Lecture 18 - Reconstruction of a Lie Group from its Algebra (Schuller's Geometric Anatomy of Theoretical Physics)

September 14, 2017 | Author: Simon Rea | Category: Lie Groups, Differentiable Manifold, Curve, Field (Mathematics), Vector Space
Share Embed Donate

Short Description

Lecture notes for lecture 17 of Frederic Schuller's Lectures on the Geometric Anatomy of Theoretical Physics. Conte...



Reconstruction of a Lie group from its algebra

We have seen in detail how to construct a Lie algebra from a given Lie group. We would now like to consider the inverse question, i.e. whether, given a Lie algebra, we can construct a Lie group whose associated Lie algebra is the given one and, if this is the case, whether this correspondence is bijective. 18.1

Integral curves

Definition. Let M be a smooth manifold and let Y ∈ Γ(T M ). An integral curve of Y is smooth curve γ : (−ε, ε) → M , with ε > 0, such that ∀ λ ∈ (−ε, ε) : Xγ,γ(λ) = Y |γ(λ) . It follows from the local existence and uniqueness of solutions to ordinary differential equations that, given any Y ∈ Γ(T M ) and any p ∈ M , there exist ε > 0 and a smooth curve γ : (−ε, ε) → M with γ(0) = p which is an integral curve of Y . Moreover, integral curves are locally unique. By this we mean that if γ1 and γ2 are both integral curves of Y through p, i.e. γ1 (0) = γ2 (0) = p, then γ1 = γ2 on the intersection of their domains of definition. We can get genuine uniqueness as follows. Definition. The maximal integral curve of Y ∈ Γ(T M ) through p ∈ M is the unique p integral curve γ : Imax → M of Y through p, where [ p Imax := {I ⊆ R | there exists an integral curve γ : I → M of Y through p}. p will differ from point to point. For a given vector field, in general, Imax p Definition. A vector field is complete if Imax = R for all p ∈ M .

We have the following result. Theorem 18.1. On a compact manifold, every vector field is complete. On a Lie group, even if non-compact, there are always complete vector fields. Theorem 18.2. Every left-invariant vector field on a Lie group is complete. The maximal integral curves of left-invariant vector fields are crucial in the construction of the map that allows us to go from a Lie algebra to a Lie group. 18.2

The exponential map

Let G be a Lie group. Recall that given any A ∈ Te G, we can define the uniquely determined ∼ left-invariant vector field X A := j(A) via the isomorphism j : Te G − → L(G) as X A |g := (`g )∗ (A). Then let γ A : R → G be the maximal integral curve of X A through e ∈ G.


Definition. Let G be a Lie group. The exponential map is defined as exp : Te G → G A 7→ exp(A) := γ A (1) Theorem 18.3. i) The map exp is smooth and a local diffeomorphism around 0 ∈ Te G, i.e. there exists an open V ⊆ Te G containing 0 such that the restriction exp |V : V → exp(V ) ⊆ G is bijective and both exp |V and (exp |V )−1 are smooth. ii) If G is compact, then exp is surjective. Note that the maximal integral curve of X 0 is the constant curve γ 0 (λ) ≡ e, and hence we have exp(0) = e. Then first part of the theorem then says that we can recover a neighbourhood of the identity of G from a neighbourhood of the identity of Te G. Since Te G is a vector space, it is non-compact (intuitively, it extends infinitely far away in every direction) and hence, if G is compact, exp cannot be injective. This is because, by the second part of the theorem, it would then be a diffeomorphism Te G → G. But as G is compact and Te G is not, they are not diffeomorphic. Proposition 18.4. Let G be a Lie group. The image of exp : Te G → G is the connected component of G containing the identity. Therefore, if G itself is connected, then exp is again surjective. Note that, in general, there is no relation between connected and compact topological spaces, i.e. a topological space can be either, both, or neither. Example 18.5. Let B : V × V be a pseudo inner product on V . Then O(V ) := {φ ∈ GL(V ) | ∀ v, w ∈ V : B(φ(v), φ(w)) = B(v, w)} is called the orthogonal group of V with respect to B. Of course, if B or the base field of V need to be emphasised, they can be included in the notation. Every φ ∈ O(V ) has determinant 1 or −1. Since det is multiplicative, we have a subgroup SO(V ) := {φ ∈ O(V ) | det φ = 1}. These are, in fact, Lie subgroups of GL(V ). The Lie group SO(V ) is connected while O(V ) = SO(V ) ∪ {φ ∈ O(V ) | det φ = −1} is disconnected. Since SO(V ) contains idV , we have so(V ) := TidV SO(V ) = TidV O(V ) =: o(V ) and exp(so(V )) = exp(o(V )) = SO(V ).


Example 18.6. Choosing a basis A1 , . . . , Adim G of Te G often provides a convenient coordinatisation of G near e. Consider, for example, the Lorentz group O(3, 1) ≡ O(R4 ) = {Λ ∈ GL(R4 ) | ∀ x, y ∈ R4 : B(Λ(x), Λ(y)) = B(x, y)}, where B(x, y) := ηµν xµ y ν , with 0 ≤ µ, ν ≤ 3 and  −1 0  [η µν ] = [ηµν ] :=  0 0

0 1 0 0

0 0 1 0

 0 0  . 0 1

The Lorentz group O(3, 1) is 6-dimensional, hence so is the Lorentz algebra o(3, 1). For convenience, instead of denoting a basis of o(3, 1) as {M i | i = 1, . . . , 6}, we will denote it as {M µν | 0 ≤ µ, ν ≤ 3} and require that the indices µ, ν be anti-symmetric, i.e. M µν = −M νµ . Then M µν = 0 when ρ = σ, and the set {M µν | 0 ≤ µ, ν ≤ 3}, while technically not linearly independent, contains the 6 independent elements that we want to consider as a basis. These basis elements satisfy the following bracket relation [M µν , M ρσ ] = η νσ M µρ + η µρ M νσ − η νρ M µσ − η µσ M νρ . Any element λ ∈ o(3, 1) can be expressed as linear combination of the M µν , λ = 21 ωµν M µν where the indices on the coefficients ωµν are also anti-symmetric, and the factor of 12 ensures that the sum over all µ, ν counts each anti-symmetric pair only once. Then, we have Λ = exp(λ) = exp( 12 ωµν M µν ) ∈ O(3, 1). The subgroup of O(3, 1) consisting of the the space-orientation preserving Lorentz transformations, or proper Lorentz transformations, is denoted by SO(3, 1). The subgroup consisting of the time-orientation preserving, or orthochronous, Lorentz transformations is denoted by O+ (3, 1). The Lie group O(3, 1) is disconnected: its four connected components are i) SO+ (3, 1) := SO(3, 1) ∩ O+ (3, 1), also called the restricted Lorentz group, consisting of the proper orthochronous Lorentz transformations; ii) SO(3, 1) \ O+ (3, 1), the proper non-orthochronous transformations; iii) O+ (3, 1) \ SO(3, 1), the improper orthochronous transformations; iv) O(3, 1) \ (SO(3, 1) ∪ O+ (3, 1)), the improper non-orthochronous transformations.


Since idR4 ∈ SO+ (3, 1), we have exp(o(3, 1)) = SO+ (3, 1). Then {M µν } provides a nice co-ordinatisation of SO+ (3, 1) since, if we choose   0 ψ1 ψ2 ψ3 −ψ 0 ϕ −ϕ   1 3 2 [ωµν ] =   −ψ2 −ϕ3 0 ϕ1  −ψ3 ϕ2 −ϕ1 0 then the Lorentz transformation exp( 21 ωµν M µν ) ∈ SO+ (3, 1) corresponds to a boost in the (ψ1 , ψ2 , ψ3 ) direction and a space rotation by (ϕ1 , ϕ2 , ϕ3 ). Indeed, in physics one often thinks of the Lie group SO+ (3, 1) as being generated by {M µν }. ∼ A representation ρ : TidR4 SO+ (3, 1) − → End(R4 ) is given by ρ(M µν )ab := η νa δbµ − η µa δbν which is probably how you have seen the M µν themselves defined in some previous course on relativity theory. Using this representation, we get a corresponding representation R : SO+ (3, 1) → GL(R4 ) via the exponential map by defining R(Λ) = exp( 21 ωµν ρ(M µν )). Then, the map exp becomes the usual exponential (series) of matrices. Definition. A one-parameter subgroup of a Lie group G is a Lie group homomorphism ξ : R → G, with R understood as a Lie group under ordinary addition. Example 18.7. Let M be a smooth manifold and let Y ∈ Γ(T M ) be a complete vector field. The flow of Y is the smooth map Θ: R × M → M (λ, p) 7→ Θλ (p) := γp (λ), where λp is the maximal integral curve of Y through p. For a fixed p, we have Θ0 = idM ,

Θλ1 ◦ Θλ2 = Θλ1 +λ2 ,

Θ−λ = Θ−1 λ .

For each λ ∈ R, the map Θλ is a diffeomorphism M → M . Denoting by Diff(M ) the group (under composition) of the diffeomorphisms M → M , we have that the map ξ : R → Diff(M ) λ 7→ Θλ is a one-parameter subgroup of Diff(M ).


Theorem 18.8. Let G be a Lie group. i) Let A ∈ Te G. The map ξA : R → G λ 7→ ξ A (λ) := exp(λA) is a one-parameter subgroup. ii) Every one-parameter subgroup of G has the form ξ A for some A ∈ Te G. Therefore, the Lie algebra allows us to study all the one-parameter subgroups of the Lie group. Theorem 18.9. Let G and H be Lie groups and let φ : G → H be a Lie group homomorphism. Then, for all A ∈ TeG G, we have φ(exp(A)) = exp((φ∗ )eG A). Equivalently, the following diagram commutes. TeG G

(φ∗ )eG



TeH H exp




View more...


Copyright ©2017 KUPDF Inc.