( n) se determina el capital por trabajador óptimo kt* . 1
s. A 1 k n * t
1
Si k 0 , entonces
s. Ak y
Ejer cicios de Crecimient o Económico
Gráfico [6.21]: Curva de ahorro creciente en el caso cuando 1
168
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 6.5
Modelo de crecimiento con gobierno
En esta parte estudiaremos el tamaño del gobierno, donde el gobierno dedica sus acciones, (carreteras, empresas, tecnología, parques públicos, hospitales, subsidios, etc.), para el beneficio de la sociedad. Para financiar estas acciones el gobierno cobra impuestos (a la renta, la rentabilidad de las inversiones privadas, IGV, etc.) y veremos como estos impuestos están relacionados con la tasa de crecimiento de la economía.
Para comenzar diremos que este modelo fue desarrollado por Robert Barro (1990) y es una extensión del modelo de Solow, según el cual nos dice que el gasto publico es productivo y para esto nos propone una función de producción con dos factores: Capital privado K t y el gasto del sector publico Gt .
Sector Público
Gasto Fiscal: El estado propone bienes públicos a la sociedad (Educación, salud, seguridad, defensa nacional, etc.) Ingreso Fiscal: Como consigue el gobierno solventar el gasto vía tributación.
6.5.1 Supuestos del modelo A los supuestos básicos del modelo de Solow se le añaden los siguientes supuestos: Existe estado. Existe el sector público. Hay gasto público: El estado proporciona bienes públicos. Existe gasto de gobierno: Refleja el hecho de que hay bienes públicos. La tributación es la única fuente de ingreso. La tributación es proporcional a la renta, dado la tasa marginal de tributación.
1
En el largo plazo existe un equilibrio fiscal.
Ejer cicios de Crecimient o Económico
También es esta parte veremos que el tamaño del gasto publico y su relación con el crecimiento económico, veremos los caso del aspecto positivo de tener gasto publico y los aspectos negativos de tener que financiar dicho gasto.
La función de producción agregada considera el stock de capital privado y el gasto público. El ahorro depende directamente de la renta disponible., dado la propensión marginal ahorrar. Existe solo un impuesto y es a ala renta. Función de producción agregada Sea una función de producción tipo Cobb-Douglas, donde interviene además del stock de capital privado, el gasto de gobierno.
Yt AK t Gt1 ( FPA)
s.a : 0 1 Donde Yt : Producto agregado en el instante “t”.
169
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico K t : Stock de capital privado en el instante “t”. Gt : Volumen del gasto en el instante “t”. A : Índice de nivel de tecnología. : Elasticidad producto respecto al capital privado. Dividiendo a la función de producción entre la cantidad de trabajadores de la economía
Yt K G 1 K G 1 A t t y t A t 1t Lt Lt Lt Lt
y t Ak t g t1 ( FPI )
Donde gt : Gasto de gobierno por trabajador en el instante “t”.
Ejer cicios de Crecimient o Económico
yt : Producto per cápita en el instante “t”. kt : Stock de capital por trabajador en el instante “t”. Propiedades de la función de producción 1º. F K t , Lt AK t Gt1 Si multiplicamos a la función por un 0
F K t , Gt A(K t ) (Gt )1
F K t , Lt .Yt
La función presenta rendimientos de escala constante 2º. Los productos marginales del capital y trabajo son positivos.
Yt PmgK AK t 1Gt1 0 K t
+
+
1
Yt PmgL (1 ) AK t Gt 0 Gt + + La derivada de los productos marginales es decreciente y negativa.
2Yt PmgK ( 1) AK t 2 L1t 0 2 K t K t + + Recordemos 0 1 , entonces 0 1 1 1 1 0 es una constante negativa.
2Yt PmgG (1 ) AKt Gt (1 ) 0 2 Gt Gt - + + Recordemos que 0 1 , entonces 0 1 x 1 1 0 1 es una constante positiva 0 1 1 . 3º. Veremos que los límites requeridos por las condiciones de INADA se cumplen:
(1 / ) 0
170
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Lím PmgK K
Lím PmgK K 0
1 K t1 1 K
1 t
.Gt1 0 (1 / 0)
.Gt1
Ahora demostraremos que la función obtenida cumple con las propiedades Neoclásicas. Para esto deberemos asumir que 0 1 6.5.2 Ecuación fundamental De la condición de equilibrio macroeconómico en una economía cerrada tenemos:
Yt Ct I b Gt De las identidades: Ct Pmgc.Yd
Yd Yt T Yt .Yt
Ib Kt I b K t .K t kt Lt Lt
Kt k t nkt Lt
1
Ib k t ( n ) kt Lt Pmgc Pmgs 1 1 c s
Ejer cicios de Crecimient o Económico
(1 / ) 0 1 Lím PmgG (1 ) K t 0 L Gt (1 /) 1 Lím PmgG (1 ) K t L0 Gt
En el largo plazo existe un equilibrio fiscal (Por que no se permiten la existencia de déficit público).
Gt T .Yt Reemplazando todas las identidades antes mencionadas en las líneas anteriores
Yt Pmgc.Yd K t K t .Yt
Yt c.(1 )Yt K t K t .Yt
Yt (1 c).(1 ) K t K t Dividiendo la ecuación anterior entre la cantidad de trabajadores de la economía y reemplazando la identidad 1 c s
Yt Kt K (1 c).(1 ) t Lt Lt Lt
171
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
yt s.(1 ) k t ( n) kt
Despejando k t reemplazando la (FPI)
k t s.(1 ) Akt g t1 ( n ) kt , la ecuación fundamental con sector público
Estable que la tasa de cambio de capital por trabajador es el remanente del ahorro bruto disponible por trabajador respecto a la ampliación bruta de capital. Donde : representa la tasa marginal de tributación. kt : Capital por trabajador.
: Tasa de depreciación del stock de capital. s : Representa el producto marginal ahorrar. gt : Gasto de gobierno por trabajador. n : Tasa de crecimiento de la población. Versión de Barro Dividiendo a la ecuación fundamental entre kt
kt k s.(1 ) A t gt1 (n ) kt kt kt 1 g t ( n )( I ) kt
k s.(1 ) A
1
Donde k : Tasa decrecimiento por trabajador. En el largo plazo no existe desequilibrio fiscal
Gt T
Gt .Yt
Dividiendo a la ecuación anterior entre la cantidad de trabajadores de la economía
Gt Y Lt Lt
Donde: yt Akt g t1
g t . yt
g t . Akt
g t . Akt g t1
1/
( II )
Reemplazando la ecuación (II) en la ecuación (I) y dividiendo la ecuación entre el numero de trabajadores de la economía ( kt )
k s (1 ) A
kt (A)1 / kt kt
1
Ejer cicios de Crecimient o Económico
Esta ecuación función diferencial del proceso de acumulación de capital en una economía capitalista con sector publico.
(n )
172
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 1
k s (1 ) A .
1
(n )
6.5.3 Análisis En esta parte analizaremos los casos, cuando la tasa marginal de tributación es cero, el cien por ciento y el caso intermedio. Caso I: 0 (cuando la tasa marginal de tributación es nula)
Esto implica que en esta economía habrá protesta popular, rebeliones, etc. La tasa de crecimiento de capital por trabajador será negativa. 1
Si 0 entonces k s (1 0) A .0
1
(n )
k ( n ) Caso II: 1 (cuando la tasa marginal de tributación es del cien por ciento) El estado va obtener recursos de los productores, entonces para los productores no va haber incentivos para producir, entonces va ver disminución del nivel de producción y va haber salida de capitales en el país. Esto implica que se obtendrá una tasa de crecimiento de capital por trabajador negativa. 1
1
Si 1 entonces k s (1 1) A .1
(n )
k ( n )
1
Caso III: 0 1 (caso intermedio)
Ejer cicios de Crecimient o Económico
Si la tasa marginal de tributación es nula, entonces el ingreso fiscal será nulo y esto significa, que no habrá financiamiento para el gasto de gobierno (educación pública, Salud pública, seguridad pública, defensa, justicia, etc.)
En este caso intermedio el estado va obtener ingresos fiscales y a su vez las empresas s e van a sentir incentivadas a producir. De otro lado dicha tasa de tributación , se puede financiar dicho gasto público 1
Si 0 1 entonces k s (1 ) A .
1
(n )
Para maximizar la función se puede hallar igualando a cero la derivada de la tasa de crecimiento con respecto a .
k 0
1 k sA . 1
1 1
s. A1 / .
1
173
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico k sA 1
1
1 1 1 0
>0 1 1 1 0
=0 1
Por lo que el tipo impositivo que maximiza la tasa de crecimiento de la economía es
1 .
Ejer cicios de Crecimient o Económico
Gráfico [6.23]: Relación entre y tasa de crecimiento de la economía
1
6.5.4 Problemas resueltos Problema Nº1 Del modelo de crecimiento con sector publico, se tiene la función de producción dinámica Yt 36 K t3 / 4Gt1 / 4 se sabe que el ahorro agregado es del 36% del producto agregado cada año, la tasa de depreciaciones 6.5% cada año y la fuerza de trabajo es 2.5% al año. Se pide hallar: a) La ecuación fundamenta con sector público. b) Hallar la tasa de crecimiento del capital por trabajador. c) Hallar la tasa de tributación que maximiza la tasa de crecimiento de la economía. d) Hallar la tasa de crecimiento de la economía. Rpt: 6 Dividiendo entre Lt a la función de producción agregada de la economía
Yt K 3 / 4 G1 / 4 36 3t / 4 1t / 4 Lt Lt Lt
yt 36kt3 / 4 g t1 / 4 ( FPI )
174
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico De la condición de equilibrio macroeconómico en una economía cerrada tenemos:
Yt Ct I b Gt Reemplazando todas las identidades
Yt Pmgc.Yd K t K t .Yt
Yt c.(1 )Yt K t K t .Yt
Yt (1 c).(1 ) K t K t Dividiendo la ecuación anterior entre la cantidad de trabajadores de la economía y reemplazando la identidad 1 c s
Ejer cicios de Crecimient o Económico
Yt Kt K (1 c).(1 ) t Lt Lt Lt
yt s.(1 ) k t ( n) kt
Despejando k t reemplazando la (FPI)
k t 0.36(1 )36kt3 / 4 g t1 / 4 0.09kt , la ecuación fundamental 7 De la condición fundamental dividiendo entre el capital por trabajador kt
kt k3/ 4 0.36(1 )36 t g t1 / 4 0.09( ) kt kt G Y g t .(36kt3 / 4 g t1 / 4 ) g t (36. ) 4 / 3 kt ( ) Gt .Yt t . t Lt Lt
kt3 / 4 k 0.36(1 )36 (36 ) 4 / 3 kt kt
1/ 4
1
Reemplazando ( ) en la ecuación ( ) y dividiendo entre kt
0.09
Representa esta ecuación la tasa de crecimiento por trabajador 8 Como se asume 0 1 en este caso intermedio, donde el estado de crecimiento de la economía se maximiza
k 0 * k 1 4 0.36 x(36)1 / 3 x x 2 / 3 0.36 x(36)1 / 3 x 1 / 3 * 3 3
k 1 1 4 0.36 x(36) 4 / 3 x 1 / 3 x 0 * 3 3
175
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 1 1 4 3 x 3 0
0.25 25%
9 De la tasa de crecimiento por trabajador tenemos
k
Máx
0.36(1 0.25)3636 x0.25
1/ 3
(0.09) k
Máx
20.1284
Ejer cicios de Crecimient o Económico
Gráfico del problema Nº1
1
Problema Nº2 Del modelo de crecimiento con sector publico, se tiene la función de producción dinámica Yt 25 K t4 / 5Gt1 / 5 se sabe que el ahorro agregado es del 35% del producto agregado cada año, la tasa de depreciaciones 7% cada año y la fuerza de trabajo es 2% al año. Se pide hallar: a) La ecuación fundamenta con sector público. b) Hallar la tasa de crecimiento del capital por trabajador. c) Hallar la tasa de tributación que maximiza la tasa de crecimiento de la economía. d) Hallar la tasa de crecimiento de la economía. Rpt: Dividiendo entre Lt a la función de producción agregada de la economía
Yt K 4 / 5 G1 / 5 36 4t / 5 1t / 5 Lt Lt Lt
yt 25kt4 / 5 g t1 / 5 ( FPI )
176
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico De la condición de equilibrio macroeconómico en una economía cerrada tenemos:
Yt Ct I b Gt Reemplazando todas las identidades
Yt Pmgc.Yd K t K t .Yt
Yt c.(1 )Yt K t K t .Yt
Yt (1 c).(1 ) K t K t Dividiendo la ecuación anterior entre la cantidad de trabajadores de la economía y reemplazando la identidad 1 c s
Ejer cicios de Crecimient o Económico
Yt Kt K (1 c).(1 ) t Lt Lt Lt
yt s.(1 ) k t ( n) kt
Despejando k t reemplazando la (FPI)
k t 0.35(1 ) 25kt34 / 5 g t1 / 5 0.09kt , la ecuación fundamental De la condición fundamental dividiendo entre el capital por trabajador kt
kt k4/5 0.35(1 )25 t gt1 / 5 0.09( ) kt kt G Y g t .( 25kt3 / 4 g t1 / 4 ) g t ( 25. ) 4 / 3 kt ( ) Gt .Yt t . t Lt Lt
1
Reemplazando ( ) en la ecuación ( ) y dividiendo entre kt
kt4 / 5 k 0.35(1 )25 (25 ) 4 / 5 kt kt
1/ 5
0.09
Representa esta ecuación la tasa de crecimiento por trabajador Como se asume 0 1 en este caso intermedio, donde el estado de crecimiento de la economía se maximiza
k 0 * k 1 5 0.35 x( 25)1 / 3 x x 3 / 4 0.35 x( 25)15 / 4 x 1 / 4 * 4 4
k 1 1 5 0.35 x( 25)5 / 4 x 1 / 4 x 0 * 4 4
177
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 1 1 5 4 x 4 0
0.20 20%
De la tasa de crecimiento por trabajador tenemos
k
Máx
0.35(1 0.20)2525 x0.2
1/ 4
(0.09) k
Máx
10.38
Veremos en este modelo que el gobierno debe financiar sus acciones en l a economía con impuestos distorsionados, y esto disminuye la rentabilidad de las inversiones de las empresas privadas. 6.6.1 Supuestos del modelo A los supuestos del modelo con crecimiento con gobierno se le añaden los siguientes supuestos: 6) El gobierno decide el tamaño del gasto. 7) El gobierno puede afectar a la economía con la regulación (ley antimonopolio, derecho de propiedad, etc.). 8) Ele tamaño del gasto público esta en relación con el crecimiento de la economía. 9) La función de producción presenta rendimientos constantes a escala. 10) Solamente existe un impuesto y es sobre la renta. La función de producción de la economía es la misma que el modelo anterior:
178
1
6.6 Modelo de crecimiento con gasto público
Ejer cicios de Crecimient o Económico
Gráfico del problema Nº2
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Yt AK t Gt1 ( FPA) Dividiendo a la función de producción entre la cantidad de trabajadores de la economía
Yt K t Gt1 K t Gt1 A yt A 1 Lt Lt Lt Lt
yt Akt g t1 ( FPI )
De la condición de equilibrio macroeconómico en una economía cerrada tenemos:
Yt Ct I b Gt De las identidades: Ct Pmgc.Yd
Ib Kt I b K t .K t kt Lt Lt
Kt k t nkt Lt Ib k t ( n ) kt Lt Pmgc Pmgs 1 1 c s En el largo plazo existe un equilibrio fiscal (Por que no se permiten la existencia de déficit público).
Gt T .Yt Reemplazando todas las identidades antes mencionadas en las líneas anteriores
Yt Pmgc.Yd K t K t .Yt
Yt c.(1 )Yt K t K t .Yt
1
Yt (1 c).(1 ) K t K t
Ejer cicios de Crecimient o Económico
Yd Yt T Yt .Yt
Dividiendo la ecuación anterior entre la cantidad de trabajadores de la economía y reemplazando la identidad 1 c s
Yt Kt K (1 c).(1 ) t Lt Lt Lt
yt s.(1 ) k t ( n) kt
Despejando k t reemplazando la (FPI)
k t s.(1 ) Akt g t1 ( n ) kt , la ecuación de movimiento Siguiendo con el análisis de Barro (1990), que incorpora a los bienes públicos como flujos productivos y no como bienes de capital acumulado.
179
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Para este modelo tomaremos al gasto público como dado, y seguiremos suponiendo que el gobierno tiene que equilibrar su presupuesto en todos los momentos del tiempo y que los agentes de la economía maximizan su utilidad como se aprecia en la siguiente función de utilidad.
Máx :
ct1 1 ( n ).t J dt .e 1 0
Donde la restricción será la ecuación fundamental del modelo anterior
k t s.(1 ) Akt g t1 ( n ) kt tasa de
Como los agentes individualmente toman al gasto publico como dado, resuelve el problema de la maximización Planteamiento del problema
Máx :
c1 1 ( n ).t J t dt (Función Objetivo) .e 1 0
k t s.(1 ) Akt g t1 ( n ) kt (Ecuación de movimiento) 6) Comenzaremos a aplicar el método del Hamiltoniano.
c1 1 ( n )t H t t s.(1 ) Akt gt1 (n )kt .e 1
Donde kt : Variable de estado.
1
ct : Variable de control. t : Variable de coestado. 7) Tomando la derivada del hamiltoniano con respecto de la variable de control e imponiendo la condición igual a cero.
H e ( n ) t .ct t ( 1) 0 ct
e ( n ) t .ct t ( I )
8) Tomando la derivada del Hamiltoniano con respecto a la variable de estado e imponiendo la condición del negativo de la derivada del multiplicado con respecto al tiempo. H t kt
g t (1 )A t kt
Ejer cicios de Crecimient o Económico
Para solucionar este problema se debe cumplir que: n es decir que la descuento tiene que ser mayor que la tasa de crecimiento de la población.
1
(n ) t
180
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
1 gt t (1 )A (n ) ( II ) t kt
9) Tomando la derivada con respecto al multiplicador lagrangiano
H kt t
s.(1 ) Akt g t1 ( n ) kt k t
k t s.(1 ) Akt g t1 ( n ) kt ( III )
Lím t kt 0 t
Esto quiere decir que t 0 (el precio implícito de capital en el periodo final) o que kt 0 (el stock de capital en el momento que muere). Condición de Transversalidad
Lím t t
(1 / ) 0 1
e( n )
Lím t 0 t
Aplicando logaritmo neperiano a la ecuación (I) tenemos:
Lnct ( n)t Lnt Multiplicando por -1 a la ecuación y tomando la derivada temporal a la ecuación anterior
ct t ( n) . ( IV ) ct t
g (1 ) A t kt
1
1
Igualando la ecuación (II) y (IV)
Ejer cicios de Crecimient o Económico
Condición de Segundo Orden (CIIO)
t ct ( n ) ( n) t ct
ct Despejando tenemos: ct
1 gt ct 1 (1 ) A ( ) (V ) , la proposición de Barro – Ramsey ct kt
Esta ecuación nos dice que la tasa óptima del consumo por trabajador es la razón del producto marginal del capital menos la tasa de depreciación y la tasa de descuento intertemporal dividido sobre la elasticidad de la utilidad marginal con respecto al consumo por trabajador.
181
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Del largo plazo, donde el gasto tiene que equilibrarse tenemos:
Gt .Yt
Gt Y t Lt Lt
gt gt ( g t / kt ) yt Akt g t1 A
gt ( . A)1 / ( ) kt
Reemplazando la ecuación ( ) en la proposición de Barro-Ramsey
c
1 1 1/ ( ) ( ) ( 1 ) A
Podemos apreciar que los valores de esta ecuación están dados, por lo que la tasa es constante. En el estado de crecimiento proporcionado la tasa de consumo es igual a la tasa de crecimiento del capital c* k* * . 6.6.3 Tipología Para analizar el tamaño del estado y de la tasa impositiva, debemos ver los casos cuando existe tributación, cuando no existen impuesto y el caso intermedio. Caso I: 0 (cuando la tasa marginal de tributación es nula) Si reemplazamos 0 en la ecuación ( ) que representa la tas de crecimiento de la economía se tendrá una tasa de crecimiento negativa y con esto el estado no puede proporcionad bienes públicos. Si 0 entonces k
1 1 1/ ( ) ( 1 0 ) A 0
k
1
La tasa de crecimiento por trabajador será negativa
1 ( )( )
Caso II: 1 (cuando la tasa marginal de tributación es del cien por ciento) Cuando el estado se lleva todas las ganancias las empresas no se ven incentivadas a producir y con esto se obtiene nuevamente una tasa de crecimiento negativa. Si 1 entonces k
1 1 1/ ( ) ( ) ( 1 1 ) A 1
Esto implica que se obtendrá una tasa de crecimiento de capital por trabajador negativa.
k
Ejer cicios de Crecimient o Económico
1 ct 1 (1 ) A1 / ( ) ct
( )
182
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Caso III: 0 1 (caso intermedio) En este caso intermedio el estado va obtener ingresos fiscales y a su vez las empresas s e van a sentir incentivadas a producir. De otro lado dicha tasa de tributación , se puede financiar dicho gasto público. Si 0 1 entonces k
1 1 1/ ( ) ( 1 ) A
Para maximizar la función se puede hallar igualando a cero la derivada de la tasa de crecimiento con respecto a .
k 0
1 k sA . 1
k sA 1
1
1 1
s. A1 / .
1
1 1 1 0
>0 1 1 1 0
=0 1
183
1
Gráfico [6.24]: Relación entre y tasa de crecimiento
Ejer cicios de Crecimient o Económico
Para ver los casos mencionados anteriormente y la tasa de tributación que maximiza la tasa de crecimiento de la economía, para esto se puede apreciar en la grafica [6.24], donde la curva tiene forma de U invertida.
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Por lo que el tipo impositivo que maximiza la tasa de crecimiento de la economía es
1 . Para la tasa de impuesto que resulta si el gobierno escoge 1 , entonces la tasa de crecimiento sería.
Max *
1 2 1/ A (1 )
1
( )
El capital humano es definido como el stock de conocimientos que es valorizado económicamente e incorporado por los individuos (calificación, estado de salud, higiene...). Esta idea de la acumulación de capital humano fue puesta en valor en 1988 por Lucas, que desarrollo en su modelo el capital humano voluntario que corresponde a una acumulación de conocimientos (schooling) y la acumulación involuntaria (learning by doing). Al mejorar su nivel de educación y de formación cada persona aumenta el stock de capital humano de una nación y de allí contribuye al mejoramiento de la productividad de la economía nacional, es decir, la productividad privada del capital humano tiene un efecto externo positivo.45 Veamos ahora que nos dice Schultz, T. (1961), “Investment in human capital”. La inversión en capital humano constituye uno de los principales elementos explicativos del crecimiento económico, siendo responsable en buena medida de la divergencia apreciada entre el crecimiento del producto y el de la cantidad de factores productivos utilizados, al originar una mejora cualitativa del factor trabajo que aumenta su capacidad productiva y genera crecimiento económico. Abundando en esta idea, la inversión en capital humano fue rápidamente incorporada.46 6.7.1 Supuestos del modelo Sea una economía capitalista sin relación con el exterior. Dicha economía tiene dos sectores:
1
Un sector de producción de bien final, representado con el subíndice “t”.
Ejer cicios de Crecimient o Económico
6.7 Modelo Neoclásico con capital Humano
Un sector educación, representado con el subíndice “E”.47
Los mercados de bienes y factores son de competencia perfecta. La fuerza de trabajo crece a una tasa constante y exógena: n Existen dos tipos de capital. El stock de capital físico se deprecia a una tasa constante: K El stock de capital humano se deprecia a una tasa constante: H 48 45
Es la definición de capital humano a sido extraído de Gerald Destinobles, A.: (2007) Introducción a los modelos de crecimiento económico exógeno y endógeno. Edición electrónica gratuita. Texto completo en www.eumed.net/libros/2007a/243/ 46 Schultz, T. (1961), “Investment in human capital) , American Economic Review, 51, Pag.:1-17 47 Ha medida que un país se desarrolla, el estado general de salud y educación de su población mejora. Esto es un síntoma de bienestar social, en si mismo, pero también por ello la economía se hace mas productiva. 48 Esta depreciación del capital humano se interpreta, como la imposibilidad que los padres transmitan todo su capital humano a sus hijos, antes que los padres fenezcan.
184
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico El ahorro se destina para la inversión del sector de producción del bien final. Toda la población trabaja. La economía produce un bien final. Sector de producción del bien final En este sector se considera que la tecnología utilizada por el bien final es distinta a la tecnología para la obtención del capital humano y físico. Su función de este sector se encuentra representada de la siguiente manera:
K t : Stock de capital físico destinado al sector de bien final en el instante “t”. Lt : Fuerza de trabajo destinada al sector de bien final en el instante “t”. H t : Stock de capital humano destinado al sector de bien final en el instante “t”. BLt : Fuerza de trabajo eficaz destinada al sector de bien final.
: Elasticidad producto respecto al capital físico. : Elasticidad producto respecto al capital humano. B : Índice de nivel de tecnología del sector de bien final. El ahorro destinado a la acumulación de capital físico en el sector de producción del bien final, es una proporción sK , del producto del bien final.
s.a : 0 sK 1
S K sK .Yt
Función de Producción intensiva Para hallar esta función de producción intensiva debemos de dividir a la función de producción del bien final, entre la cantidad de trabajo eficaz: BLt
Yt ( BLt )1 K t H t BLt BLt
Yt K H t t BLt ( BLt )
Yt K t H t BLt ( BLt ) ( BLt )
K H Yt t t BLt BLt BLt
k h yt t t BLt BLt BLt
yt kt kht (FPI )
185
1
Donde Yt : Producto del sector de bien final en el instante “t”.
Ejer cicios de Crecimient o Económico
Yt K t H t ( BLt )1
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico La ecuación que se encuentra en el recuadro es la función de producción intensiva del sector del bien final. Sea
yt yt : Producto por trabajador eficaz. B kt kt : Capital físico por trabajador eficaz. B ht ht : Capital humano por trabajador eficaz. B
Ejer cicios de Crecimient o Económico
Nota: Las barra de las variables denotan que son variables en unidades de eficiencia. Sector educación Este sector de producción se encuentra representado por la siguiente función:
YE K E H E ( BLE )1 Donde
YE : Producto del sector educacional. K E : Stock de capital físico destinado al sector educacional. LE : Fuerza de trabajo destinada al sector educacional. H E : Stock de capital humano destinado al sector educacional. BLE : Fuerza de trabajo eficaz destinada al sector educacional.
: Elasticidad producto respecto al capital físico.
1
: Elasticidad producto respecto al capital humano. B : Índice de nivel de tecnología del sector educacional. El ahorro destina a la acumulación de capital humano en el sector educacional, es una proporción sH , del producto del bien final.
S H sH .Yt
s.a : 0 sH 1
Función de Producción intensiva Para hallar esta función de producción intensiva debemos de dividir a la función de producción del sector educacional, entre la cantidad de trabajo eficaz: BLt
YEt ( BLE )1 K E H E BLE BLE
YE K E H E BLE ( BLE )
186
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
K H YE E E BLE BLE BLE
YE K E H E BLE ( BLE ) ( BLE )
k h yE E E BLE BLE BLE
yt kt kht (FPI )
La ecuación que se encuentra en el recuadro es la función de producción intensiva del sector del bien final.
kE k E : Capital físico por trabajador eficaz en el sector educacional. B hE hE : Capital humano por trabajador eficaz en el sector educacional. B 6.7.2 Ecuación dinámica del sector de producción del bien final De la ecuación fundamental de Solow – Swan con progreso tecnológico tenemos:
k t sf ( kt ) ( n mL ) kt Se tiene yt f ( kt ) kt ht ( FPI )
0 sK 1
k t sK .kt ht ( n mL K ) kt Es una ecuación del proceso de acumulación del capital físico en el sector de producción de bienes finales. 6.7.3 Equilibrio dinámico en el sector de producción de bienes finales En el crecimiento promocionado se llega cuando k 0 Si la tasa de crecimiento es nula
1 kt s .k h 0 , entonces K t t (n mL K ) se kt t kt
determina el capital por trabajador eficaz ( kt* )
sK ht k t n mL K kt
1
sK ht 1 kt* n mL K
187
1
yE yE : Producto por trabajador eficaz en el sector educacional. B
Ejer cicios de Crecimient o Económico
Sea
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 6.7.3 Ecuación dinámica del sector educación De la ecuación fundamental de Solow – Swan con progreso tecnológico tenemos:
h t sf ( ht ) ( n mL ) ht Se tiene yt f ( k E ) k E hE ( FPI )
0 sH 1
h E sK .k E hE (n mL H )hE
Equilibrio dinámico en el sector educacional En el crecimiento promocionado se llega cuando h 0 Si la tasa de crecimiento es nula
1 ht s .k h 0 , entonces K t t (n mL H ) se ht t ht
determina el capital humano por trabajador eficaz ( ht* )
1
sK kt 1 kt* n mL H
sK ht h t n mL H ht
Diagrama de fases Para analizar el diagrama de fases adecuadamente plantearemos, el sistema de ecuaciones diferenciales:
1
1er Ecuación diferencial: k t sK .kt ht ( n mL K ) kt
2da Ecuación diferencial: h t sK .kt ht ( n mL H ) ht
Encontrando la curva k t De la primera ecuación diferencial
Si k t 0
Ejer cicios de Crecimient o Económico
Es una ecuación del proceso de acumulación del capital humano en el sector educacional.
0 sK .kt ht ( n mL K ) kt Entonces: sK .kt ht ( n mL K ) kt
188
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
irá asociado a un crecimiento de k t 0 : De la primera ecuación diferencial, tenemos que la
derivada de k t , con respecto a ht nos da el sentido de las flechas como veremos a continuación:
kt .sK kt ht 1 0 ht Esta derivada nos quiere decir que a medida que aumenta el capital humano la secuencia de
signos es creciente: ,0, entonces concluimos por encima de la curva k t 0 , entonces el
capital crece k t 0 , como se puede visualizar en el gráfico [6.25], que se muestra en la parte superior de la página. Denotamos el movimiento de flecha hacia la derecha, por que el eje horizontal aparece kt y también por que a medida que nos ubiquemos más a la derecha el capital físico por trabajador crecerá. De la misma manera analizaremos que pasa si ubicamos un vector por debajo de la curva
k t 0 , las flechas apuntan así la izquierda, diciéndonos que por debajo de la curva k t 0
el capital decrece k t 0 , en este caso las flechas apuntaran hacia la izquierda, denotando que el capital a medida que se acerca al origen decrece.
Encontrando la curva h t De la segunda ecuación diferencial
Si h t 0
0 sH .kt ht ( n mL H ) ht Entonces: sH .kt ht ( n mL K ) ht
189
1
Si nos situamos por encima de la curva k t 0 , vemos que un pequeño movimiento de ht
Ejer cicios de Crecimient o Económico
Gráfico [6.25]: Comportamiento de k 0
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
asociado a un crecimiento de h t 0 . De la segunda ecuación diferencial tenemos que la
derivada de h t con respecto a kt nos da el sentido de las flechas como veremos a continuación.
ht .sK kt 1ht 0 kt Esta derivada nos quiere decir que a medida que aumenta el capital físico por trabajador la secuencia de signos es creciente: ,0, entonces concluimos por encima de la curva,
h t 0 entonces el capital humano crece h t 0 , como se puede visualizar en el gráfico [6.26], que se muestra. Denotamos el movimiento de flecha hacia arriba, por que el eje vertical aparece ht y también por que a medida que nos ubiquemos más arriba el capital humano crecerá. De la misma manera analizaremos que pasa si ubicamos un vector por encima de la curva
h t 0 , las flechas apuntan hacia abajo, diciéndonos que por debajo de la curva h t 0 el
capital humano decrece h t 0 , en este caso las flechas apuntaran hacia abajo, denotando que el capital humano a medida que se acerca al origen decrece. Análisis cuantitativo Después de haber unido los dos gráficos anteriores, veremos que la grafico que se forma al juntar estos grafico tiene la siguiente forma, como se puede apreciar en la grafico [6.27], donde lo primero que se puede apreciar, que el modelo converge en todos los p untos a un solo estado de crecimiento proporcionado, donde este equilibrio dinámico es estable en el tiempo. Por lo que el modelo en el largo plazo presenta un equilibrio aerodinámico estable, donde todas las líneas convergen hacia un punto de equilibrio.
190
1
Si nos situamos por debajo de la curva h t 0 , vemos que un pequeño movimiento de kt irá
Ejer cicios de Crecimient o Económico
Gráfico [6.26]: Comportamiento de h 0
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
Charles Jones (1990) formula un modelo de crecimiento modelo de crecimiento en países donde la frontera tecnológica esta lejos y se debe producir una transferencia para acortar la distancia y en el que considera la educación, como un elemento importante en el análisis del crecimiento económico. Jones va elaborar este modelo de crecimiento desde un enfoque neoclásico, haciendo una extensión del modelo de Solow. En este modelo de crecimiento endógeno aparece como el resultado de que los individuos aprenden a usar los bienes de capital mas avanzados en la frontera tecnológica. Esta idea tiene que ver que los individuos mas calificados asimilaran más rápido los avances de la ciencia y la tecnología, lo cual contribuye al desarrollo del país, de lo que se deriva la importancia del conocimiento vinculado a nivel de creatividad y a desarrollo tecnológico en la definición de la política economica. 6.8.1 Supuestos del modelo
Sea una economía capitalista sin sector público.
Dicha economía no tiene relación con el exterior.
La economía produce un solo bien.
Coexisten dos tipos de capitales.
Existen sustitución entre capital físico y capital humano.
El capital humano aumenta a través de las capacitaciones y de la educación.
Los individuos de esta economía acumulan capital humano al dedicar un tiempo al aprendizaje de nuevas habilidades en lugar de trabajar.
u : Representa el tiempo que las personas dedican a la producción.
(1 u ) : Representa la parte del tiempo que una persona dedica a aprender habilidades.
191
1
6.8 Modelo de crecimiento con educación (Jones)
Ejer cicios de Crecimient o Económico
Gráfico [6.27]: Equilibrio del Modelo de Crecimiento con Capital Humano
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Análisis
H t e (1 u ) Lt ( I )
0 : Es una constante positiva
Esta ecuación representa las habilidades de aprendizaje de la mano de obra calificada y nos dice además que el capital humano se desarrolla a través de la educación. El desarrollo del aprendizaje de nuevas habilidades se logra destinando un tiempo, (1 u ) a la educación. Si u 0 entonces (1 u ) 1 , se desarrolla el capital humano como se expresa al reemplazar el valor en la ecuación (I).
Si por el contrario u 1 entonces (1 u ) 0 , no habrá capital humano sino trabajo no calificado, reemplazar el valor en la ecuación (I).
H t e (11) Lt H t Lt Si aplicamos logaritmo a la ecuación (I) tenemos:
Ln( H t ) (1 u ) Ln( Lt ) Derivando la ecuación anterior respecto a (1 u ) obtenemos:
Ln ( H t ) 0 (1 u ) Esto nos expresa, que una aumento pequeño de (1 u ) , aumenta H t por el porcentaje . Ahora dividiendo la ecuación (I) entre la cantidad de trabajadores
Ht e (1 u ) Lt
ht e (1 u )
1
Esta ecuación expresa que el capital humano depende del tiempo.
Ejer cicios de Crecimient o Económico
H t e (1 0 ) Lt H t e Lt
Función de producción agregada Jones de manera similar a Romer parte del hecho de que el país produce un articulo Yt , usando trabajo Lt , capital K t y utiliza bienes de capital y añade que el uso de estos bienes de capital esta limitado por el nivel de calificación de la fuerza laboral n . Jones considera que cualquier bien intermedio de capital se puede producir con una unidad bruta de bienes de capital. Formula una Cobb - Douglas común Yt K t BH t , en este caso asume la calificación ht , como un supuesto acumulativo resultado del uso de tecnología.
Yt K t BH t (FPA) s.a : 1
Donde
192
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Yt : Producto agregado en el instante “t”. K t : Stock de capital agregado en el instante “t”. H t : Stock de capital humano en el instante “t”. BH t : Stock de capital eficiente en el instante “t”.
: Elasticidad producto respecto al capital físico. : Elasticidad producto respecto al capital humano.
Para hallar la producción agregada en términos per cápita vamos a dividir la (FPA) entre el capital humano eficiente.
BH t Yt K t BH t BH t
1
Yt K t BH t BH t 1
K Yt t BH t BH t
~y k~ ( FPI ) t t Donde
Yt ~yt : Representa el producto por unidad de capital eficiente. BH t Yt / Lt y y t t ~yt BH t / Lt Bht ht Kt ~ kt : Representa el capital físico por unidad de capital humano eficiente. BH t
1
K t / Lt k k ~ t t kt . BH t / Lt Bht ht
Ejer cicios de Crecimient o Económico
B : Factor aumentativo de la eficiencia del trabajo.
Nota: El superíndice “~”denota la variable por unidad de capital humano eficiente Ecuación fundamental De la ecuación fundamental de Solow – Swan con progreso tecnológico
~ kt ~ ~ sf ( kt ) ( n mL ) kt t ~ Se tiene: ~ yt kt ~ kt ~ ~ skt ( n mL ) kt , la ecuación fundamental de Jones t Es una ecuación dinámica del proceso de acumulación de capital físico y humano en una economía capitalista.
193
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Crecimiento proporcionado
~ kt El crecimiento proporcionado en un estado dinámico se alcanza cuando , es nulo. t ~ kt ~ ~ Si 0 entonces skt (n mL )kt , se determina el capital físico por unidad de capital t ~ humano eficiente ( kt* ) como se aprecia en el gráfico [6.28] donde el equilibrio se encuentra ~ ~ en el punto Et , donde skt (n mL )kt .
Ejer cicios de Crecimient o Económico
s ~ kt n mL
1 1
Gráfico [6.28]: El diagrama de Jones y la función de producción
1
~
Al sustituir kt* en la función de producción intensiva (FPI) se encuentra el valor de estado proporcional del producto por unidad de capital eficiente, también como se aprecia en la grafico [6.28].
1 s ~ yt n mL Versión de Barro
~
Dividiendo la ecuación fundamental de Jones entre kt
~ ~ 1 kt kt s ~ ( n mL ) ~ kt t kt ~ k k~ s ~t (n mL ) kt
194
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Si k~ 0 entonces la curva de ahorro y depreciación se cortan en el punto donde:
~ k s ~t (n mL ) determina el equilibrio dinámico del modelo en el punto Et , como se kt
aprecia en el gráfico [6.30] donde se aprecia que la tasa de crecimiento converge a un punto en el largo plazo.
Problema Analicemos el impacto de un aumento permanente de la tasa de ahorro que se destina al sector de producción de bien final. Rpt:
~
~
1
El aumento de la tasa de ahorro desplaza en forma ascendente la curva sk~ 0 kt a sk~1kt , como se puede apreciar en la gráfico [6.30], por lo que la inversión por trabajador eficiente excede a la cantidad necesaria para mantener constante el capital físico por unidad de capital humano eficientes, por consiguiente la economía comenzara una profundización del capital físico por unidad de capital humano eficiente.
Ejer cicios de Crecimient o Económico
Gráfico [6.29]: Dinámica de transmisión
~
~
Esta profundización continuara hasta llegar al punto Et donde sk~1kt ( n mL ) kt y la existencia de capital físico por unidad de capital humano eficiente llega a un valor más alto ~ que es k1 . Por lo que la economía se encuentra ahora con mayor capital y por ende un mayor per capita por trabajador eficiente.
195
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
1
Ejer cicios de Crecimient o Económico
Gráfico [6.30]: Aumento permanente de la tasa de ahorro
En la versión de Barro, que se puede apreciar en la parte inferior de la grafico [6.30] donde el aumento de la tasa de ahorro, eleva a la economía a obtener una mayor tasa de crecimiento en el corto plazo positiva k~CP 0 esto ocurre hasta que la economía llegue al estado de crecimiento proporcionado, donde su tasa de crecimiento de largo plazo es constante y nula k~LP 0 , donde el nuevo proporcionado es el punto E1 , como se puede apreciar en la parte inferior de la grafico [6.30], de esta manera esta economía pasa a tener ~ un mayor kt* .
6.9 Modelo de crecimiento con educación (Uzawa) Este es un modelo pionero y antecedente al modelo de Lucas, plantea el rol de la educación como influye en el crecimiento. En Uzawa (1965) se presentan las ideas básicas que permiten introducir el capital humano como potenciador del capital y como factor de su propia reproducción y crecimiento
196
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 6.9.1 Supuestos del modelo Sea una economía capitalista que tiene dos sectores: o Un sector de producción del bien final. o En sector educacional. Sea el ahorro para la acumulación de capital físico es una proporción del ingreso nacional. La economía no tiene relación con el exterior. La fuerza de trabajo crece a una tasa constante: n
Sea u , una fracción de la fuerza de trabajo que se destina al trabajo productivo ( L p ), donde: u
Lp L
Sea (1 u ) , una fracción de la fuerza de trabajo que se destina al trabajo educacional:
(1 u )
LE L
Se tiene dos tipos de trabajo: o Trabajo productivo L p , es aquel trabajo que se destina a la producción del bien final. o Trabajo educacional LE , es aquel trabajo que se destina al sector educacional. La tasa del progreso tecnológico mL , depende del trabajo educacional mL (1 u ) . 6.9.2 Sector de producción del bien final La función de este sector esta representada por la siguiente ecuación:
1
Yt F ( K t , BL p ) (Función de producción del bien final) Donde
Yt : Producto del bien fina en el instante “t”. K t : Stock de capital físico del sector del bien final en el instante “t”. L p : Representa el trabajo productivo. BL p : Trabajo productivo eficiente en el instante “t”. Sabemos que u
Lp L
Ejer cicios de Crecimient o Económico
La función de producción es neoclásica.
L p uL (I )
Reemplazando la ecuación (I) en la función de producción del bien final.
Yt F ( K t , B.uLt )( II ) B : Factor aumentativo de la eficiencia del trabajo con las propiedades:
197
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Si t 0 entonces B (t 0) 1
Si t 0 entonces B (t ) 1
B(t ) 0
Función de producción intensiva del bien final
Yt F ( K t , BL p ) Pero se sabe que el tiempo dedicado para la producción es L p uL Reemplazando el tiempo dedicado para la producir en la función de producción
Yt F ( K t , uLt ) Sabemos que el trabajo productivo eficiente esta expresado como:
yt k f ( t ,1) u u
Ejer cicios de Crecimient o Económico
yt k f ( t ,1) Bu Bu
Yt K F ( t ,1) BuLt BuLt
yˆ t f ( kˆt ) (FPI del trabajo productivo eficiente) Donde
yˆ t
Yt : Producto por unidad de trabajo productivo eficiente. BuLt
Yt y y t t yˆ t BuLt Bu u Kt : Capital por unidad de trabajo eficiente. kˆt BuLt
1
Kt k k t t kˆt BuLt Bu u 6.9.3 Sector educación El profesor Uzawa nos dice que este sector presenta la siguiente función:
YE BLE (FPA del sector educacional) Sabemos por el supuesto que: (1 u )
LE LE (1 u ) L ( III ) L
Reemplazando la ecuación (III) en la función de producción del sector educacional
YE B(1 u ) L En el modelo de Uzawa el progreso tecnológico es endógeno
mL (1 u )
B mL g B B
B mL (1 u ) B
198
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Con el aumento de la fracción de trabajo que se destina a la educación, aumentara la educación y con ello se elevara la productividad de los trabajadores. Ecuación diferencial en el sector producción del bien final De la ecuación fundamental de Solow-Swan con progreso tecnológico
k t sf ( kt ) ( n mL ) kt Se tiene que yˆ t f ( kˆt ) Reemplazando la variable kˆt en la ecuación y la tasa de depreciación del capital K
K (n mL ) t BuLt
Ejer cicios de Crecimient o Económico
Kt Kt sK f t BuLt BuLt
kt k k s K f t ( n mL ) t t Bu Bu Bu
kˆt sK f (kˆt ) (n mL )kˆt t Función de producción intensiva del sector educacional
YE BLE Pero se sabe que el tiempo dedicado para la educación es LE (1 u ) Lt Reemplazando el tiempo dedicado para producir en la función de producción
YE B(1 u ) Lt
YE B (1 u ) Lt BuLt BuLt
yE (1 u ) Bu u
1
Dividiendo a la función de producción entre el trabajo productivo eficiente tenemos:
yE 1 u u u
1 u yˆ E (FPI del sector educacional) u Donde
YE : La razón del producto educacional respecto al trabajo productivo eficiente. BuLt K kˆE E : La razón del capital educacional respecto al trabajo productivo eficiente. BuLt yˆ E
199
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Ecuación diferencial en el sector educación Como el progreso tecnológico es endógeno tenemos:
Bt mL (1 u ) Bt
B t Bt (1 u )
Este modelo desarrollo es el pilar sobre el que descansan las nuevas teorías del crecimiento y en especial la contribución del capital humano al crecimiento económico de acuerdo con las teorías del crecimiento endógeno, la capacidad productiva de los individuos aumenta con su educación, no solo por la incorporación de habilidades y capacidades para el trabajo, sino también por el impacto sobre la salud y alimentación, que incrementa la productividad laboral.49 En este modelo a diferencia del modelo AZ, desarrollado anteriormente, se diferencia por que no considera al capital humano y físico igual (bienes similares), ni que ambos eran producidos con la misma tecnología, sino considera el capital físico y el capital humano son bienes distintos y que son producidos con tecnología distinta. En Uzawa (1965) y Lucas (1988) se presentan las ideas básicas que permiten introducir el capital humano como potenciador del capital y como factor de su propia reproducción y crecimiento.50 Robert Lucas nos dice que un individuo dedica muchos años de su vida a la escuela, con el fin de obtener capacidades que le permitan mejorar su capacidad productiva. La decisión de invertir en la educación se basa sobre una comparación entre los costos de la enseñanza (ingresos, gastos de escolaridad, pasajes, útiles, etc.) y las ventajas futuras de una escolaridad mas avanzada. Por lo que considerar la escolaridad como una decisión de inversión para aumentar el capital humano de una persona. La doble característica del capital humano nos dice: De un lado, de ser de información del saber (como la tecnología) y del otro lado, de ser apropiable por los individuos (como el capital físico). Siendo del saber, es producido esencialmente consigo mismo, los alumnos son formados por los profesores y aquellos utilizan sus conocimientos presentes para adquirir nuevos conocimientos. Esto hace que el capital humano se aparenta al conocimiento técnico y las reglas de acumulación con rendimientos de escala dinámicas le pueden ser aplicadas, además genera un proceso de crecimiento endógeno.51 49
Estas nota han sido desarrollado en base al articulo de Robert Lucas (1988) “On the Mechanics of Development Planning'' (En las Mecánicas de Planificación de Desarrollo). Journal of Monetary Economics (El periódico de Economía Monetaria) , pp. 3-42. 50 Por lo que el capital humano puede ser definido como la suma de las capacidades habiendo una eficiencia productiva incorporada a los individuos o a las colectividades. Esas capacidades pueden ser diversas: salud, fuerza física, conocimientos generales o técnicos 51 Lucas privilegia al capital humano sobre la tecnología como factor de crecimiento, por que la tecnología es un bien publico accesible de manera idéntica a todas las naciones, además, no puede explicar las diferencias internacionales de nivel y de la tasa de crecimiento del ingreso
200
1
En esta sección introduciremos el capital humano en un modelo de crecimiento como plantea Lucas (1988), y mostraremos que el crecimiento en forma sostenida del capital humano es suficiente para tener un crecimiento económico sostenido, como nos muestra Lucas en “On the Mechanics of Development Planning'' (En las Mecánicas de Planificación de Desarrollo), por este y otros trabajo Lucas gano el Premio Nobel de Economía en 1995.
Ejer cicios de Crecimient o Económico
6.10 Modelo de acumulación de capital humano (Lucas)
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 6.10.1 Supuestos del modelo Sea una economía capitalista que tiene dos sectores: Existen dos tipos de capital: El stock de capital físico se deprecia a una tasa constante y exógena: K El stock de capital humano se deprecia a una tasa constante y exógena: H Toda la población trabaja en esta economía. La fuerza de trabajo crece a una tasa constante y exógena. n La acumulación de capital físico ocurre como la detracción del consumo.
Ejer cicios de Crecimient o Económico
La acumulación de capital físico ocurre como la detracción del consumo 6.10.2 Función de producción del bien final Asume una función de producción Cobb-Douglas
Yt AK t H p 1 Donde
Yt : Voluta de producción del sector del bien final en el instante “t”. K t : Stock de capital físico que opera en el sector del bien final en el instante “t”. H p : Stock de capital humano que opera en el sector del bien final.
H t : Stock de capital humano en el instante “t”. A : Índice del nivel de tecnología en el sector de producción del bien final.
: Elasticidad producto respecto al capital físico. 1 : Elasticidad producto respecto al capital humano.
1
Sea
u : Representa la fracción de capital humano que labora en el sector de producción del bien final.
u
Hp Ht
H p uH t (I )
Reemplazando la ecuación (I) en la función de producción del bien final, tenemos:
Yt AK t (uH t )1 Para expresar esta función en términos per cápita y así halla la función de producción intensiva, pasa remos a dividir la función de producción de bien final entre el total de trabajadores ( Lt ) de a economía.
Yt AKt u1 H t1 Lt Lt
Usando el artificio: Lt Lt .L1t
201
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico Yt K H 1 A t u1 t Lt Lt Lt
yt Akt u1 ht1 ( FPI )
Ecuación de acumulación de capital físico De la condición de equilibrio macroeconómico
Yt Ct I b Yt Ct I Kn I Krep
Yt Ct K t K K t
Resolviendo la ecuación para K t y reemplazando en la función de producción
Esta ecuación de acumulación de capital físico neto, es el remanente del producto respecto al consumo y respecto a la inversión en reposición. Ecuación Diferencial del sector de producción del bien final De la condición de equilibrio macroeconómico
Yt Ct I b Dividiendo a la condición macroeconómica entre el total de trabajadores Lt para hallar la ecuación en términos per cápita.
Yt Ct I b Lt Lt Lt
Kt yt ct kt Lt
yt ct k t ( n ) kt
Resolviendo la ecuación para k t y reemplazando la (FPI)
1
k t Akt u1 ht1 ct (n )kt
Ejer cicios de Crecimient o Económico
K t AK t u1 H t1 Ct K K t
6.10.3 Sector educacional Asume por simplicidad que este sector no usa capital físico sino solo capital humano y formula la siguiente función de producción.
YE BH E Donde
YE : Volumen en el sector educacional. H E : Stock de capital humano que opera en el sector educacional. B : Índice del nivel de tecnología en el sector educacional. Sea
(1 u ) : La fracción de capital humano que labora en el sector educacional.
202
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico (1 u )
HE Ht
H E (1 u ) H t
El capital humano que opera en el sector educacional es una fracción que operar en el sector educacional, donde H E es una fracción (1 u ) de capital humano. Reemplazando el stock de capital humano que opera en el sector educacional en la función del sector educacional tenemos:
YE B(1 u ) H t
yE B(1 u ) H t ( FPI )
Ecuación diferencial del sector educacional De la condición de equilibrio macroeconómico
YH CH I Hb Pero como sabemos que en capital no tiene consumo CH 0 , reemplazando obtenemos:
B (1 u ) H t H t H H t
YH I Hb BH E I Hn I Hrep
Resolviendo para H t obtenemos:
H t B (1 u ) H t H H t Esta ecuación del proceso de acumulación neta de capital humano y esto va indicar que la tasa de cambio de capital humano es igual al remanente del producto educacional respecto a la acumulación en reposición del capital humano. Sistema de Ecuaciones Diferenciales De la condición macroeconómica tenemos:
B (1 u ) H t H t H H t
YE I Hb BH E I Hn I Hrep
Dividiendo la ecuación anterior entre el numero de trabajadores
H Ht H B(1 u ) t H t Lt Lt Lt
Ht B(1 u )ht H ht Lt
B (1 u ) ht ht ( n H ) ht
Resolviendo para ht , obtenemos:
203
1
YE H B (1 u ) t Lt Ltt
Ejer cicios de Crecimient o Económico
Para hallar la función de producción intensiva vamos a dividir entre la cantidad de trabajadores a la ecuación a la nueva función de producción obtenida tenemos:
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico
ht B (1 u ) ht ( n H ) ht Esta ecuación representa el proceso de acumulación del capital humano. Sistema de Ecuaciones Diferenciales
1er Ecuación diferencial: k t Akt u1 ht1 ct (n )kt
2da Ecuación diferencial: h t B (1 u ) ht ( n H ) ht
6.10.4 Planteamiento del problema Lucas asume que las familias productoras tienen la siguiente utilidad, la misma que maximizan. c1 1 ( n )t .e dt Máx : J t 1 0
Luego el planteamiento del problema será, que las familias productoras va elegir, aquella trayectoria de consumo y aquella fracción que le permite maximizar su fracción de bienestar a través del tiempo y sujeto a las condiciones de movimiento de la condición inicial.
c1 1 ( n )t .e dt (Función objetivo) Máx : J t 1 0
k t Akt u1 ht1 ct (n )kt
s.a :
1
h t B (1 u ) ht ( n H ) ht
Ejer cicios de Crecimient o Económico
Para simplificar el análisis se supone que las tasas de depreciación de los tipos de capital son iguales K H .
k (0) k0 h(0) h0 (Estado inicial de capital físico y humano) k0 0 h0 0 0 u 1 Donde
ct Variable de control : ut kt Variable de estado : ht t Variable de coestado : vt Planteamiento de la función Hamiltoniana tenemos:
204
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico H H ct , ut , kt , ht , t , vt , t
ct1 1 ( n )t .e t Ak t u 1 ht1 ct (n )k t vt B(1 u )ht (n H )ht 1
H
Condición de Primer Orden (CIO) g) Tomando la derivada del hamiltoniano con respecto de las variables de control e imponiendo la condición igual a cero.
H e ( n ) t .ct t ( 1) 0 ct H U t vt 0 ut ut ut ut
e ( n ) t .ct t ( I )
H t (1 ) Akt u ht1 Bvt ht 0 ( II ) ut
t
Bvt ht u ( II ) (1 ) Akt ht1
h) Tomando la derivada del Hamiltoniano con respecto a las variables de estado e imponiendo las condiciones del negativo de la derivada de los multiplicadores con respecto al tiempo.
Ak H vt ht
i)
t Akt 1u1 ht1 ( n ) t ( III )
1 1 1 t t
u
h
t (n ) ( IV ) t
1
H t kt
t (1 ) Akt u1 ht vt B (1 u ) ( n ) v t (V )
Tomando la derivada con respecto al multiplicadores lagrangiano tenemos:
H kt t
Akt u1 ht1 ct (n )kt k t (VI )
H vt vt
B (1 u ) ht ( n ) ht ht (VII )
Ejer cicios de Crecimient o Económico
H U t vt 0 ct ct ct ct
Condición de Segundo Orden (CIIO)
205
Cesar H. Antunez Irgoin| Crecimiento Económico. Ejercicios de Crecimiento Económico 2H 1 1 ( n )t . 1 0 2 ct e ct
View more...
Comments