LCD_TS_Eng

May 21, 2018 | Author: Prashantcool1999 | Category: Continuous Function, Derivative, Function (Mathematics), Mathematical Analysis, Geometry
Share Embed Donate


Short Description

bansal...

Description

MATHEMATICS

CONTENTS  KEY CONCEPT .............................................................. ........................................................................... ............. Page  –  2 7   EXERCISE  EXERCI SE –  I   ...............................................................................Page  – 7 

 EXERCISE  EXERCI SE –  II   .............................................................................Page  –  9 10  EXERCISE  EXERCI SE –  III  ............................................................................  ............................................................................ Page  – 10 13  EXERCISE –  IV  ................................................................  ............................................................................. ............. Page  – 13

 EXERCISE  EXERCI SE – V ........................... ................................................P age  – 14 14 VI(A)  .......................................................................Page  – 16  16   EXERCISE – VI(A) VI(B)  .......................................................................Page  – 17  17   EXERCISE – VI(B) 19  ANSWER KEY ................................................................ ............................................................................. ............. Page Pa ge – 19

GAURAV TOWER TOWE R" A-10, Road No.-1, I.P.I.A., Corporate Office :  "GAURAV I.P.I.A., Kota-324005  (Raj.) INDIA.

Tel. (0744)2423738, 2423739, 2421097, 2424097, 2423244 Fax: 2436779 Website : www.bansal.ac.in

Email: [email protected]

KEY CONCEPTS (LIMIT) THINGS TO REMEMBER : 1. Limit of a function f(x) is said to exist as, x!a when

Lim f (x) = Lim f (x) = finite fini te quantity..

x !a "

x !a #

2.

INDETERMINANT FORMS : 0 $ , , 0 & $, 0%, $%, $ " $ and 1$ 0 $ Note : (i) We cannot plot pl ot $ on the paper. Infinity ($) is a symbol & not a number. It does not obey the laws of elementary algebra. (ii) (iii) $ + $ = $ $ × $ = $   (iv) (a/ $) = 0 if a is finite a (v)  is not defined , if a ( 0. 0 (vi) a b = 0 , if & only if a = 0 or b = 0 and a & b are finite.

3.

FUNDAMENTAL THEOREMS ON LIMIT IMITS S:

Let Lim f (x) f (x) = l & Lim g (x) = m. If l & m exists then : x !a x !a

Remember Lim ) x ( a x! a

(ii) Lim  f(x). g(x) = l. m x !a

(i)

 f (x) ± g (x) = l ± m Lim  f (x)

(iii)

Lim

(iv)

k f(x) = k Lim  f(x) ; where k is a constant. constant. Lim k f(x)

(v)

f [g(x)] = f . Lim g( x ) + = f (m) f (m) ; provided f is continuous at g (x) = m. Lim f [g(x)]

x !a

x !a

f ( x ) g(g )

*

!

m

x !a

, provided m ( 0

x !a

0  / x!a

x !a

  ,

6

3

For exampl exampl e Lim l n (f(x) = ln Lim f ( x ) l n l (l > 0). 45 x!a 12 x !a

4.

SQUEEZE PLAY THEOREM : Limit Limit If f(x) 7 g(x) 7 h(x) 8 x & Limit x ! a  f(x) = l = x ! a h(x) then x ! a  g(x) = l.

5. (a)

(b) (b)

STANDARD LIMITS :

Lim

sin x

 = 1 = Lim  = Lim x x !0 x !0 [Where x is measured in radians] x !0

tan " x 1

tan x

x

1/x

Lim  (1 + x)   = e = x !0

1 Lim 0  1# + . x !$ /  x ,

x

sin " x 1

 = Lim x !0

x

x

 h)n = 0 note however there Lim (1  –  h) h !0 n !$

and Lim  (1 + h )n ! $ h !0 n !$

(c)

If 

Lim  f(x) = 1 and Lim x !a

x !a

9 (x) = $ , then ;

Lim

Lim :f ( x );9( x ) * e x !a 9 ( x )[ f ( x ) "1] x !a

 Limit, Continuity and Differentiability Differentiability of Function

[2]

(d)

If 

Lim  f(x) = A > 0 & Lim x !a

x !a

Lim [f(x)] x !a

(e)

Lim

a

x !0

"1

x

x

9 (x) = B (a finite quantity) then ;

 9(x) = ez where z =

Lim x !a

9 (x). ln[f(x)] = eBlnA = AB

 = ln a (a > 0). In particular Lim x !0

ex

"1

x

 = 1

"an * n a n "1 x"a

xn

(f)

Lim

6. (a) (b) (c)

The following strategies should be born in mind for evaluating the limits: Factorisation Rationalisation or double rationalisation Use of trigonometric transformation ; appropriate substitution and using standard limits Expansion of function like Binomial expansion, exponential & logarithmic expansion, expansion of sinx , cosx , tanx should be remembered by heart & are given below :

(d)

x !a

(i) a

x

(ii) e

x

* 1#

x ln a

#

1!

x

1!

2!

*x"

(v) cos x

* 1"

2

#

2!

x3 3

(vii) tan x = x " 1

 – 

x3

#

x

x3

" "

4!

2x 5 15

#

"

3

4

#

3 3 x ln a

3!

# .........a < 0

# ............  ; x = R

3!

5!

#

3

3

x5

#

3!

(vi) tan x = x #

#

2

x3

x

x

x2

(iii) ln(1+ x) = x "

(iv) sin x

2!

2

x

* 1# #

2 2 x ln a

x5 5

x4 4

# .........for " 1 > x 7 1

0  ? ? # ...  ; x = . " , + /  2 2 , 7!

x7

0  ? ? # ...... ; x = . " , + /  2 2 , 6!

x

6

0  ? ? # ........  ; x = . " , + /  2 2 , "

x7 7

0  ? ? # .......  ; x = . " , + /  2 2 ,

CONTINUITY THINGS TO REMEMBER : 1. A function f(x) is said to be continuous at x = c, if Limit   f(x) = f(c). Symbolically x !c f is continuous at x = c if Limit  f(c - h) = Limit  f(c+h) = f(c). h !0 h !0 i.e. LHL at x = c = RHL at x = c equals Value of ‘f ’ at x = c. It should be noted that continuity of a function at x = a is meaningful only if the function is defined in the immediate neighbourhood of x = a, not necessarily at x = a. 2. (i)

Reasons of discontinuity: Limit  f(x) does not exist x !c i.e. Limit"  f(x) ( Limit  f (x) x !c

x !c #

(ii)

f(x) is not defined at x= c

(iii)

Limit  f(x) ( f (c) x !c  Limit, Continuity and Differentiability of Function

[3]

Geometrically, the graph of the function will exhibit a break at x= c. The graph as shown is discontinuous at x = 1 , 2 and 3. 3. Types of Discontinuities : Type - 1: ( Removable type of discontinuities) In case Limit  f(x) exists but is not equal to f(c) then the function is said to have a removable discontinuity x !c

or discontinuity of the first kind. In this case we can redefine the function such that Limit f(x) = f(c) & x !c

make it continuous at x= c. Removable type of discontinuity can be further classified as : (a)

MISSING POINT DISCONTINUITY :  Where Limit f(x) exists finitely but f(a) is not defined. x !a 2 sinx (1 " x )(9 " x ) e.g. f(x) =  has a missing point discontinuity at x = 1 , and f(x) =  has a missing point x @1 " x A discontinuity at x = 0

(b)

ISOLATED POINT DISCONTINUITY : Where Limit  f(x) exists & f(a) also exists but ; Limit ( f(a). x !a x !a 2 x " 16 e.g. f(x) = , x ( 4 & f (4) = 9 has an isolated point discontinuity at x = 4. x"4 if x = I

0

6 Similarly f(x) = [x] + [  – x] = 4 5 "1

if x

BI

 has an isolated point discontinuity at all x = I.

Type-2: ( Non - Removable type of discontinuities)

In case Limit  f(x) does not exist then it is not possible to make the function continuous by redefining it. x !c

Such discontinuities are known as non - removable discontinuity or discontinuity of the 2nd kind. Non-removable type of discontinuity can be further classified as : (a)

Finite discontinuity e.g. f(x) = x " [x] at all integral x ; f(x) = tan ( note that f(0+) = 0 ; f(0 ) = 1 )  – 

(b)

Infinite discontinuity e.g. f(x) =

1 x"4

 or g(x) =

1 ( x " 4)

2

"1 1

x

 at x = 0 and f(x) =

at x = 4 ; f(x) = 2tanx at x =

1 1

at x = 0

1# 2 x

? 2

 and f(x) =

cosx x

at x = 0. (c)

Oscillatory discontinuity e.g. f(x) = sin 1  at x = 0. x In all these cases the value of f(a) of the function at x= a (point of discontinuity) may or may not exist but Limit  does not exist. x !a

Note: From the adjacent graph note that  –  f is continuous at x =  –  1  –  f has isolated discontinuity at x = 1  –  f has missing point discontinuity at x = 2  –  f has non removable (finite type) discontinuity at the origin. 4.

In case of dis-continuity of the second kind the non-negative difference between the value of the RHL at x = c & LHL at x = c is called THE JUMP OF DISCONTINUITY. A function having a finite number of jumps in a given interval I is called a PIECE WISE CONTINUOUS or SECTIONALLY CONTINUOUS  function in this interval.

5.

All Polynomials, Trigonometrical functions, exponential & Logarithmic functions are continuous in their domains.  Limit, Continuity and Differentiability of Function

[4]

6.

If f & g are two functions that are continuous at x= c then the functions defined by : F1(x) = f(x) C g(x); F2(x) = K f(x), K any real number; F 3(x) = f(x).g(x) are also continuous at x= c. Further, if g (c) is not zero, then F4(x) =

7.

f (x) g(x)

 is also continuous at x= c.

The intermediate value theorem: Suppose f(x) is continuous on an interval I , and a and b are any two points of I. Then if y 0 is a number between f(a) and f(b) , their exists a number c between a and b such that f(c) = y0. The function f, being continuous on [a,b) takes on every value between f(a) and f(b)

NOTE VERY CAREFULLY THAT : (a) If f(x) is continuous & g(x) is discontinuous at x = a then the product function 9(x) = f(x). g(x) is not necessarily be discontinuous at x = a. e.g.

6sin ?x f(x) = x & g(x) = 4 50 (b)

x(0 x*0

If f(x) and g(x) both are discontinuous at x = a then the product function 9(x) = f(x). g(x) is not necessarily be discontinuous at x = a. e.g. f(x) = " g(x) =

xD0

6 1 4 "1 5

x>0

(c)

A Continuous function whose domain is closed must have a range also in closed interval.

(d)

If f is continuous at x = c & g is continuous at x = f(c) then the composite g[f(x)] is continuous at x = c. eg. f(x) =

x sin x x

2

#2

& g(x) = ExE are continuous at x = 0 , hence the composite (gof) (x) =

x sin x x2

#2

 will also

be continuous at x = 0 . 7.

CONTINUITY IN AN INTERVAL :

(a)

A function f is said to be continuous in (a , b) if f is continuous at each & every point =(a , b).

(b)

A function f is said to be continuous in a closed interval :a ,b ; if :

(i) (ii)

f is continuous in the open interval (a , b) & f is right continuous at a  i.e. Limit# f(x) = f(a) = a finite quantity..

(iii)

f is left continuous at b  i.e. Limit f(x) = f(b) = a finite quantity..









x!a

x!b"

Note that a function f which is continuous in :a ,b ; possesses the following properties : (i)

If f(a) & f(b) possess opposite signs, then there exists at least one solution of the equation f(x) = 0 in t he open interval (a , b).

(ii)

If K is any real number between f(a) & f(b), then there exists at least one solution of the equation f(x) = K in the open interval (a , b).

8.

SINGLE POINT CONTINUITY: Functions which are continuous only at one point are said to exhibit single point continuity

e.g. f(x) =

x if x = Q

"x

if x B Q

 and g(x) =

x if x = Q 0 if x B Q

 are both continuous only at x = 0.

 Limit, Continuity and Differentiability of Function

[5]

DIFFERENTIABILITY THINGS TO REMEMBER : 1. Right hand & Left hand Derivatives ;

By definition : f F(a) = Limit h !0 (i)

# h )"f ( a ) h

 if it exist

The right hand derivative of f F at x = a  denoted by f F(a+) is defined by : Limit

f ' (a+) = h ! 0 # (ii)

f ( a

f ( a

# h )"f ( a ) h

,

 provided the limit exists & is finite. The left hand derivative : of f at x = a  denoted by f F(a+) is defined by :  – 

Limit

f ' (a ) = h ! 0 #

f ( a

" h )" f ( a ) , "h

Provided the limit exists & is finite. We also write f F(a+) = f F+(a) & f F(a ) = f F_(a). * This geomtrically means that a unique tangent with finite slope can be drawn at x = a as shown in the figure.  – 

(iii)

Derivability & Continuity : (a) If f F(a) exists then f(x) is derivable at x= a ) f(x) is continuous at x = a. (b)

If a function f is derivable at x then f is continuous at x. f ( x # h )" f ( x ) For : f F(x) = Limit  exists. h !0 h f ( x # h ) " f ( x ) Also f ( x # h ) " f ( x ) * .h [ h ( 0 ] h Therefore : f ( x # h ) " f ( x ) Limit [f ( x # h ) " f ( x )]  = Limit .h * f  '( x ).0 * 0 h !0 h !0 h

Therefore Limit h !0 [f ( x

# h )" f ( x )] = 0 ) Limit h !0

f (x+h) = f(x) ) f is continuous at x.

Note : If f(x) is derivable for every point of its domain of definition, then it is continuous in that domain. The Converse of the above result is not true :  IF f IS CONTINUOUS AT x , THEN f IS DERIVABLE AT x  IS NOT TRUE. 1 e.g.  the functions f(x) = E x E   & g(x) = x sin ; x (   0 & g(0) = 0 are continuous at x x = 0 but not derivable at x = 0. NOTE CAREFULLY : (a) Let f F+(a) = p & f F_(a) = q where p & q are finite then : (i) p = q ) f is derivable at x = a ) f is continuous at x = a. (ii) p ( q ) f is not derivable at x = a. It is very important to note that f may be still continuous at x = a. In short, for a function f : Differentiability ) Continuity ; Continuity ) G  derivability ; “



Non derivability ) G discontinuous (b)

;

But discontinuity ) Non derivability

If a function f is not differentiable but is continuous at x = a it geometrically implies a sharp corner at x = a.  Limit, Continuity and Differentiability of Function

[6]

3.

(i) (ii)

DERIVABILITY OVER AN INTERVAL : f (x) is said to be derivable over an interval if it is derivable at each & every point of the interval f(x) is said to be derivable over the closed interval [a, b] if : for the points a and b, f F(a+) & f F(b ") exist & for any point c such that a < c < b, f F(c+) & f F(c ") exist & are equal.

NOTE : 1. If f(x) & g(x) are derivable at x = a then the functions f(x) + g(x), f(x) " g(x) , f(x).g(x) will also be derivable at x = a & if g (a) ( 0 then the function f(x)/g(x) will also be derivable at x = a. 2. If f(x) is differentiable at x = a & g(x) is not differentiable at x = a , then the product function F(x) = f(x). g(x) can still be differentiable at x = a e.g. f(x) = x & g(x) = ExEH 3. If f(x) & g(x) both are not differentiable at x = a then the product function ; F(x) = f(x). g(x) can still be differentiable at x = a e.g. f(x) = ExE & g(x) = ExE. 4. If f(x) & g(x) both are non-deri. at x = a then the sum function F(x) = f(x) + g(x) may be a differentiable function. e.g. f(x) = ExE & g(x) = "ExEH If f(x) is derivable at x = a ) G f F(x) is continuous at x = a.

6x 2 sin x1

if x

50

if

e.g. f(x) = 4 6.

(0 x*0

A surprising result : Suppose that the function f (x) and g (x) defined in the interval (x1, x2) containing the point x0, and if f is differentiable at x = x0 with f (x0) = 0 together with g is continuous as x = x 0 then the function F (x) = f (x) · g (x) is differentiable at x = x0 e.g. F (x) = sinx · x2/3 is differentiable at x = 0.



6100 k 3 4 I x 1 "100 5K*1 2 x "1

Q.1

Lim x !1

Q.2

Find the sum of an infinite geometric series whose first term is the limit of the function f(x) =

as x ! ? /4 and whose common ratio is the limit of the function g(x) =

Q.3

Q.5

0  p Lim . x !1 / 1 " x p Lim x !0

"

 + p, q = N q 1 " x  ,

sin 4 (3 x ) 1 " cos x

q

x!

1

2



x"

1 # 3 tan x

Q.7 Lim J? 1 " 2 cos 2 x x!

1"

2 sin x

1" x 1 2  as x ! 1. (cos " x )

Lim (x " l n cosh x) where cosh t = x !$

et

# e" t 2

.

.

cos "1 0  . 2x 1 " x 2 -+

Q.6 (a) Lim

Q.4

1 " tan x

1

 , ;

(b) Lim x!? 4

1"

sin 2x

? " 4x

2

Q.8

Lim x !0

# 15[ x ] # 56 ; (c) Lim x ! "7 sin( x # 7) sin( x # 8) where [ ] denotes the greatest integer function [ x]

2

2 2 2 2 6 x x x x 3 " cos # cos cos 1 1 " cos 8 4 2 4 2 4 2 x 5

8

4

 Limit, Continuity and Differentiability of Function

[7]

0 ? # 4h - " 4 sin 0 ? # 3h - # 6 sin 0 ? # 2h - " 4 sin 0 ? # h - # sin ? + . + . + . + 3 / 3  , / 3  , / 3  , / 3  ,

sin .

Q.9

Q.10

Lim h !0

h4

Lim x x !$

2

0  .. / 

x#2 x

"3

x # 3 -

++  ,

x

Q.11

# 2x 2 ) sin 1x # | x |3 #5 3 2 | x | # | x | # | x | #1

(3x

Lim x !"$

4

0 (r # 1) sin ? " r sin ? -  then find { l }. (where { } denotes the fractional part function) . + I !$ * /  r #1 r  , n

Q.12

Q.13

If l = Lim n

r 2

Find a & b if : (i) Lim x !$

0 x 2 # 1  . " ax " b +  = 0 . x #1 + /   ,

Q.14 Lim [ln (1 + sin²x). cot(ln2 (1 + x))]

Q.17

If

If

0  . / 

Lim

Q.15

x !0

Q.16

(ii) xLim !"$

x !1

x

2

" x # 1 " ax " b -+ = 0

(ln (1 # x ) " ln 2)(3.4 x "1 " 3x ) 1

[(7 # x ) 3

1

" (1 # 3x ) 2 ]. sin( x " 1)

2

" 33x  = ln K (where k = N), find K. Lim x !0 0 x 2 sin . . 2 ++ " sin x /   , ex

0  Lim . x !3 . / 

2x # 3 " x  -

x "1" x 2 "5 x 2 "5 x # 6

+ + x #1 " x # 1

  can be expressed in the form

a b c

  where a, b, c

=

N,

then find the least value of (a2 + b2 + c2).

0  1 " 1 # ax . +  exists and has the value equal to l, then find the value of 3 # 1 bx x /  1 # x  , 1

1

2

3

l

b

" #

Q.18

If the Lim x !0

Q.19

Let {an}, {bn}, {cn} be sequences such that (i) an + bn + cn = 2n + 1 ; (ii) anbn +bncn + cnan = 2n  –  1 ; (iii) anbncn =  –  1 ; (iv) an < bn < cn

Q.20

.

Then find the value of Lim (na n ) . n !$ 3 2 Let f (x) = ax  + bx + cx + d and g (x) = x 2 + x  –  2. If Lim x !1

f ( x ) g( x )

 = 1 and Lim x!

"1

Q.21

a

f ( x )

" 2 g( x )

2

"1

sin (1" {x}).cos (1 " {x})

Let f(x) =

 = 4, then find the value of

# d2 2 2 . a #b c

2{x} . (1 " {x})

 then find Lim  f(x) and Lim  f(x), where {x} denotes the fractional x!0 " x!0#

part function. Q.22

If Lim

a ( 2 x 3 " x 2 ) # b ( x 3 # 5 x 2 " 1) " c(3x 3 # x 2 ) a (5x 4 " x ) " bx 4

x !$

# c(4x 4 # 1) # 2 x 2 # 5x

 = 1, then the value of (a + b + c) can be expressed

in the lowest form as @p q A . Find the value of (p + q). Q.23

Let L =

0 1 " 4  . + K 2 n /   , n *3

0 n 3 " 1 . 3 + K . + n * 2 / n # 1 ,

; M=

" (1 # n 1 ) 2 "1 , then find the value of  n *1 1 # 2n $

$

$

and N =

K

L 1 + M 1 + N 1.  – 

 – 

 – 

 Limit, Continuity and Differentiability of Function

[8]

– Q.1

f (x) is the function such that Lim x !0

f ( x )

* 1 . If

x

x (1 # a cos x ) " b sin x

Lim x !0

3

@f (x ) A

* 1 , then find the value of 

a and b. Q.2

0  ?x + Lim . tan 4  , x !1 / 

Q.4

Lim x !$

Q.6

0  Lim . n !$ . / 

Q.8

Q.9

Q.10

Q.3

Q.5

Lim x2 sin G !n

Q.7

6 @1 # xA1 / x 3 1 Lim 4 e 12 x !0 4 5

x

n

2

# n " 1 -+ + n  ,

0 cosh (? x ) ++ Lim .. x ! $ /  cos (? x )  , Lim 2 x !a (a

" x 2 )2

x !1

K* r 1

(c) (d) (e)

x!$

2 n 2 # n "1

x2

where cosh t =

e

t

[(1 " x )(1 " x )(1 " x ).........(1 " x )] n#r

3

1

(b)

r

cos

? I  J  x K 

1 / x

2

(1 " x )(1 " x 2 )(1 " x 3 )......(1 " x 2n ) 2

F  H 

# e"t

0 a 2 # x 2 0 a? - sin 0  ?x - -+ . " 2 sin . + . ++ . ax 2 /   , /  2  , , / 

1

If L = Lim

(a)

Q.12

1

x " 1 # cos x - x Lim 0  . + x !0 x /   ,

2

0  x # c * 4  then find c . + /  x " c

n

Q.11

tan ?x

n

2

where a is an odd integer

 then show that L can be equal to

n

K ( 4 r " 2)

n! r *1

the sum of the coefficients of two middle terms in the expansion of (1 + x)2n  1. the coefficient of xn in the expansion of (1 + x) 2n. sum of the squares of the combinatorial coefficients in (1 + x)n.  – 

Let x0 = 2 cos

? 6

 and x n =

( n #1) · 2 " xn . 2 # x n"1 , n = 1, 2, 3, .........., find Lim 2

If a, b, c and d are real constants such that Lim x !0

n !$

ax

2

# sin(bx ) # sin(cx ) # sin(dx ) 2 4 6 3x # 5 x # 7 x

= 8,

then find the value of (a + b + c + d). n

Q.13

x cot x " Let f (x) = Lim . 3n 1 sin 3 n  and g (x) = x  –  4 f (x). Evaluate Lim @1 # g( x ) A x !0 n !$ 3 n *1

I

0   . ln ax + + = 6, then find the value of ln @x ln a A ln. .. ln x ++ /  a  ,

Q.14

If Lim# x !0

Q.15

0 x 0  x  - x Evaluate Lim . " x. + ++ x !$ . e / x # 1 ,  , / 

a.

 Limit, Continuity and Differentiability of Function

[9]

Q.16

0  n  - 0 3nx " 1 . kx + · . +  where n = N, then find the sum of all the solutions of the equation 2 .I nx . + n / k *1  , / 3 # 1 ,+ 2

If f (x) = Lim

n !$

f (x) = x

2

"2

. 2x

Q.17

Let f (x) = Lim

sin

1# x

n !$

(a) Lim x f ( x ) , x !$

Q.18

2n

1 x

#x  then find

2n

(b) Lim f ( x ) , x !1

(c) Lim f ( x ) , x !0

(d) Lim f ( x ) x ! "$

Using Sandwich theorem, evaluate (a)

(b)

0  1 Lim . n !$ . /  n 2 Lim n !$

1 1# n

2

1

# n

+

2

#1

2 2#n

2

1

# n

2

#2

 + ......... +

# ........... #

 + + 2 n # 2n  , 1

n n#n

2



Q.1

Find all possible values of a and b so that f (x) is continuous for all x = R if 

O L f (x) = N L M

| ax # 3 | | 3x # a | b sin 2 x x

if  x 7 "1 if  " 1 > x 7 0

" 2b

cos 2 x " 3

if  x D ?

tan6x

Q.2

if  0 > x > ?

6 @65 Atan5x 4 The function f(x) = 4 b#2 0 a tanx  45 @1# cosx A./  b  ,+

if  0>x> ?2 if  x* ? 2

if 

? >x>? 2

Determine the values of 'a' & 'b' , if f is continuous at x = ? /2.

Q.3

6 f (x) 4 Suppose that f (x) = x 3  –  3x2  –  4x + 12 and h(x) = 4 x " 3 5 K

, x(3 , x*3

  then

(a) find all zeros of f (x) (b) find the value of K that makes h continuous at x = 3 (c) using the value of K found in (b), determine whether h is an even function.

x2

x2

x2

# #............#   and y (x) = Lim y n ( x ) 1 # x 2 (1 # x 2 )2 (1 # x 2 ) n "1 n !$ Discuss the continuity of yn(x) (n = N) and y(x) at x = 0 2

Q.4

Let yn(x) = x  +

Q.5

Find the number of points of discontinuity of the function f(x) = [5x] + {3x} in [0, 5] where [y] and {y} denote largest integer less than or equal to y and fractional part of y respectively.

 Limit, Continuity and Differentiability of Function

  [10]

1 " sin ?x

Q.6

6 Let f(x) = 4 4 5

1 # cos 2?x

1

x>

,

p, 2x " 1 4 # 2x " 1 " 2

x

*

,x

<

2 1 2 . Determine the value of p, if possible, so that the function is 1 2

continuous at x=1/2. Q.7

Let f(x) =

61 # x 43 " x 5

, 07x72 , 2> x7 3

. Determine the form of g(x) = f [f(x)] & hence find the point of 

discontinuity of g, if any. ln cos x

Q.8

Let f(x) =

6 45

1# x

if  x < 0

"1 e sin 4 x " 1 if  x > 0 ln (1 # tan 2 x ) 4

2

Is it possible to define f(0) to make the function continuous at x = 0. If yes what is the value of f(0), if not then indicate the nature of discontinuity.

Q.9

6 @?2 " sin "1 @1 " {x}2 AA· sin "1@1 " {x}A 4 3 2 @{x} " {x} A Let f(x) = 4 ? 4 45 2

for x

(0  where {x} is the fractional part of x.

for x

*0

Consider another function g(x) ; such that g(x) = f(x) for x D 0 = 2 2 f(x) for x < 0 Discuss the continuity of the functions f(x) & g(x) at x = 0. Q.10

Find the number of ordered pair(s) (a, b) for which the function

A

f(x) = sgn ( x 2 " ax # 1) ( bx 2 " 2 bx # 1)  is discontinuous at exactly one point (where a, b are integer). [Note : sgn (x) denotes signum function of x.] Q.11

Let the equations x 3 + 2x 2 + px + q = 0 and x 3 + x 2 + px + r = 0 have two roots in common and the third root of each equation are represented by P  and Q respectively.

O L If f (x) = N L M

e

x log1# x

P#Q

,

a,

"1 > x > 0 x*0

2 ln 0  . e x # PQ x -+ /   , , b

tan x

Q.12

is continuous at x = 0, then find the value of 2(a + b).

0 > x >1

A function f : R ! R is defined as f (x) = Lim n !$

ax

2

# bx # c # e nx 1 # c · e nx

 where f is continuous on R. Find the

values of a, b and c. Q.13

Let g (x) = Lim

x n f ( x ) # h ( x ) # 1

sin (?·2 ) 2

, x ( 1 and g (1) = Lim x !1

@

x

A

 be a continuous function ln sec( ?·2 x ) 2 x # 3x # 3 at x = 1, find the value of 4 g (1) + 2 f (1)  –  h (1). Assume that f (x) and h (x) are continuous at x = 1. n !$

n

 Limit, Continuity and Differentiability of Function

  [11]

Q.14

Let f (x) = Lim n !$

x

2 n "1

# ax 3 # bx 2 . 2n x #1

If f(x) is continuous for all x = R, find the bisector of angle

between the lines 2x + y  –  6 = 0 and 2x  –  4y + 7 = 0 which contains the point (a, b). Q.15

" a tan x f (x) =  for x > 0 tan x " sin x 2 2 ln (1 # x # x ) # ln (1 " x # x ) = for x < 0, if f is continuous at x = 0, find 'a' sec x " cos x 0  x now if g (x) = ln . 2 " + cot(x  a) for x ( a, a(0, a>0. If g is continuous at x=a then show that g(e 1) = /  a a sin x

 – 

 – 

Q.16

Let

O L L L f (x) = N L L L M

cosec x (sin x # cos x ) ;

a 2

3

# ex # e

x

1

ex

2

3

a ex

x

# be

"? 2

 – 

e.

>x>0

; x

*0

;

0> x>

? 2

If f (x) is continuous at x = 0, find the value of a 2 # b 2 . Q.17

Let f (x) = x3  –  x2  –  3x  –  1 and h (x) =

Q.18

O tan[ x ] , La # x L Let f (x) = N3, L 6 x " tan x 3 , Lb # 4 1 3 x 5 2 M

f ( x )

 where h is a rational function such that g( x ) 1 (a) it is continuous every where except when x =  –  1, (b) Lim h ( x ) * $   and (c) Lim h ( x ) * . x !"1 2 x !$ Find Lim @3h ( x ) # f ( x ) " 2g ( x ) A x !0 x0 $

If f (x) is continuous at x = 0 then find the value of

0 a . + I r * 0 / b ,

r

.

[Note: [k] denotes the largest integer less than or equal to k.] Q.19

Q.20 (a) (b)

Let f be a real valued continuous function on R and satisfying f ( – x)  –  f (x) = 0 8 x = R. If f ( –  5) = 5, f ( –  2) = 4, f (3) =  –  2 and f (0) = 0 then find the minimum number of zero's of the equation f(x) = 0. If g : [a, b] onto [a, b] is continuous show that there is some c = [a, b] such that g (c) = c. Let f be continuous on the interval [0, 1] to R such that f (0) = f (1). Prove that there exists a point c in 0 c # 1 60, 1 3 . +  such that f (c) = f 45 2 12 /  2 ,

 Limit, Continuity and Differentiability of Function

  [12]

– Q.1

Discuss the continuity & differentiability of the functions. f (x) = sin x + sinExE, x = R. x

Q.2

If the function f (x) defined as then find the range of n.

Q.3

x !y

6 " 2 for x 7 0 f (x) = 4 5 x n sin 1 for x < 0

1"

is continuous but not derivable at x = 0

x

tan x " tan y

Let g(y) = Lim

2

0   # ..1 " x ++ · tan x tan y y /  y ,

x

 and f(x) = x2. If h(x) = Min. @f ( x ), g( x ) A , find the number

of points where h(x) is non-derivable. Q.4

Let f (0) = 0 and f ' (0) = 1. For a positive integer k, show that 1 0  x 0 x - .. f ( x) # f 0  . + # ......f . + ++  = 1 # 1 # 1 # ...... # 1 x !0 x /  2 3 k  / 2 , / k  , ,

Lim

Q.5

" 0  . 1x # 1x +  , ; x ( 0 , f(0) = 0, test the continuity & differentiability at x = 0. Let f(x) = x e / 

Q.6

If f(x)=Ex " 1E. ( [x] " ["x]) , then find f F(1+) & f F(1-) where [x] denotes greatest integer function.

Q.7

6ax 2 " b 4 "1 If f(x) = 4 45 | x |

Q.8

Let

if  x

>1

if  x

D1

is derivable at x = 1. Find the values of a & b.

6 x # 1 if  x > 0 f(x) = 4| x " 1 | if  x D 0 5

and g(x) =

6x # 1 if  x > 0 4( x " 1)2 if  x D 0 5

If m, n and p are respectively the number of points where the functions f, g and gof are not derivable, find the value of (m + n + p). Q.9

6"1 5x "1

Let f(x) be defined in the interval [ –  2, 2] such that f(x) = 4

,

" 27x70 & , 0>x72

g(x) = f(ExE) + Ef(x)E. Test the differentiability of g(x) in (" 2, 2). Q.10

Examine for continuity & differentiability the points x = 1 & x = 2, the function f defined by

, 07x>2 6 x [x] where [x] = greatest integer less than or equal to x. 5(x " 1) [x] , 2 7 x 7 3 6 2 x " 3 [ x ] for x D 1 Q.11 Discuss the continuity & the derivability in [0 , 2] of f(x) = 4  ? x for x > 1 54sin 2

f(x) = 4

 where [ ] denote greatest integer function . Q.12

Let f (x) = [3 + 4 sin x] (where [ ] denotes the greatest integer function). If sum of all the values of 'x' k ? in [?, 2?] where f (x) fails to be differentiable, is , then find the value of k. 2  Limit, Continuity and Differentiability of Function

  [13]

Q.13

The function f ( x)

6ax( x " 1) # b * 44 x " 1 45 px 2 # qx # 2

when x > 1 when 1 7 x 7 3 when x < 3

Find the values of the constants a, b, p, q so that (i) f(x) is continuous for all x (ii) f ' (1) does not exist Q.14

Let a1 and a2 be two values of a for which f (x) =

(iii) f '(x) is continuous at x = 3

Ox. ln(1 # x ) # ln (1 " x) , L sec x " cos x N LM(a 2 " 3a # 1)x # x 2 ,

x = ( "1,0) x = [0, $)

is differentiable at x = 0, then find the value of (a12 + a22). Q.15

For any real number x, let [x] denote the largest integer less than or equal to x. Let f be a real valued

O" x " [ " x ] function defined on the interval [ –  3, 3] by f (x) = N x " [ x ] M

if  [ x ] is even if  [ x ] is odd .

If L denotes the number of points of discontinuity and M denotes the number of points of non-derivability of f (x), then find (L + M).

61" x 4 Q.16 f(x) = 4 x # 2 45 4 " x

,

( 0 7 x 7 1)

,

( 1> x > 2 )

,

(27 x 7 4)

Discuss the continuity & differentiability of y = f [f(x)] for 0 7 x 7 4. Q.17

Q.18

Let f be a function that is differentiable every where and that has the following properties: (i) f (x + h) = f (x) · f (h) (ii) f (x) > 0 for all real x. (iii) f ' (0) =  –  1 Use the definition of derivative to find f ' (x) in terms of f (x).

6 Consider the function, f (x) = 4 5 (a) (c)

Q.1

Q.2

x 2 cos

?

if  x ( 0

2x

0 if  x * 0 Show that f ' (0) exists and find its value(b) Show that f ' @1 3A  does not exist. For what values of x, f ' (x) fails to exist.

If the function f (x) =

3x



# ax # a # 3  is continuous at x = x2 # x " 2

2

Determine a & b so that f is continuous at x =

 2. Find f ( – 2).

 – 

6 1 " sin 3 x 4 3 cos 2 x 4 ? a  where f(x) = 4 2 4 4 b(1 " sin x ) 4 2 5 @? " 2x A

if  x > if  x if  x

 Limit, Continuity and Differentiability of Function

* <

? 2

? 2

? 2

  [14]

Q.3

(e

6 Let f (x) = 4 45

2x

# 1) " ( x # 1)(ex # e" x ) , x x (e " 1)

k ,

if  x

if  x ( 0

*0

If f (x) is continuous at x = 0 then find the value of k. 1 " cos 4x Q.4

6 If f (x)= 4 a 45

x

if  x > 0

2

if  x * 0 x

16 # x

if  x < 0

"4

Find the value of 'a' if possible so that the function is continuous at x = 0. (x

Q.5

6 If f (x) = 45 k 

2

# 3x " 1) tan x 2 x # 2x

if  x ( 0 if  x

*0

is continuous at x = 0, then find the value of k. Q.6

If  f  and g are continuous functions with f (5) = 5 and Lim @2f ( x ) " g( x ) A  = 6 then find the value of g(5). x !5

sin x # sin 5x

Q.7

f (x) =

if  x ( "

6 cos x # cos 5x 45 k  8

x

if  x * "

? 4 . Find k if f is continuous at x =

?

"? 4

.

4

" 4 x " 2 x # 12

if  x < 0 2 x e x sin x # 4 x # k ln 4, x 7 0

Q.8

6 If f (x) = 4 5

Q.9

6" 4 sin x # cos x 4 If f(x) = 4 a sin x # b 4 cos x # 2 5

is continuous at x = 0 then find the value of k.

7 " ?2 " ?2 > x > ?2 x D ?2

for x for for

is continuous then find a and b.

6 14 @3x 2 # 1A "$ > x 7 1 4 Q.10 Show that the function f(x) = 45 " 4x 1> x > 4 44 " x 47x>$ 5 is continuous at x = 1 and discontinuous at x = 4. Q.11

Let g (x) =

6 45

3x 2

"4

ax # b

x

#1

for x > 1 for x D 1

.

If g (x) is continuous and differentiable for all numbers in its domain then find a and b. Q.12

Let f(x) = | x |3 find whether f "(x) exists 8 real x.

Q.13

Discuss the continuity & differentiability of the functions f (x) = ExE + Ex " 1E + Ex " 2E x = R. Also given an example of the function which is continuous everywhere but not derivable at exactly two points.  Limit, Continuity and Differentiability of Function

  [15]

Q.14

6 1 4 A function f is defined as follows : f(x) = 41# | sin x | 42#@x" ? A2 45 2

for for for

"$>x>0 07 x> ?2 ? 7 x ># $ 2

Discuss the continuity & differentiability at x = 0 & x = ? /2. Q.15

Let g (x) =

6a x # 2 , 0 > x > 2 4b x # 2 , 2 7 x > 5 . If g (x) is derivable on (0, 5), then find (2a + b). 5 – [1 Mark, CBSE 2002]

Q.1

Show that the function f (x) = 2x  –  | x | is continuous at x = 0.

Q.2

Discuss the continuity of f (x) =

Q.3

O x ,x(0 L Discuss the continuity of function f (x) = N | x | #2x 2 , at x = 0. [4 Marks, CBSE 2005] LM2, x*0

Q.4

Find the relationship between a and b so that the function f defined by f (x) =

Q.5

Oax # 1, if  x 7 3 Nbx # 3, if  x < 3 M

O2 x " 1, x > 0 N2 x # 1, x D 0 M

[1 Mark, CBSE 2002]

at x = 0

is continuous at x = 3.

[4 Marks, CBSE 2005, 2011]

Om( x 2 " 2x), x > 0 Find the value of m such that the function f (x) = N xD0 Mcos x,

is continuous at x = 0. [4 Marks, CBSE 2006]

Q.6

Q.7

If

O x 2 " 25 L , f (x) = N x " 5 LMk ,

when x ( 5 when x * 5

[4 Marks, CBSE 2007] If f (x), defined by the following, is continuous at x = 0, find the value of a, b, and c.

f (x) =

Q.8

is continuous at x = 5, find the value of k.

O sin(a # 1) x # sin x L , if  x > 0 x LL c, if  x * 0 . N L x # bx 2 " x L , if  x < 0 32 LM bx

[4 Marks, CBSE 2008]

Show that the function f (x) is defined by

O sin x L x # cos x, x < 0 L x*0 f (x) = N 2, L 4@1 " 1 " x A , x>0 L M x

is continuous at x = 0.

[4 Marks, CBSE 2009]

 Limit, Continuity and Differentiability of Function

  [16]

Q.9

Find all points of discontinuity of f, where f is defined as follows:

OL| x | #3, x 7 "3 f (x) = N " 2x , " 3 > x > 3 LM6x # 2, x D 3 Q.10

[4 Marks, CBSE 2010]

x72 OL5 ; Find the values of a and b such that the function f (x) = Nax # b; 2 > x > 10 LM21; x D 10 [4 Marks, CBSE 2011]

is a continuous function

– Q.1 (a)

The integer n for which Lim

(cos x " 1)(cos x " e x ) xn

x !0

(A) 1

(B) 2

 is a finite non-zero number is

(C) 3

(D) 4

OL tan " x f (x) = N 1 (| x|"1) LM 2 1

(b)

The domain of the derivative of the function (A) R  –  {0}

(c)

(B) R  –  {1}

if | x| < 1 is

(C) R  –  { – 1}

(D) R  –  { – 1, 1}

0  f (1 # x) Let f: R ! R be such that f (1) = 3 and f F(1) = 6. The Limit . + x!0 /   f (1)  , (B) e1/2

(A) 1

(d)

if | x| 7 1

Ox # a f (x) = N M| x " 1|

(C) e2

if x > 0

and

if x D 0

R / x

 equals

(D) e3 [JEE 2002 (screening), 3+3+3]

Ox # 1 g (x) = N 2 M( x " 1 ) # b

if x > 0 if x D 0

Where a and b are non negative real numbers. Determine the composite function gof. If (gof) (x) is continuous for all real x, determine the values of a and b. Further, for these values of a and b, is gof  differentiable at x = 0? Justify your answer. [JEE 2002, 5 out of 60] Q.2 (a)

If Lim x !0 1 (A) n

sin(n x )[(a " n )n x " tan x ] x2 (B) n2 + 1

* 0  (n > 0) then the value of 'a' is equal to 2 n #1 (C)

n

(D) None

(b)

[JEE 2003 (screening)] If a function f : [  – 2a , 2a] ! R is an odd function such that f (x) = f (2a  –  x) for x = [a, 2a] and the left hand derivative at x = a is 0 then find the left hand derivative at x =  –  a. [JEE 2003(Mains) 2 out of 60]

Q.3

62 3 1 0 1 (n # 1) cos " . + " n 1 . Find the value of Lim 4 n !$ 5 ? / n , 2

[ JEE ' 2004, 2 out of 60]

Q.4 (a)

The function given by y = | x | "1  is differentiable for all real numbers except the points (A) {0, 1,  – 1}

(B) ± 1

(C) 1

(D)  –  1 [JEE 2005 (Screening), 3]

 Limit, Continuity and Differentiability of Function

  [17]

(b)

If | f(x1)  –  f(x2) | 7 (x1  –  x2)2, for all x1, x2 = R. Find the equation of tangent to the curve y = f (x) at the point (1, 2). [JEE 2005 (Mains), 2]

Q.5

If f (x) = min. (1, x2, x3), then

[JEE 2006, 5]

(B) f F@x A < 0 , 8 x > 1 (C) f(x) is not differentiable but continuous 8 x=R (D) f(x) is not differentiable for two values of x (A) f (x) is continuous 8 x = R

Q.6

Let g(x) =

( x " 1)

n

ln cos ( x " 1) m

 ; 0 < x < 2, m and n are integers, m ( 0, n > 0 and let p be the left hand

derivative of | x  –  1 | at x = 1. If Lim  g(x) = p, then x !1#

(B) n = 1, m =  – 1

(A) n = 1, m = 1

Q.7

Let L * Lim

a" a

x !0

2

x

"x " 2

x

(A) a = 2

(C) n = 2, m = 2

(D) n > 2, m = n [JEE 2008, 3]

2

4 , a < 0 . If L is finite, then

4

(B) a = 1

(C) L =

1 64

[JEE' 2009,4]

(D) L =

1 32

Q.8 1

(a)

If Lim [1 # x ln (1 # b )] x  = 2b sin2S, b > 0 and S = ( – ?, ?], then the value of S is x !0 2

(A)

(b)

If

C

? 4

O" x " ? , L 2 LL f ( x ) * N" cos x, L Lx " 1, LMln x,

(B)

C

?

(C)

3

7 "?

x

6

(D)

C

? 2

2

>x70 , 71

"? 2

(C) f (x) is differentiable at x = 1 (c)

?

"?

2 0>x x
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF