Lamford Paul - Albin Counter Gambit, 1983-OCR, Batsford, 99p

April 24, 2018 | Author: Gilberto Pérez | Category: Chess Openings, Board Games, Gaming, Traditional Games, Game Theory
Share Embed Donate


Short Description

Descripción: Gambito Albin...

Description

Te me m e R epe epe  Openn r r     y  G Wd c  Wd c  1

Albin Counter-Gami Pau I Lmford

Te i CouerGb

Te i CouerGb

o my  prn  pr n s

E UNA EN PAE S EPE E  F  PEN NGS Si did by G.d E

The Albin Couter-Gambit 1  5 2 c e5!? PUL LFORD

Ts  Lnn

is ublished 98 © aul Lard 98 SB 0 71 00 8(li) h se by Andek inin, Lnd Lndnn and ined in Gea Biain by Billng & Sns Ld, Lndn, Guldd & Wrceser r he ublshers BTBasrd Ld,  izhadine See, Lnd Lndn n W l H A

A BASR CESS B Adiser: RGWade Technical Editor ALamrd

 ontents  onte nts Acnlgmnts rc Bibligy  ntrctin n Lyt 2 Erly Dvrgnes  Sssys      & iscllns t vs    b2 b 2 g g    b2 b 2 f 7  b2 b 2 trs t rs   g g   g e I O  g trs ne f Vritns   Cmlt Ges Sybls

VI v Vlll  1 22 35



49 7 8 79 84

7 88

Acknowledgments Frs n rmst I l l  l t rss my gri gri t Bb W, s lbry, lbry, sly sly  vc rv invlbl n ring is b.  m ls ls  gr grf fl l  G Ry Ry Kn r lfl lfl sggs sggs ns ns,, n  tr ling lyrs, g Dvs, Kn rmn, An L n lcm n,  sss t nlyss. tlas n Frncis nsns Le Gambit Albin Bb Lngs Chess A tlas ls rv sfl mrl, il Grm lyr srvs ns r rcing sc clln rfs rfs

T Abn Cntr-Gmbt , I 4  2 c4 , s  sr ry tmt t rst t nttv m Wt yrs nfmr t t  n cty ng cntr f t gm stns cn bcm trmy cm, rtcry n ts ns nvvng csng n st ss n c W tcs t  n b4  Bc cntrs t     n  4 s t Abn sn y rsrc  m t nrs f gzns, trnmnt bs n btns  fn Bc scrng bt 4%,  rsctb rst n cmrsn t tr qns nngs Wc vrtn s n y s n bvs qstn T tr strngy rcmmns, fr  g, t ns ng m  crrny r    (Ctr 9) An ftr  b2, I  s t     , tr cvr tn Ctr 7 r trnssng fr  g nt Ctr 9 gn f crs  rr  n t n mr, r m Sssys 4 4 (Ctr ) T  ntrcn s sgn t  rv n vr ctr ft ns r bt ss  Lmr Lnn, Ar 98

Bibliraphy The ow pubatos were o partuar use  wt th s boo Books S oasso Shaakbuetes ambt-Sere, Abins Mogmbi Uppsaa 170) eto Lpez saoa Rardo uera, Conrgmbios adrd 7) Counergmbis TDHad rtsh Chess aaze 1974) El Conrgmbio Albin Eduardo  arhsott dtora rabo ueos es 0) Encyclopei of Chess Openings D0809 atao e l Tatsd/Sahos rmator, Lodo 17) Peodas Briish Chess gzine Chess Als (S) Chess e The Chess Plyer 1  ad The New Chess Plyer 1 9 Cueos oricos e l reis Ajerez 9 eschh Le Gambi Albin Mgyr Skkele Shoski Informor Shakhmny Byulletin Shakhmny isok Shakhmny  SSSR Wiener Schchzeiung (1924

Ioucion  Lyout to te Qee ambt wa t metoed b Poeo a o ao a te ed o te tee et a ame wth  e dd ot mae a aeaae t a ate a 1    Sao Caaott at a we te t ame betee wo mate oed we do b aed t aat ae  ew o 13 b w a bo  haret  17 bt ate moed to ta   Vea  e jourat b oeo, e aeed h bet et at ew o 13, om eod to ae ahead o Pb ad Sowate e teo o e oe wa t  a embo tae how ee ad ee ataower ad aa ate made at otbto to t deeomet, ee  ataowe dd ae ome date wt te e  d d 2  e 3 de d    uoa admate o ot ad te Soet admate ea aed the oe equety, we the oeodee mate D aoh wa a e epoet  te moder aer Forto,

pe ad ooz ae otbted ew ad tee dea te 1 d d 2  e te oma moe  3 de 

ot o the ateate deat wth  Chapte 2 aow eay eqat 3 d 3    d, whh ead to a eor ed or a  ao oeed  Chate 2   e mpotat ateate  e whh  the bjet o Cate 3 ha bee tred o a mbe o oao b Spa Howeer uret th eo  that a et a

2 nrouion n Lyou

ood ae ate 4  .    4 b bot  . . .  or  .  .  . e poto beow ater 19 .. e  Spa-Luto 3 l t USSR C 193  a eaple o t oet teae o ak.

a a a ea adtae beaue ee tou te eta paw  o too at te poeo o e two bop a wel ae te tak er du. Spa maaed to daw ee p 20) but la ould ae ade oe o  e     e ot requetl paed epl; ataower 4 ...   a uatto aterate beaue la paw ete  to d ad   oba te bee a b ude t wt e3. e dara beow e a tpa poto.  aoe aer 1 4  aa-artaower e 1920 ee p 1 3). e eane o te epaw r Bla d-paw a aetuated te wea-

ee aroud a  a atepted to eee te preue b 1 .  . d 7  b 1 d d but ow 19 d2 owed b e4 would ae e te a w atta. 4

:

w • i  .  -�- . . •  D . - • • •  .l. T  te ba poto o te lb ot de ae a paw wede   te oppoet poto but te  a pa u.  true uual ete aroud tee paw ad te ba tratee a be uared a low:

Pans  Whe  o pa 3 2 ad 0-0 lowed b epao o te queede wt a3 ad b4 o a

Inroucon an ayou  

i  9 • h poto wa reahed  PoayeyVayo ater 12 d 1 ee p  ) a ha payed e7 threae to trap the qee wth    b but Pouayey preeed th by pay  a a o o ter pay o  the h-e ad he w nd t dt to rea the e pawn  addton h ow d4 pa  wea and the bet a oud nd wa to reah a poor end ater 12  3 13 e e 14  d7 d7 whh h e aaed to draw but the open wa eary nattory 2  pan non  bd2 a3 b4 ad b2 baed up by b3  eeay he preure on the d4 pawn w ote re la  to e p oe or both bhop e he et ounterpay ether aant the 4 paw or don the h-e wth    h  and    h4 h poton wa reahed n Fe-dam US Ch 144 a

--

ha preatey e p he two bhop  ode to ea h epaw he  bette deeoped ad ate 10   e7 1 1 000 0-00 12 4   1 3 3  14 b  b 1 h3 the hop beae ery ro ad Fne wet on o w a pree ame ee p 2) 3  eay e3 qdat the ee uay wth a peparatory a3 to preent  b4+ h w ay reut n an ehae o qee ad the dara beow trate a ypa ed whh oud are

·�· •  B B: R

aaoea USSR Ch 1 4 reahed th poton ee p 2) la ha wated te wth   

4 Introduction and Layout

h6 and .   a6 and conceded the two bishops He wil stil have troube in winning the e-pawn and Wie can consolidate his advantge by c4 folowed by e2. 4. Finaly, a more recent pan of deaying  bd2 and co mpeting the ingside deveopment. White can then play 'b3 which wil indiectly protect he e-pawn because of the pressure against b7.

 s

BB  BB� D  -BlD BB � t1 m

This posiion was reaced in KorchnoiVeinger, Beersheva 1978, after 9 :d   The threat of  xd4 practicaly rces Bac to give up the two bishops, but fte 9 . xf3 I O xf3 g6    5 b8 2 f4 Bac was unabe to regai his pawn (see p. 66) Plans fr Blck

To pay ... e6 or . g4 owed by .. 'd7 and .. 0-0-0 and then to attac don h -fe with . h5 and .. 3 or . 4. · The pay becoes extremey sharp nd hite wi eiter pay 3 or b4 to attac on the queensde or 1

pay h4 attack 9

to

hold

up

Blacs

BB  B  B� D B 'B-lD .

This wid position ws eached in VladimirovVofson, Trud Ch 969. Bac correctly sacriced materia with 1 1    hg  2 xb4 xb4 13 xb4 h3 with a dangerous attac (see p 6 1 ) 2. To regain the pawn with  ge7-g6 or .. e7 This wold give Bac a fine position if i coud be achieved without Whie winning the dpawn, bu Blac usualy has to give up the wo bisops wih . xf3 to achieve this Te position beow iustraes Bc avoiding suc concessions

/

Introuction and Layout

la's pressure aast e2 ad hs oro of e4 ma e t dful t r Whe to brea throuh o he queesde Portsh-Fortos, Huara Ch  4 otued 4 b4  e4  5   e 1 f5 1  �d3 �f th a sats t ory posto fr la ad he eetualy o (see p. 3 8).

To sarfe a pa th  f ad a ate play o the e- ad ffles  Whte a usual ly osoldate aast a early  f ad a eeds to hae oher hreats 3

5

a has opeed les aas her fter 15 5 he8  �2 5 7  5 �4 8 �d2 h    , a broe ope the posto th   d3 h rush ee Fally, a ofte m eets 4. a3 th  a5, resra Whe's queesde epaso He m us be prepared to aste sde i eessary but l d t easer to rea the e5 pa beause he a defed hs d4 pa th  5 12

B R . . R . • . -� �

�- R R

D R DlD

Ths posto as reahed  Yufero-Kupreh yelorussan Ch 2 (see p 5) Whe has sed tme th hs qeen and

From the daram la as abe to reah a satstory ed  Nolayesy-erste, Urae 95 afer   de 0 �d+ d   e3  xe5  2  e5  e5  He has reaned hs pa hou oedn any eaesses (see p 25)

Early Divergences I 2

4 c4

S es

hie has a oupe o was o deie he ambit ad h ere are a arie o odds ad eds whh do o ow he orma sequee 3 de d4 4   e eamie  3 e3  3 3 C 3 de 3 d d 4 e3 did o proe trobesome  ak aer 4    ed  d4 d4  ed   7 e3     3 b4  d3 00 1 0 e2 4 1 1 3 e 1 2 2 e 1 3 0-0 e7 with a omorabe ame in ot Rojah, osow 01 1 A 

e (1)



Aterates ae

ed

a)  ...  4 4 ed  ed rasposes io a ariaio  he Freh Dee orma reahed b  e4 e 2 d4 d 3 ed ed 4 4 d  4 b) 3 .   proed suess i Pisbur-Eer, bidd ame, Haoer 102, aer 4 de d  a4  d+ t)   d  4 4 7 4 e  Je2   3 0-0-0 with a ood positio or ak )  ... e4?! 4 d d  e2   b 3 b4 7 d2  3  3 ± ak has ost ime with hi quee ad his e-paw is weak 4

e

4 d4 proed a oss o ime ate  4    3    d   7  b4  a4+ d7  d7+ @d7 wth a wii edi r ak  ame Dode Hohtei Chiao 10, ow ouded amusi  0 e4 de 1 1  e4  2  b  2+ 1 3 @d  +  4 e2  1  3 d3+ 1 @d2 e3 mae  4    4    e is aso possibe :   3   d  d 7 3 e7  e2 0-0  00 d7 O d  d 1 1

Early Divergences 7

 Ie8 12 �2 6 13 I ad 8   b3 e6 15 e5 6 16 g b(?) 1 7 d3 8 18 h g6 1 9  a5 20  5 g5 2 1 3 b6 22 'h h6 23 ? �d7? 2 Ie and YY 2, after urther erros, Rubinsein-Levtsk, iev 190. e7 5  5 ... 6   s aso playabe, and now: a) 6 ...   7 d3 0-0 8 00 d 9 x bd7  0 Ie 1  b6 1 1 b3 bd 12 d2 e6 13 I Ie8  a d7  5 h3 I8  6 2 g 6 7 a3 (ahdan-Maroz, Bled 1 93 1) and now 17 ... 6 wold have given Bak a satistor position. b) 6 ... b4?! is too ambitios. ter 7 a x3+ 8 b �a 9 d! 0-0 (9 .. . �x3+? 10 d2 �b2   Ib  �a2  2 �e2 e6 1  Ix7  9 . . . xd !?) 0 d2 ; Aloni Heidenfed, Netana 1961 (-0, 27). ) 6 ... e6! and if 7  a! = Tartakowe. 6   The atemp to ndermne the d sqare by 6 cd xd 7 c is not dangeos r Bak: a) 7 .. . lb6?! 8  b3  6 9 e 00 0 ge2  1  00 a5  2 2 �d7 1 xf5 �x5 1 g �g6 5 � Ic8 6 Ia 5 7 b ! ± Tatakower-Baogh, Baeld 96. b) 7 ...  s a beter retreat. Afer

8 3 0-0 9 e5 (avoding ... g; 9 3 ? atang f 9 . . . 6 1 0 x6 b 1 1 00 Ib8 12 h3 (2 b3 e6 13 e3 was beter) 12 ... d5, Bak has suiient ompensation r his pawn weaknesses ter 3 xd5 d 1 b3 e6 1 5 e3? ( 1 5  d6 = ) 1 5 . . . d6  6 Ia �h 17 �f 'h8! Blak stood well in Walter-osti, Trenianske Teplice 926 14

B

.,•

.

6 7



0-0 e2

nothe idea is 7 d xd5 8 e2 6 9 00 6 10 e e7 1 1 e5 db4 2 x6 x6 1 3 d5 b 1 c 5 1 5 �f3 (Tekav-Kosti, goslav C 196) and now 15 ... d7! wod have given Black a saistor posiion. 7 s

e6

 So r arash-lekhne, St Petersbrg 1 9  , whih ontined 9 0-0 c6 10 e3 b   I  d 12 xc  13 3 bd5 1 tgS!?

8 Early Divergences

      b d6 1 6  1   Jf  d   3 a =  Y  Y  6) B 3 l c3 (1)

Ts qt o aos a to iqdate t entr and ra at east eqat 3  .  d     b? s an nfror atp t to opat t a  a +  b d (   e? 6   f6  d d  2 ± anGrrero San Sbastan 199) 6  6   d     9  2 d   0-0  f6   a   e 1 2 a 6 1  3 t a strong attak r te pans QuillenCro Los Angees 96 \d4 4 l c6 ie6 5 \xdS 6 'JbS  xd8+? xd  e3 b is inning r lak 6 6  . . 7 'J4   b?  d s er stron ib4 7   

rss o b    aso es a ood pa aftr   f6 9  f 0-0 1 0 d2  6  1 d    t or tan no for t pan sr oze orres 191 8 d2 trnaes are a) 8 e3  is ood r a MarsaDras Carsbad 190 b) 8 a3 oss to      b  9 b  d 0 ba+ 6 xc4 (16) 8 .  

a as rand s pan i a n poston ar res Estonan Corres C 9-2 on tnued 9 a b 0 2  d  1 +  1 2    1    l  6  b  d    d d  6       e 0-0     d 9 dl f6 20   21 b d ! 22 e + 23 d 2 d 2   x+ 2 d2 e+ 0 c

3 de (17) The norma o   pad in oer 9% o a lbins

Early Diergences 9

d  Th oa rp tabhn a pan d n  poton a t o dadanta n th nda aft    d  d+ d and ow: a) 5    6 (   6 - Hoon) 6 +   00-0+ d  f a6  d (ntnd 10 6 f 1 1  7)     10   b 1 1  b (     t±) 12 b b 1  6 f 1    ( 10, 26) ilsbr-Me, ont Caro 10 b) 5 + 7 6 7+  7 as a  prob ftr 7 a 6   f 6   6 1 0 4        2 2  1       hd l +  1    1 6 d2 b 6  ad  e7 th dra a ard n Ats-M, Hanor 102  5  e! 6   d7 7 f b4+      0-0-0 6 0 d b  1  2   Grtz eisha, Hanor 102 ) 5  b+ 6 d2 6   4  b4  b   a  ohr lv, USSR Ch 1

No Wh ha: C   C2  a C   ! or Spa    Chaptr  Tr atrnati whh ar n  trob to t ar a )   f?!   d2 6 6    2 6   h6    f+ 0 f   Wnr n, Gronnn 1 b)    d2 6   f  6 b d   a a  a    d  1 0  1 f   f   2 2     b 6+ 1     1 f + 16 fl d  Do-Cad arona 1 )   f?! 7    6 d b6 7 a   f f  f  1 0  6 1 1 6 6 12  7   bd2 1  2     00  d+ 1 6 d 0-0 1  h h   df b ih a tron atta r a N-ar, orre 16 (0  , 2) C   ? (

 t eem rpriing tat ti moe a acired a ir bo o teor particar a it core o 0- doe noting to inpire Wite to pa te line! +  5  5   i ao terribe r Wite ater     de 6  + 7 g e   e 9 a d2+ 0 @d2 6  Garridoiaz arcena Marianao 96   @ e c6 6 d  d+ 7 @e   de 5 6 +  6  e+  @e2 g  + (0 l orodaog  9 ) Wite trgged on b  @e + 9 @d2 c6  0 c g 0  in ieerCaid nior Word C 199 6 e i reatie be t t ater 6  +  g e   d2+ 9  d2 e ac a a  ge adantage Wite e-pan  cronica ea  6 ! 6 Te impet 6  d! 7 b  c6  c ed+ 9  d2  0  0-00   0-0-0 g  2 e2  6   d (    r   @b l ere better)       b 1 b  d!  a plaed in Riero erret Genti, Venezela 90 a til on in  7 mo bt te tet i mc tronger 7  e

Ti in b orce 7     ao eae ite in a terrible poition ater  e2 + 9 @ l g al & Boyaro  Lar Moco (contation game 99, contined 0 c 0-0-0+   d6 cd 2 e6 e   @c   6  b d   b e 6 cd  d  7 c2  b   d l +  c2 l 9   d2 0 Ti a te game ic caed  e to be  non a Laer trap 8 @ + 19 19

:

-�- .

. . � . • • • •   9 @e d+  0 @ g+   @g  6 1 2   +   @2 + a te pniment meted ot in Lineeberg Mam 9  ' d4+ 10 @ 0 Reign a preerred in Edard-Wittaer ennania 92 10 + 11    2  g b2  a g 0- etro antalee garia 97

ivrgns

C 

 (20)

Ti o wa rt anad n uss onsa in 99 t wi probab tranpo to Captr , ar , bt a a ndpndnt nian 4   c6 ot awa pad bt    , att ptin to obtain a  or orab in tan Tartakor    (ar C3), i alo pobl tr  3 6 6 d d  3   d3 6 9 2   0 d d   00   2  6  3  6  'd3 6  d2  6 3 t poition ord an r bot id in oaroSolo, Moso 90 5 e3 5 f3! tranpo to Captr  ar  (p 22) 5 f4?! 6 6  i orabitio : 6    6      '+ 9 d2 ' 0 3! b4+! 0 HSarrCGSarr, Sdn 939

5 ge7 T att da trnati ar ao atitor 6  d  'd+ a) 5 d  3  9 3 6 0 2 a6 = (ak wi oo rgain t pawn) Conol, Mnich 900 b)  ... ic5!? 6 b b!  ab b  d2 d 9 f '+ 0 3 '   3 ' 2 a2 d2+ 3 d2   2 d  2 00 6 00 6  ' '  6 6 9 '3 ' 20 ' '   EiotMaral, itano 9 ) 5 .. 5 6    2 ( d d  2 6 9 d 'd      00 ( d d 9  3+! 0 3 'd l +   d 6  2 00 d    6 9 d d 0 3 00 it a ood gam  or a  anai b ardlbn m utshs onsa.

6 7 8

 .g4  e2 f5 e4?! (21

1 arly Diergences

8 xd xe 9 x xd 0 ed xd   d  = - oi 3!  8 9 xd (9 e de 0 xd8 xd8  IO xe d   Bo) 9  x I O   ( I O x xe  IO   xe   0-0     e      x   x x   x x  e ( d as beer)   d 7 ? x  (0-, 9) To-Peovi, oslavia 97 o a vey onvinin ae, b it did lstrae a Ba as non o ear in e  a line and Wie as o lay araely o old e balane 3 cS?! ( 4 

araoes ove, i i e ad ile sess Bas osion beoes oo sai and an easiy be ndeind by e Te noa ove,   , is oveed in Caes - O    b is e only oe ove o ave been ed Aer 

d ( d!?)       xb xb 7 a oos     7  e7 8 0-0 0-0  Ede-Svensson, Woens  ai 97 5 3 c6 6  6 3  7 d as a  K-Ba, Wes Gea 9 o 7  d o ansose o no d) o Bas 7 belo,  a ed   x? 8 x   xd 9 0-0 0-0-0 0 d xe    7    xd  xd x  d7 b      a a  7 d  6 e2 as reoended  Laser in De Telegraaf in 90, and i     e 7 7 00  8 e  e7 9 a xe O xe xe 1 ed d  b ± 6 c 7  3 7 (  Alernaivs are no bee a) 7  eS? 8 e  9  9 xe a IO d  is even sroner) 9  d O bd e   xe e  0-0      b ± Pone-ras Carsbad 907 b) 7  cS 8 0-0 e 9 a a  bd 00   !    xe  x  xd   e   xd x      e  8   en  o bisos ave la o saton r e exane b 

ivegences

vntly ls in Dsiisky Trtkr Crlsbd  9   . c 7   d2 g7 9 00 g  0 xb4 xb4   xg hg 2 xd4 h4  3  xc4 4 bd2 ±  Bgljb. d 7   0-0 ( f4 is ls strn:  ... c7 9 g3 0-0-0 0 0-0  h    bd2 5  2 xf5 xf5  3 3 d3 4 b4 d4  5 xd4 d4  4 b Tkcs Trtkr Vin 922 nd  7 c5 ±) 8 . . .  9 h3 x3 O xf3  xe5? ( 0 .. . 0-0-0     :)   l d6 (   .. . 0-0-0 2 x5 x5 3 5+ b 4 f4 n 2 f4 7  x 5 x5 1 3  5 5 f6  c 5 I 7 b 7 0-0  b  ± rfeld-Trtkwr Crlsbd 12 0 29). ..

..

 n n hle I 2 ...  (if I 2 .. . x 3 xg hg I4 x 3 4 ! gx5 (if I 3 . . . 7 I 4 d5  xd5  5 cd cx5   x5  x5 I 7 f3 xf I  xf3 ± Trtkr  4 x5 x5 { 4 . . . x5  5 xb7 xb7   xb7 xb7 7 x5 ± - Bgljb) 5 f c5   4 d  7 Jxc b   xd xd 9 5? (  9 d2  b 2 3 c5 2  5 c 22 4 d hve givn Whit  winnng ttck  rrh)  9 . . . hd? (  9 .. . b6 2  5 2  d3 c 22   b7   Trrsch) 2 4 ± Trrsch Trtkr Brlin 92. 8  Als indet is  ... g4 9 el   0 h3 ± RtiTrtkr Amstrd 920. 9 h     0-0  1 bd2 b4 2  xd2 3 xd2 e 4 c2 6  b4 d7  dl ± inig Strk Est Germn Ch 97  -0 2. Whit rtind th xtr n nd h t bishps.

Conclusion

8

0-0

 bd2 is ls d fr Whit:  . . . g4 9 b3 7  0 0-0 0-0-0  I  I g I2 h3 (  2 xg ks th n bt givs Blck mnstin in tw bishs nd

3 3 ll Bck sy qlity hil 3 c3 y giv Blck vn mr ith  rmising n scric in vriin B. Afr  l cntin tin 3 d d 4 t bl ndr 4 3? prciclly

 lss by r hi 4 3 is inns. Whit shld ly 4  hn Trtrs 4  lls Bls ntr t b

ndrmind ith  d m r hit. Bl shld ly 4 .. 6 hih    rs trnsss t ltr htrs.

Spassk y's 4 e 4 1 2  4

d4 

4 de e4 (

dS S d4 

Althgh this mv s lyd in th irst rcrdd Albin in ln , it s Sssy h dmnstrtd th ttcng ssi bilitis bhind th mv in gms gnst ins nd Blyvsy. vr Blc hs svl lins hich gv him gd cnrly nd th vritin n hs   rtin rm th digrm  cnsidr: A 4  c B 4  ? 4    c  ?  4  s rid in BgrKrjci, Vinn 907, hch c ntind    x 7 d3 c  3  9 3 00 IO 00 

   g4 2  I   3 x d3+ 4
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF