Laboratorio de Masa-resorte
Short Description
Download Laboratorio de Masa-resorte...
Description
¿QUE MAGNITUDES INFLUYEN SOBRE EL PERIODO DE UN OSCILADOR DE MUELLE? Ana Corena , Ana Ana Lopez, Claudia Anicharico, Elber Elber Roa, Cristian Correa Correa Departamento De Ingenierías, Programa Programa Ingeniería De Sistemas Sistemas Universidad De Córdoba
Resumen El objetivo principal de esta práctica es establecer la proporción entre el periodo, la masa y la constante elástica que son las tres magnitudes que influyen directamente sobre el periodo de oscilación de un muelle; también aprender a solucionar problemas de la vida cotidiana donde se requiera encontrar el periodo de un oscilador dependiendo de masas o constantes de elasticidad diferentes. Esta práctica se realiza con dos muelles diferentes uno de 3N/m y el otro de 20N/m en donde su periodo de oscilación varía dependiendo de la masa y de la constante elástica. Comportamiento de los muelles, con diferentes valores x.
1. TEORÍA RELACIONADA Movimiento armónico simple: Un tipo de corriente y muy importante de movimiento oscilatorio
es
el
movimiento
armónico
simple, tal como el de un cuerpo unido a un muelle, como puede verse en la figura siguiente:
¿QUE MAGNITUDES INFLUYEN SOBRE EL PERIODO DE UN OSCILADOR DE MUELLE? En el equilibrio, el muelle no ejerce ninguna
objeto se moverá con movimiento armónico
fuerza sobre el cuerpo. Cuando este se ve
simple.
desplazado en una cantidad X de su posición de equilibrio, el muelle ejerce una fuerza –kx,
para
que viene dada por la ley de Hooke:
característica de su rigidez. El signo menos se
trata
una
oscilación
completa
denomina periodo T. El reciproco es la
En donde k es la constante del muelle, que
realizar
alrededor de su posición de equilibrio se
significa
El tiempo que emplea el objeto desplazado
de
una
frecuencia
,
que
es
el
número
de
oscilaciones por segundo:
fuerza
restauradora; es decir, se opone a la dirección del desplazamiento. Combinando la ecuación con la segunda ley de newton se tiene
Es decir,
La unidad de frecuencia es el reciproco del
segundo
que recibe el nombre Hertz
(Hz). Por ejemplo, si el tiempo necesario para una oscilación completa es de 0,25 segundos, la frecuencia es de 4Hz. Otra forma de describir el movimiento, a partir de la formula de frecuencia podemos encontrar la formula de frecuencia angular
La
aceleración
es
(w) así pues tenemos:
proporcional
al
Al reacomodar la ecuación resulta
desplazamiento y tiene sentido contrario.
Esto constituye una característica general del movimiento armónico simple y, de hecho puede utilizarse para identificar sistemas que presentan esta clase de movimientos. Siempre que la aceleración de un objeto es
También podemos expresar el periodo y la
proporcional a su desplazamiento, pero con
frecuencia del movimiento para el sistema
sentido opuesto, el objeto se mueve con
formado por la partícula y el resorte, en
movimiento armónico simple.
términos de
Como la aceleración es proporcional a la
las características m y k del
sistema como
fuerza neta, siempre que la fuerza neta sobre el
objeto
es
proporcional
a
su
desplazamiento y con sentido opuesto, el
√
¿QUE MAGNITUDES INFLUYEN SOBRE EL PERIODO DE UN OSCILADOR DE MUELLE? Hacemos oscilar el sistema:
Muelle vertical
Definimos:
Ecuación diferencial de un M.A.S
√ √ →
;
El único efecto de m es desplazar la posición de equilibrio. La fuerza que ejerce un muelle al objeto a que está unido viene dada por:
()
Posición de equilibrio con la
K= constante del muelle N/m.
masa m. el muelle se alarga la
/
longitud
Importante resaltar que el signo (-) indica El objeto oscila alrededor de
que la fuerza se opone a la deformación del
la posición de equilibrio con
muelle, es decir el muelle ejerce una fuerza
un desplazamiento
cuyo sentido es tal que intenta re cuperar su
longitud de equilibrio. El módulo de la fuerza
no es constante.
¿QUE MAGNITUDES INFLUYEN SOBRE EL PERIODO DE UN OSCILADOR DE MUELLE? En la siguiente tabla se representan los valores obtenidos en el experimento donde se midieron las 10 oscilaciones con el muelle de 3N/m.
m/g
Grafica de la fuerza ejercida a un
t/s
2
2
T/s
T /s
20 4.75
0.475
0.22
40 7.39
0.739
0.54
60 8.62
0.862
0.74
80 10.50
1.05
1.10
100 11.51
1.15
1.32
Figura 1.
muelle horizontal.
En la siguiente tabla se representan los valores obtenidos en el experimento donde se midieron las
2. Montaje y procedimiento.
10 oscilaciones con el muelle de 20N/m.
La práctica se realizo en dos pasos:
En el paso 1 se cuelgo el
T/s
2 2 T /S
40 2.80
0.28
0.078
masas m de 20, 40, 60, 80 y
60 2.95
0.29
0.087
100g (incluido el platillo); se
80 3.92
0.39
0.15
calculó con el cronometro el
100 4.35
0.43
0.18
tiempo necesario t para 10
120 4.57
0.45
0.20
oscilaciones con cada una de
140 5.06
0.50
0.25
m/g
muelle 3N/m del orificio del pasador, y se cargo con
las masas.
t/s
Figura 2.
En el segundo paso se realizo de nuevo las
4. CUESTIONARIO
mediciones descritas en el paso 1 con el muelle de 20N/m, pero con masas de 40, 60, hasta 140g y se llevan
1. Calcule a partir del valor t de 10
los valores obtenidos a la
oscilaciones el periodo T de una oscilación
tabla 2.
y anótalo en la tabla.
3. RESULTADOS Resultados del paso 1.
R/ Calculo del periodo de una oscilación con el muelle de 3N/m.
¿QUE MAGNITUDES INFLUYEN SOBRE EL PERIODO DE UN OSCILADOR DE MUELLE?
m/g
t/s
T(1)
20
4.75
0.475
40
7.39
0.739
60
8.62
0.862
80
10.50
1.05
100
11.51
1.15
R/
Calculo
del
periodo
de
una
oscilación con el muelle de 20N/m
m/g
t/s
0.28
60 2.95
0.295
80 3.92
0.392
100 4.35
0.435
120 4.57
0.457
140 5.06
0.506
2 2 T /S
T(1)
40 2.80
0.28
0.078
0.28
60 2.95
0.29
0.087
0.295
80 3.92
0.39
0.15
0.392
100 4.35
0.43
0.18
0.435
120 4.57
0.45
0.20
0.457
140 5.06
0.50
0.25
0.506
t/s
Muelle de 20 N/m
3.
T(1)
40 2.80
T/s2
m/g
Has con los valores de las dos tablas a un diagrama, T en función de la masa m y del parámetro K, la constante elástica de los dos muelles. K= 3 N/m
PERIODO EN FUNCION DE LA MASA 1,2 1,1
2.
2
Halle el cuadro de T, y anota T en la
1,0
tabla.
0,9
T/S
Muelle de 3N/m
0,8 0,7 0,6 0,5
m/g
t/s
2
2
0,4
T/s2
T /s
20 4.75
0.475
0.22
0.475
40 7.39
0.739
0.54
0.739
60 8.62
0.862
0.74
0.862
1.10
1.05
80 10.50 1.05 100 11.51 1.15
1.32
T(1)
1.15
20
40
60
80
100
m/g
K= 20N/m
PERIODO EN FUNCION DE LA MASA 0,50
0,45
0,40
T/S 0,35
0,30
0,25 40
60
80
100
m/g
120
140
¿QUE MAGNITUDES INFLUYEN SOBRE EL PERIODO DE UN OSCILADOR DE MUELLE? Que enunciado puedes hacer sobre
5. Define la proporcionalidad entre las tres magnitudes T, m y k.
la influencia de m y k sobre el periodo. R/ Podemos decir que al tomar k como una constante, la variación de la masa es la que
R/
influye directamente en el aumento o disminución del periodo. 2 4. Haz un diagrama, T en una función de la
masa m, con K como parámetros.
√
Por lo tanto podemos afirmar que el 2
cuadrado del periodo (t ) es directamente proporcional a la masa (m) e inversamente
Muelle de 3 N/m
proporcional a la constante de elasticidad (K).
2
T en funcion de m 1,4
ANALISIS Y CONCLUSIONES
1,2
1,0
Después de ver realizado la practica nos 2
2
0,8
T /S
podemos dar cuenta de la estrecha relación 0,6
que existe entre periodo, la masa y la
0,4
constante elástica, ya que si nos damos
0,2
cuenta de los datos reflejados en la grafica 20
40
60
80
100
nos indican que es una recta (Directamente
m/g
proporcional m con T), todo esto se debe a la proporcionalidad que existe entre el periodo
T2 en función de m
y la masa. Muelle de 20N/m También nos podemos afirmar que la constante de elasticidad k es inversamente 2
0,26
T en funcion de m
proporcional al periodo (T/s) que el muelle
0,24
realizó.
0,22 0,20
que el movimiento de masa-resorte es
0,18 2
2
T /S
En conclusión podemos constatar
periódico y armónico simple.
0,16 0,14 0,12
REFERENCIAS
0,10 0,08
0,06 40
60
80
100
120
140
m/g
Que influencia tiene K sobre T
R/ Entre mas grande sea el valor de k, el periodo
disminuye,
es
decir
que
es
inversamente proporcional k con el valor de m y la frecuencia aumenta.
R. Serway, 5ed., Tomo I, editorial McGraw-Hill / Interamericana Editores, S.A. DE C.V. PAG. 457
View more...
Comments