Ley de Gauss

October 8, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Ley de Gauss...

Description

 

Ley de Gauss

1

Ley de Gauss  Para el Teorema de Gauss, Gauss, véase Teorema de la divergencia.

En física y en análisis matemático, la ley de Gauss relaciona el flujo eléctrico a través de una superficie cerrada y la carga eléctrica encerrada en esta superficie. De esta misma forma, también relaciona la divergencia del campo eléctrico con la densidad de carga.

Flujo del campo eléctrico El flujo (denotado como

) es una

propiedad de cualquier campo vectorial referida a una superficie hipotética que puede ser cerrada o abierta. Para un campo eléctrico, el flujo (

) se mide por el

número de líneas de fuerza que atraviesan la superficie. Para definir al flujo eléctrico con precisión considérese la figura, que muestra una superficie cerrada arbitraria dentro de un campo eléctrico.

Flujo eléctrico a través de una superficie elipsoidal.

La superficie se encuentra dividida en cuadrados elementales

, cada uno de los cuales es lo suficientemente

pequeño como para que pueda ser considerado plano. Estos elementos de área pueden ser representados como vectores

, cuya magnitud es la propia área, la dirección es normal a la superficie y el sentido hacia afuera.

En cada cuadrado elemental tam también bién es posible traza trazarr un vector de campo eléctrico eléctrico tan pequeños pequeños como se quiera, y

puede considerarse constante en todos lo loss puntos puntos de un cuadrado cuadrado da dado. do.

caracterizan a cada cuadrado y forman un ángulo

dos cuadrados. El flujo, entonces, se define como sigue: (1) O sea: (2)

. Ya que los cuadrados son

entre sí y la figura muestra una vista amplificada de

 

Ley de Gauss

2

Flujo para una superficie cilíndrica en presencia de un campo uniforme Supóngase una superficie cilíndrica colocada dentro de un campo uniforme tal como muestra la figura: El flujo

puede escribirse como la

suma de tres términos, (a) una integral en la tapa izquierda del cilindro, (b) una integral en la superficie cilíndrica y (c) una integral en la tapa derecha: Flujo eléctrico a través de una superficie cilíndrica.

(3) Para la tapa izquierda, el ángulo

, para todos los puntos, es de

,

tiene un valor constante y los vectores

son todos paralelos. Entonces: (4) siendo

el área de la tapa. Análogamente, para la tapa derecha:

(5) Finalmente, para la superficie cilíndrica: (6) Por consiguiente: da cero ya que las mismas líneas de fuerza que entran, después salen del cilindro. (7)

Flujo para una superficie esférica con una carga puntual en su interior Considérese una superficie esférica de radio r con una carga puntual q en su centro tal como muestra la figura. El campo eléctrico

es paralelo al vector superficie

, y el campo es constante en todos los puntos de la superficie esférica.

Flujo eléctrico de una carga puntual en el interior de una esfera.

 

Ley de Gauss

3

En consecuencia: (8)

Deducciones Deducción de la ley de Gauss a partir de la ley de Coulomb Este teorema aplicado al campo eléctrico creado por una carga puntual es equivalente a la ley de Coulomb de la interacción electrostática.

La ley de Gauss puede deducirse matemáticamente a través del uso del concepto de ángulo sólido, que es un concepto muy similar a los factores de vista conocidos en la transferencia de calor por radiación. El ángulo sólido

siendo

que es subtendido por

sobre una superficie esférica, se define como:

el radio de la esfera.

como el área total de la esfera es

‘’

’’

el ángulo sólido para toda la esfera es:

la unidad de este ángulo es el estereorradián (sr) Si el área

no es perpendicular a las líneas que salen del origen que subtiende a

, se busca la proyección

normal, que es:

Si se tiene una carga "q" rodeada por una superficie cualquiera, para calcular el flujo que atraviesa esta superficie es necesario encontrar

para cada elemento de área de la superficie, para luego sumarlos. Como la superficie

que puede estar rodeando a la carga puede ser tan compleja como quiera, es mejor encontrar una relación sencilla para esta operación:

De esta manera más arriba

es el mismo ángulo sólido subentendido por una superficie esférica. como se mostró un poco para cualquier esfera, de cualquier radio. de esta forma al sumar todos los flujos que

atraviesan a la superficie queda:

que es la forma integral de la ley de Gauss. La ley de Coulomb también puede deducirse a través de Ley de Gauss.

 

Ley de Gauss

4

Forma diferencial e integral de la Ley de Gauss Forma diferencial de la ley de Gauss Tomando la ley de Gauss en forma integral.

Aplicando al primer termino el teorema de Gauss de la divergencia queda

Como ambos lados de la igualdad poseen diferenciales volumétricas, y esta expresión debe ser cierta para cualquier volumen, solo puede ser que:

Que es la forma diferencial de la Ley de Gauss (en el vacío). Esta ley se puede generalizar cuando hay un dieléctrico presente, introduciendo el campo de desplazamiento eléctrico

. de esta manera la Ley de Gauss se puede escribir en ssu u forma más general como

Finalmente es de esta forma en que la ley de gauss es realmente útil para resolver problemas complejos de maneras relativamente sencillas.

Forma integral de la ley de Gauss Su forma integral utilizada en el caso de una distribución extensa de carga puede escribirse de la manera siguiente:

donde

es el flujo eléctrico,

realiza la integral,

es el campo eléctrico,

es un elemento diferencial del área  A sobre la cual se

es la carga total encerrada dentro del área A,

es la permitividad eléctrica del vacío.

Interpretación La ley de Gauss puede ser utilizada para demostrar que no existe campo eléctrico dentro de una jaula de Faraday. La ley de Gauss es la equivalente electrostática a la ley de Ampère, que es una ley de magnetismo. Ambas ecuaciones fueron posteriormente integradas en las ecuaciones de Maxwell. Esta ley puede interpretarse, en electrostática, entendiendo el flujo como una medida del número de líneas de campo que atraviesan la superficie en cuestión. Para una carga puntual este número es constante si la carga está contenida por la superficie y es nulo si está fuera (ya que hay el mismo número de líneas que entran como que salen). Además, al ser la densidad de líneas proporcionales a la magnitud de la carga, resulta que este flujo es proporcional a la carga, si está encerrada, o nulo, si no lo está.

es la densidad de carga en un punto de

y

 

Ley de Gauss

Cuando tenemos una distribución de cargas, por el principio de superposición, sólo tendremos que considerar las cargas interiores, resultando la ley de Gauss. Sin embargo, aunque esta ley se deduce de la ley de Coulomb, es más general que ella, ya que se trata de una ley universal, válida en situaciones no electrostáticas en las que la ley de Coulomb no es aplicable.

Aplicaciones

Distribución lineal de carga Sea una recta cargada a lo largo del eje z. Tomemos como superficie cerrada un cilindro de radio r y altura h con su eje coincidente al eje z. Expresando el campo en coordenadas cilindricas tenemos que debido a la simetría de reflexión respecto a un plano z=cte el campo no tiene componente en el eje z y la integración a las bases del cilindro no contribuye, de modo que aplicando la ley de Gauss:

Debido a la simetría del problema el campo tendrá dirección radial y podemos sustituir el producto escalar por el producto de módulos (ya que la dirección de la superficie lateral también es radial).

Despejando el campo y añadiendo su condición radial obtenemos:

Distribución esférica de carga Considérese una esfera uniformemente cargada de radio R. La carga existente en el interior de una superficie esférica de radio r es una parte de la carga total, que se calcula multiplicando la densidad de carga por el volumen de la esfera de radio r:

5

 

Ley de Gauss

6

Si Q es la carga de la esfera de radio R, entonces, se tiene:

Dividiendo miembro a miembro ambas expresiones y operando apropiadamente:

Como se demostró en una sección anterior

y teniendo en cuenta que según la ley de Gauss

, se obtiene:

Por lo tanto, para puntos interiores de la esfera:

Y para puntos exteriores:

En el caso de que la carga se distribuyera en la superficie de la esfera, es decir, en el caso de que fuera conductora, para puntos exteriores a la misma la intensidad del campo estaría dada por la segunda expresión, pero para puntos interiores a la esfera, el valor del campo sería nulo ya que la superficie gaussiana que se considerara no encerraría carga alguna.

Ley de Gauss Al igual que para el campo eléctrico, existe una ley de Gauss para el

magnetismo, que se expresa en sus formas integral y diferencial como

Esta ley expresa la inexistencia de cargas magnéticas o, como se conocen habitualmente, monopolos magnéticos. Las distribuciones de fuentes magnéticas son siempre neutras en el sentido de que posee un polo norte y un polo sur, por lo que su flujo a través de cualquier superficie cerrada es nulo. En el hipotético caso de que se descubriera experimentalmente la existencia de monopolos, esta ley debería ser modificada para acomodar las correspondientes densidades de carga, resultando una ley en todo análoga a la ley de

 

Ley de Gauss

7

Gauss para el campo eléctrico. La Ley de Gauss para el campo magnético quedaría como

donde

densidad de corriente

, la cual obliga a modificar la ley de Faraday

Analogía gravitacional Dada la similitud entre la ley de Newton de la gravitación universal y la ley de Coulomb, puede deducirse una ley análoga para el campo gravitatorio, la cual se escribe

siendo G la constante de gravitación universal. El signo menos en esta ley y el hecho de que la masa siempre sea positiva significa que el campo gravitatorio siempre es atractivo y se dirige hacia las masas que lo crean. Sin embargo, a diferencia de la ley de Gauss para el campo eléctrico, el caso gravitatorio es sólo aproximado y se aplica exclusivamente a masas pequeñas en reposo, para las cuales es válida la ley de Newton. Al modificarse la teoría de Newton mediante la Teoría de la Relatividad general, la ley de Gauss deja de ser cierta, ya que deben incluirse la gravitación causada por la energía y el efecto del campo gravitatorio en el propio espaciotiempo (lo que modifica la expresión de los operadores diferenciales e integrales).

Véase también • Ca Camp mpo o el eléc éctr tric ico o • Ca Carl rl Fri Fried edri rich ch G Gau auss ss • Ecua Ecuaci cion ones es de Ma Maxw xwel elll • Flujo • Le Ley y de Coulo oulomb mb • Méto Método do de la lass iimá máge gene ness • Su Supe perf rfic icie ie d dee G Gau auss ss • Teor Teorem emaa de la d div iver erge genc ncia ia

Referencias Jackson, Juan David (1999). Electrodinámica clásica, 3ro ed., Nueva York: Wiley.

 

Fuentes y contribuyentes del artículo

Fuentes y contribuyentes del artículo Ley de Gauss  Gauss  Fuente: http://es.wikipe http://es.wikipedia.org/w/index. dia.org/w/index.php?oldid=45772982 php?oldid=45772982 Contribuyentes: Alefisico, Aleivag, Berfito, BetoCG, CASF, Celay, Chanchocan, Charlitos, Cookie, Diegusjaimes, Echani, Eseotres, GermanX, Gonfer, Greek, HUB, Javierito92, JorgeGG, Joseaperez, Jtico, LeCire, MI GENERAL ZAPATA, Macarse, Magister Mathematic Mathematicae, ae, Matdrodes, Mel 23, Moltrev, Mr. Moonlight, Muro de Aguas, Nicoguaro, Nikox87, Nuvem, Ortisa, Oxartum, PACO, PasabaPorAqui, Phirosiberia, PoLuX124, R9hino, Rafaelharibol, Rafiko77, Segedano, Tano4595, Wilfredor, Xuankar, YeisonEng, 121 ediciones anónimas

Fuentes de imagen, Licencias y contribuyentes http://es.wikipedia.org/w/index.php?title=Archi php?title=Archivo:Electric_Fl vo:Electric_Flow_in_an_Ellipsoid. ow_in_an_Ellipsoid.svg svg  Licencia: GNU Free Documentation License File:Electric_Flow_in_an_Ellipsoid.svg  Fuente: http://es.wikipedia.org/w/index. File:Electric_Flow_in_an_Ellipsoid.svg   Contribuyentes: User:Nicoguaro Archivo:Electric_Flux_in_a_Cylinder.svg   Fuente: http://es.wikipedia.org/w/inde Archivo:Electric_Flux_in_a_Cylinder.svg http://es.wikipedia.org/w/index.php?title=Arc x.php?title=Archivo:Electric_F hivo:Electric_Flux_in_a_Cylinde lux_in_a_Cylinder.svg r.svg  Licencia: Creative Commons Attribution-Sharealike Attribution-Sharealike 3.0  Contribuyentes: User:Nicoguaro Archivo:Gauss_Sphere_Charge_Inside.svg   Fuente: http://es.wikipedia.org/w/index. Archivo:Gauss_Sphere_Charge_Inside.svg http://es.wikipedia.org/w/index.php?title=Archi php?title=Archivo:Gauss_Sphere vo:Gauss_Sphere_Charge_Inside.s _Charge_Inside.svg vg  Licencia: GNU Free Documentation License  Contribuyentes: User:Chanchoc User:Chanchocan, an, User:Nicoguaro Archivo:GaussLaw1.svg  Fuente: http://es.wikip Archivo:GaussLaw1.svg  http://es.wikipedia.org/w/inde edia.org/w/index.php?title=Arc x.php?title=Archivo:GaussLaw1.s hivo:GaussLaw1.svg vg  Licencia: GNU Free Documentation License Contribuyentes: User:Nicoguaro Archivo:GaussLaw2.svg   Fuente: http://es.wikip Archivo:GaussLaw2.svg http://es.wikipedia.org/w/inde edia.org/w/index.php?title=Arc x.php?title=Archivo:GaussLaw2.s hivo:GaussLaw2.svg vg  Licencia: GNU Free Documentation License Contribuyentes: User:Nicoguaro Archivo:GaussSphere.svg   Fuente: http://es.wikipedia.org/w/inde Archivo:GaussSphere.svg http://es.wikipedia.org/w/index.php?title=Arc x.php?title=Archivo:GaussSphere hivo:GaussSphere.svg .svg  Licencia: Creative Commons Attribution-Sharealike 2.5 Contribuyentes: User:Chanchocan, User:Nicoguaro User:Chanchocan, Archivo:GaussLaw4.svg   Fuente: http://es.wikip Archivo:GaussLaw4.svg http://es.wikipedia.org/w/inde edia.org/w/index.php?title=Arc x.php?title=Archivo:GaussLaw4.s hivo:GaussLaw4.svg vg  Licencia: GNU Free Documentation License Contribuyentes: User:Nicoguaro

Licencia Creative Commons Attribution-Share Alike 3.0 Unported http:/   / creativecommons.org/ licenses/ by-sa/ 3.0/   

 

 

 

 

8

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF