Lect2-Kinematic in 1D

May 11, 2018 | Author: Engku Ghapur | Category: Acceleration, Velocity, Speed, Kinematics, Dynamics (Mechanics)
Share Embed Donate


Short Description

Download Lect2-Kinematic in 1D...

Description

Chapter 2 K i n em e m a t ic i c s i n On O n e D im im en s i o n

Outline •

Displacement



Speed & velocity



 Acceleration



 Application of equations equations



Free falling bodies



Graphical analysis

Outline •

Displacement



Speed & velocity



 Acceleration



 Application of equations equations



Free falling bodies



Graphical analysis

 deals with the concepts that  deals Kinematics  are needed to describe motion. D y n a m i c s deals with the effect that forces

have on motion. Together, kinematics and dynamics form the branch of physics known as Mechanics.

2.1 D i s p l a c e m e n t



x

o

 initial  posi  pos ition tion 

x 



x



x

 final posi  pos ition tion

 x o  displaceme nt 

2.1 D i s p l a c e m e n t



x

o



2.0 m

x  5.0 m 



x



x 



x

 7.0 m

 x o  7.0 

m  2.0 m  5.0 m

2.1 D i s p l a c e m e n t



x

x  5.0 m

 2.0 m





x



x 



x

o



 x o  2.0 

7.0 m

m  7.0 m  5.0 m

2.1 D i s p l a c e m e n t



x

o

 2.0 m



x

 5.0 m

x  7.0 m 



x 



x

 x o  5.0 

m   2.0  m  7.0 m

2.2 S p e ed a n d V el o c i t y

A v e r a g e s p e ed is the distance traveled divided by the time

required to cover the distance.

Average speed 

Distance Elapsed time

SI units for speed: meters per second (m/s)

2.2 S p e ed a n d V el o c i t y

E x a m p l e 1 Distance Run by a Jogger How far does a jogger run in 1.5 hours (5400 s) if his average speed is 2.22 m/s?

Average speed 

Distance 

2.22 m

Distance Elapsed time

Average speedElapsed  time  s 5400 s   12000 m



2.2 S p e ed a n d V el o c i t y

A v er ag e v e lo c i t y is the displacement divided by the elapsed

time.

Average velocity





v



x



Displaceme nt Elapsed time



 xo

t   t o





x t 

2.2 S p e ed a n d V el o c i t y E x a m p l e 2 The World’s Fastest Jet-Engine Car

 Andy Green in the car ThrustSSC  set a world record of 341.1 m/s in 1997. To establish such a record, the driver makes two runs through the course, one in each direction, to nullify wind effects. From the data, determine the average velocity for each run.

2.2 S p e ed a n d V el o c i t y





v



x



4.740 s

t 





v



x t 

 1609 m



 1609 m

4.695 s

 339.5 m

 342.7 m

s

s

2.2 S p e ed a n d V el o c i t y

The i n s t a n t an e o u s v e lo c i t y indicates how fast the car moves and the direction of motion at each instant of time.





v



lim

t 0

x t 

2.3 A c c e l e r a t i o n

The notion of acceleration emerges when a change in velocity is combined with the time during which the change occurs.

2.3 A c c e l e r a t i o n

DEFINITION OF AVERAGE ACCELERATION 



a



v



 vo

t   t o





v t 

2.3 A c c e l e r a t i o n

E x a m p l e 3  Acceleration and Increasing Velocity

Determine the average acceleration of the plane.



v

o



0m s



v





a



v





 vo

t   t o



260 km h

t o  0 s

260 km h  0 km h 29 s  0 s

 9.0

t   29 s

km h s

2.3 A c c e l e r a t i o n

2.3 A c c e l e r a t i o n E x a m p l e 3  Acceleration and Decreasing

Velocity





a



v



 vo

t   t o



13 m s  28 m s 12 s  9 s

 5.0 m

s2

2.3 A c c e l e r a t i o n

2.4 E q u at i o n s o f K i n e m a t i c s f o r C o n s t a n t A c c e l er at i o n



x



v





x





o

v



a

t   t o







v

o

t   t o

It is customary to dispense with the use of boldface symbols overdrawn with arrows for the displacement, velocity, and acceleration vectors. We will, however, continue to convey the directions with a plus or minus sign.  x v





 xo

t   t o

a

v  vo t   t o

2.4 E q u at i o n s o f K i n e m a t i c s f o r C o n s t a n t A c c e l er at i o n

Let the object be at the origin when the clock starts.

 xo  0

 x v





t o  0

 x

 xo

v





t   t o

 x  v t  

1 2

v

o



 v t 

2.4 E q u at i o n s o f K i n e m a t i c s f o r C o n s t a n t A c c e l er at i o n

a

v  vo t   t o

a

v  vo t 

at   v  vo

v  vo  at 

2.4 E q u at i o n s o f K i n e m a t i c s f o r C o n s t a n t A c c e l er at i o n

Five kinematic variables: 1. displacement, x  2. acceleration (constant), a 3. final velocity (at time t ), v  4. initial velocity, v o 5. elapsed time, t

2.4 E q u at i o n s o f K i n e m a t i c s f o r C o n s t a n t A c c e l er at i o n

v  vo  at 

 x 

1 2

v

o



 v t  

1 2

v

o



 vo  at  t 

 x  vo t  

1 2

2

at 

2.4 E q u at i o n s o f K i n e m a t i c s f o r C o n s t a n t A c c e l er at i o n

 x  vo t   

1 2

2

at 

6.0 m s 8.0 s  

 110 m

1 2

2.0 m s 8.0 s 2

2

2.4 E q u at i o n s o f K i n e m a t i c s f o r C o n s t a n t A c c e l er at i o n

E x a m p l e 6 Catapulting a Jet

Find its displacement. vo  0 m s

a  31 m s

 x  ??

v  62 m s

2

2.4 E q u at i o n s o f K i n e m a t i c s f o r C o n s t a n t A c c e l er at i o n

a

v  vo

 x 

t  



1 2

v

o



v  vo

 v t  

a

1 2

v

o

v



2

 x 

v  v  o

a 2

v  vo

2a

2.4 E q u at i o n s o f K i n e m a t i c s f o r C o n s t a n t A c c e l er at i o n

2

 x 

v  vo

2a

62 m s

2

2







0 m s 

2 31m s

2

2



 62 m

2.4 E q u at i o n s o f K i n e m a t i c s f o r C o n s t a n t A c c e l er at i o n

Equations of Kinematics for Constant Acceleration

v  vo  at   x  2

1 2

v

o



 v t 

2

v  vo  2ax

 x  vo t  

1 2

2

at 

2.5 A p p l i c at i o n s o f t h e Eq u a t i o n s o f K i n e m a ti c s

Reasoning Strategy 1. Make a drawing. 2. Decide which directions are to be called positive (+) and negative (-). 3. Write down the values that are given for any of the five kinematic variables. 4. Verify that the information contains values for at least three of the five kinematic variables. Select the appropriate equation. 5. When the motion is divided into segments, remember that the final velocity of one segment is the initial velocity for the next. 6. Keep in mind that there may be two possible answers to a kinematics problem.

2.5 A p p l i c at i o n s o f t h e Eq u a t i o n s o f K i n e m a ti c s

E x a m p l e 8  An Accelerating Spacecraft

 A spacecraft is traveling with a velocity of +3250 m/s. Suddenly the retrorockets are fired, and the spacecraft begins to slow down with an acceleration whose magnitude is 10.0 m/s 2. What is the velocity of the spacecraft when the displacement of the craft is +215 km, relative to the point where the retrorockets began firing?

 x

a

v

v o

+215000 m

-10.0 m/s2

?

+3250 m/s

t

2.5 A p p l i c at i o n s o f t h e Eq u a t i o n s o f K i n e m a ti c s

2.5 A p p l i c at i o n s o f t h e Eq u a t i o n s o f K i n e m a ti c s

 x

a

v

v o

+215000 m

-10.0 m/s2

?

+3250 m/s

2

2

v  vo  2ax v

3250 m s 

 2500 m

s

2

vo  2ax

v 2



 2 10.0 m

t

s

2

215000 m

2.6 F r ee l y F a ll i n g B o d i e s

In the absence of air resistance, it is found that all bodies at the same location above the Earth fall vertically with the same acceleration. If the distance of the fall is small compared to the radius of the Earth, then the acceleration remains essentially constant throughout the descent. This idealized motion is called free-fall and the acceleration of a freely falling body is called the acceleration due to gravity .

 g   9.80 m s

2

or

32 .2 ft s

2

2.6 F r ee l y F a ll i n g B o d i e s

 g   9.80 m s

2

2.6 F r ee l y F a ll i n g B o d i e s

Exam ple 10  A Falling Stone

 A stone is dropped from the top of a tall building. After 3.00s of free fall, what is the displacement y  of the stone?

2.6 F r ee l y F a ll i n g B o d i e s

y

a

?

-9.80 m/s2

v

v o

t

0 m/s

3.00 s

2.6 F r ee l y F a ll i n g B o d i e s

y

a

?

-9.80 m/s2

 y  vot   

1 2

v o

t

0 m/s

3.00 s

2

at 

0 m s 3.00 s  

 44.1 m

v

1 2

 9.80 m s 3.00 s  2

2

2.6 F r ee l y F a ll i n g B o d i e s

Exam ple 12 How High Does it Go?

The referee tosses the coin up with an initial speed of 5.00m/s. In the absence if air resistance, how high does the coin go above its point of release?

2.6 F r ee l y F a ll i n g B o d i e s

y

a

v

v o

?

-9.80 m/s2

0 m/s

+5.00 m/s

t

2.6 F r ee l y F a ll i n g B o d i e s

y

a

v

v o

?

-9.80 m/s2

0 m/s

+5.00 m/s 2

2

2

v  vo  2ay 2

 y 

2a

0 m s 

2

2

v  vo

 y 







t

2

v  vo

2a

5.00 m s

2  9.80 m s

2

2



 1.28 m

2.6 F r ee l y F a ll i n g B o d i e s

C o n c e p t u a l E x am p l e 14  Acceleration Versus Velocity

There are three parts to the motion of the coin. On the way up, the coin has a vector velocity that is directed upward and has decreasing magnitude. At the top of its path, the coin momentarily has zero velocity. On the way down, the coin has downward-pointing velocity with an increasing magnitude. In the absence of air resistance, does the acceleration of the coin, like the velocity, change from one part to another?

2.6 F r ee l y F a ll i n g B o d i e s

C o n c e p t u a l E x am p l e 15 Taking Advantage of Symmetry

Does the pellet in part b strike the ground beneath the cliff with a smaller, greater, or the same speed as the pellet in part a?

2.7 G r ap h i c a l A n a l y s i s o f V e lo c i t y a n d A c c e l er a t i o n

Slope 

 x t 



8m

2s

 4 m

s

2.7 G r ap h i c a l A n a l y s i s o f V e lo c i t y a n d A c c e l er a t i o n

2.7 G r ap h i c a l A n a l y s i s o f V e lo c i t y a n d A c c e l er a t i o n

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF