Laboratorio de Física #09
Short Description
movimiento armónico...
Description
DEPART DEPARTAMENTO AMENTO DE MA M ATEMÁTICA Y FÍSICA FÍSIC A – INGENIERÍA ING ENIERÍA CIVIL CI VIL
MOVIMIENTO ARMÓNICO ARMÓNICO : 1.- FUNDAM FUNDAMENT ENTO O TEÓRICO TEÓRICO : 1.- Péndu Péndu!! S"#$ S"#$%% : Llamamos péndulo simple a un ente ideal constituido por una masa puntual suspendido de un hilo inextensible y sin peso, capaz de oscilar libremente en el vacío y sin rozamiento . Al separar la masa de su posición de equilibrio, oscila a ambos lados de dicha posición, realizando un movimiento armónico simple. En la posición de uno de los extremos se produce un equilibrio de fuerzas, se!n observamos en el r"fico#
A &!n'"nu(&")n &!n'"nu(&")n d%#!*'+(+%#!* ( ,)+#u( d% $%+!d! : E $%*! d% ( !( *% d%*&!#$!n% %n d!* &!#$!n%n'%*: un( $+"#%+( &!#$!n%n'% /u% *% %/u""+( &!n ( '%n*")n d% 0"! d% #(n%+( /u%:
L( *%2und( &!#$!n%n'% $%+$%nd"&u(+ $%+$%nd"&u(+ ( ( (n'%+"!+ %* ( /u% !+"2"n( % #!3"#"%n'! !*&"(n'%:
$in embaro, para oscilaciones de valores de "nulos peque%os, se cumple# .
FÍSICA I 4FS - 1567 – SEMESTRE 6889 II
DEPART DEPARTAMENTO AMENTO DE MA M ATEMÁTICA Y FÍSICA FÍSIC A – INGENIERÍA ING ENIERÍA CIVIL CI VIL
P!+ &!n*"2u"%n'% $!d+%#!* %*&+""+ %*&+""+ '%n"%nd! %n &u%n'( % 3(!+ d% *%n! d% n2u!:
S% !*%+3( /u% ( ,u%+;( +%&u$%+(d!+( + %&u$%+(d!+( /u% 0(&% !*&"(+ ( $éndu! %* ,un&")n d% ( %!n2(&")n 4n"&(#%n'% d% ( !n2"'ud d% $éndu! = d% ( (&%%+(&")n d% ( 2+(3%d(d. T(#"én *% *(% /u% % $%+"!d! d% un $éndu! 3(+( &!n +%*$%&'! ( ( (#$"'ud &u(nd! *% '+((( &!n n2u!* #u= $%/u%!* % $%+"!d! 3(+( #u= $!&! %*'! ,*"&(#%n'% %* &!n!&"d! &!#! ( %= d% "*!&+!n"*#! . 6.- Péndu! &!#$u%*'! : E $éndu! &!#$u%*'! %* un *)"d! %n +!'(&")n (+%d%d!+ d% un %% ,"!. Cu(nd! *% *%$(+( un n2u! d% ( $!*"&")n d% %/u""+"! = *% *u%'( *!+% % *)"d! (&'>( % #!#%n'! d% $%*! /u% '"%n% *"2n! &!n'+(+"! ( d%*$(;(#"%n'!. L( 2+,"&( %* ( *"2u"%n'% :
6.1.- M!#%n'! d% In%+&"( : E #!#%n'! d% "n%+&"( ! "n%+&"( +!'(&"!n( %* un( #(2n"'ud /u% d( &u%n'( d% &)#! %* ( d"*'+"u&")n d% #(*(* d% un &u%+$! ! un *"*'%#( d% $(+'&u(* (+%d%d!+ d% un! d% *u* $un'!*. En % #!3"#"%n'! d% +!'(&")n %*'% &!n&%$'! d%*%#$%( un $($% (n!2! ( d% ( #(*( "n%+&"( %n % &(*! d% #!3"#"%n'! +%&'"n%! = un",!+#%. R%$+%*%n'( ( "n%+&"( d% un &u%+$! ( +!'(+. 6.6.- T%!+%#( d% S'%"n%+ : E*'% '%!+%#( n!* d( % #!#%n'! d% "n%+&"( d% un &u%+$! &u(nd! % %% d% +!'(&")n $(*( $(+(%! ( un %% d% +!'(&")n /u% $(*( $!+ % &%n'+! d% #(*(* d% &u%+$!. V"%n% d(d! $!+ ( %@$+%*")n *"2u"%n'%:
FÍSICA I 4FS - 1567 – SEMESTRE 6889 II
DEPARTAMENTO DE MATEMÁTICA Y FÍSICA – INGENIERÍA CIVIL
En d!nd% I CM n!* "nd"&( % #!#%n'! d% "n%+&"( &u(nd! % %% $(*( $!+ % &%n'+! d% #(*(* # %* ( #(*( d% &u%+$! = d %* ( d"*'(n&"( %n'+% % %% = % &%n'+! d% #(*(* d% &u%+$!.
6.- OA DE DATOS : T%n%#!* !* *"2u"%n'%* d('!* : 6.1.- D% ( d%du&&")n d% ( %&u(&")n d% $%+!d! d% un $éndu! *"#$% :
6.6.- D% ( d%$%nd%n&"( d% $%+!d! d% un $éndu! *"#$% &!n ( #(*( /u% &u%2( d% 0"! :
6.?.- D% ( d%$%nd%n&"( d% $%+!d! d% un $éndu! *"#$% &!n ( ,!+#( d% ( #(*( /u% &u%2( d% 0"! : FÍSICA I 4FS - 1567 – SEMESTRE 6889 II
DEPARTAMENTO DE MATEMÁTICA Y FÍSICA – INGENIERÍA CIVIL
Para 10 oscilaciones Forma de la masa m (Kg)
Tk (s)
Para 1 oscilación Ti (s)
0.048460
14.340
1.434
0.014150
13.80
1.38
0.010360
14.230
1.423
0.014720
13.880
1.388
6.5.- D% Péndu! &!#$u%*'! :
L( !n2"'ud d% ( (++( %* : 1.858 #. E (n&0! d% ( (++( %* :8.8?9? #. L( #(*( d% ( (++( %* : 1.68888 H2. En*%2u"d( *%((+%#!* % %++!+ *"*'%#'"&! d% &(d( "n*'+u#%n'! u*(d! %n &(d( %@$%+"%n&"( : X S de la regla métrica 8.888F m. X S del cronómetro 8.88F s. X S de la balanza 8.88888F Kg .
?.- RESULTADOS :
FÍSICA I 4FS - 1567 – SEMESTRE 6889 II
DEPARTAMENTO DE MATEMÁTICA Y FÍSICA – INGENIERÍA CIVIL
?.1.- DEDUCCIÓN DE LA ECUACIÓN DEL PERÍODO DE UN PJNDULO SIMPLE : ?.1.1.- G+(,"/u% %n un $($% !2(+'#"&! % !2(+"'#! d% $%+!d! 4%n % %% KY7 3%+*u* % !2(+"'#! d% ( !n2"'ud 4%n % %% K(n % $%*! K#.2 = ( '%n*")n KT d% ( &u%+d( d% 2+,"&! (dun'! :
FÍSICA I 4FS - 1567 – SEMESTRE 6889 II
DEPARTAMENTO DE MATEMÁTICA Y FÍSICA – INGENIERÍA CIVIL
S% 3% /u% : ! T m. g . sen
4 I 7
D!nd% % *"2n! 4-7 *% d%% ( /u% *% !$!n% ( d%*$(;(#"%n'! K@ . P!+ ( *%2und( KL%= d% N%'!n :
C!n*"d%+(nd! #!3"#"%n'! $%ndu(+
! T m.aT 4 I 7
M.A.S. .
! T m.a M . #.S . m." . x 4 II 7 6
I2u((nd! 4I7 = 4II7 :
" . x g . sen 4 III 7 D% ( ,"2u+( : x . L 4 I$ 7 P(+( (#$"'ud%* $%/u%(* : N 6
S% &u#$% /u% : sen En 4IV7 : x L. sen 4 I$ 7 En 4II7 : " sen . L g . sen 6
6
g 6 " L L T 6
g
D% d!nd% :
T 6.
L g
FÍSICA I 4FS - 1567 – SEMESTRE 6889 II
DEPARTAMENTO DE MATEMÁTICA Y FÍSICA – INGENIERÍA CIVIL
Lu%2! &!n*'+u=%nd! ( %&u(&")n d% $%+!d! d% $éndu! *"#$% ( $(+'"+ d% !* d('!* d% ( %@$%+"%n&"( : S% !'u3! ( *"2u"%n'% %&u(&")n d% ( 2+,"&( : Y 8.5G6G X 8.6GNG . D!nd% Y !2 T % X !2 L . En'!n&%* *% '"%n% ! *"2u"%n'% : Y 8.5G6G X 8.6GNG !2 T 8.5G6G x !2 L 8.6GNG O !2 1.N5GN5MG9 8.6GNG !2 T !2 L8.5G6G !2 1.N5GN5MG9 !2 T !2 L8.5G6G x1.N5GN5MG9 O comparando se tiene lo siguiente: T L8.5G6G x1.N5GN5MG9 T 1.N5GN5MG9 xL8.5G6G T 1.N568M6??F1.88?F55NM1 xL8.5G6G O donde:
T 1.N568M6??F x
g
g
1.88?F55NM1
xL8.5G6G
Lu%2! +%(";(nd! un( &!#$(+(&")n &!n ( %&u(&")n '%)+"&( : T 6.
L g
T 6 x
6 g
g
xL8.F 6 x
g
xL8.F
xL8.F
S% $u%d% ($+%&"(+ /u% 1.5686?? '"%nd% ( 6 = 8.56 '"%nd% ( 8. . P!+ ! '(n'! &!n&u"#!* /u% 0(= un( &"%+'( *"#""'ud &!n ( %&u(&")n '%)+"&( d% $%+!d! d% $éndu! *"#$% . ?.6.- DEPENDENCIA DEL PERÍODO DE UN PJNDULO SIMPLE CON LA MASA Y FORMA DE LA MASA : ?.6.1.- G+(,"/u% %n un $($% #""#%'+(d! % $%+!d! d% un( !*&"(&")n 4%n % %% KY7 3%+*u* ( #(*( 4%n % %% K(n *!+% ( #(*(: % $%*! = ( '%n*")n u%2! d%du&"#!* ( &!#$!n%n'% '(n2%n&"( d% ( %&u(&")n d% #!3"#"%n'! d% (&u%+d! ( ( S%2und( L%= d% N%'!n: d!nd% ( T %* ( (&%%+(&")n '(n2%n&"(.
D% '( #(n%+( /u% ( %&u(&")n d% #!3"#"%n'! *% $u%d% %*&+""+ &!#!: L( %&u(&")n d% #!3"#"%n'! '"%n% un( ,!+#( 2%n%+( d(d( $!+: D!nd% @ %* ( 3(+"(% d% $!*"&")n = 8 %* ( ,+%&u%n&"( (n2u(+ d% !*&"(&")n FÍSICA I 4FS - 1567 – SEMESTRE 6889 II
DEPARTAMENTO DE MATEMÁTICA Y FÍSICA – INGENIERÍA CIVIL
P(+( d%'%+#"n(+ % $%+!d! d% !*&"(&")n d% $éndu! *"#$% %n 2%n%+( &!#%n;(+%#!* $!+ %*&+""+ ( %&u(&")n d% #!3"#"%n'! %n ( ,!+#(: S"%nd! ( 3%!&"d(d (n2u(+. Mu'"$"&(nd! ( %&u(&")n $!+ d '%n%#!*:
S" +%(";(#!* ( "n'%2+(&")n %n % "n'%+3(! d% '"%#$! d%*d% ' 8 0(*'( ' %n d!nd% ( $!*"&")n (n2u(+ &(#"( d%*d% / 8 0(*'( / = ( 3%!&"d(d (n2u(+ $(*( d% &%+! ( '%n%#!*:
D% d!nd% *% '"%n% ( 3%!&"d(d (n2u(+: E*'( %&u(&")n %* un( +%(&")n d% ( $!*"&")n (n2u(+ = % '"%#$!. D%*$%(nd! (* 3(+"(%* %n ( "2u(d(d % "n'%2+(nd! d% nu%3! %n % '"%#$! d%*d% ' 1 0(*'( ' 6 %n d!nd% ( $!*"&")n (n2u(+ &(#"( d%*d% / 1 0(*'( /6 !'%n%#!*:
S" *% &!n*"d%+( /u% / 1 8 = /u% / 6 / 8 &!n '1 8 *% '"%n% /u% ' 6 TW5 *"%nd! T % $%+!d! %n'!n&%* *% '"%n% /u%:
C!#! &!n&u*")n !'%n%#!* /u% 2%n%+(#%n'% %n !* #!3"#"%n'!* !*&"('!+"!* /u% n! *!n (+#)n"&!* *"#$%* *% u*&( d%'%+#"n(+ (* &!nd"&"!n%* (! (* &u(%* % #!3"#"%n'! *% $ud"%+( &!n*"d%+(+ (+#)n"&! *"#$%. En %*'% &(*! ( &!#$(+(+ ( %&u(&")n d% #!3"#"%n'! &!n ( %&u(&")n 2%n%+( d% un M!3"#"%n'! A+#)n"&! S"#$% *% !'"%n% ( ,!+#u( &!n!&"d( d% $%+"!d!
T 6
l g
%n ( /u% %
$%+"!d! d%$%nd% d% ( !n2"'ud d% ( &u%+d( #"%n'+(* /u% %n ( %&u(&")n d% $éndu! *"#$% %n 2%n%+( % $%+"!d! d% !*&"(&")n d%$%nd% d% ( $!*"&")n (n2u(+ = d% ( ,+%&u%n&"( (n2u(+ d% !*&"(&")n.
FÍSICA I 4FS - 1567 – SEMESTRE 6889 II
DEPARTAMENTO DE MATEMÁTICA Y FÍSICA – INGENIERÍA CIVIL
1.6. Su$!n2( /u% *% #"d% % $%+"!d! &!n un( d%*3"(&")n 3%+'"&( d% X = 18X %n &u( d% !* d!* &(*!* +%*u'( #(=!+ % $%+"!d! E $éndu! *"#$% %* un %n'% #('%#'"&! *"n +%$+%*%n'(&")n ,*"&( $!*"%. N! !*'(n'% un( ($+!@"#(&")n (&%$'(% &!n*"*'% %n un( #(*( *u*$%nd"d( d% un 0"! "n%@'%n*"% = *"n $%*!. Cu(nd! ( #(*( *% d%( %n "%+'(d d%*d% &"%+'! n2u! "n"&"( &!n ( 3%+'"&( &!#"%n;( ( !*&"(+ ( un (d! = !'+! $%+")d"&(#%n'%. Cu(nd! % n2u! d% d%*3"(&")n #@"#! +%*$%&'! d% ( 3%+'"&( %* $%/u%! 4%n ( $+&'"&( #%n!+ /u% 18B7 % $éndu! !*&"( &!n #!3"#"%n'! (+#)n"&! *"#$% (+%d%d!+ d% $un'! d% %/u""+"!. En %*'( *"'u(&")n % $%+"!d! +%*u'( *%+ "nd%$%nd"%n'% d% n2u! "n"&"( %* d%&"+ n2u! d!nd% *% "%+( % $éndu! = d%$%nd% >n"&(#%n'% d% ( !n2"'ud d% $éndu! = d% ( (&%%+(&")n d% ( 2+(3%d(d. D% d!nd% *% &!n&u=% /u% %n (#!* &(*!* *% '%nd+ % #"*#! $%+"!d! d% !*&"(&")n 4B = 18B7. 1.?. D%$%nd% % $%+"!d! d% '(#(! /u% '%n2( ( #(*( E@$"/u% S%2>n nu%*'+!* +%*u'(d!* 3%#!* /u% !* $%+"!d!* !'%n"d!* *% ($+!@"#(n ( $%*(+ d% /u% !* &u%+$!* /u% &u%2(n d% 0"! $(+( &(d( &(*! '"%n%n d",%+%n'%* #(*(* &!n %*'!* +%*u'(d!* *% &!n,"+#( /u% %n un $éndu! *"#$% % $%+"!d! n! d%$%nd% d% ( #(*( d% &u%+$! &!2(d!. T 6
l g
En nu%*'+( %@$%+"%n&"( 3(#!* ( d%#!*'+(+ /u% % $%+!d! d% $éndu! n! d%$%nd% d% ( #(*( &!!&(d( ( ,"n( d% 0"!. En un (n"*"* d% ( %&u(&")n d% $%+!d! =( n!* $%+#"'% (,"+#(+ /u% %n d"&0! $%+!d! n! "n,u=% ( #(*( $u%* n! ($(+%&% %n ( %&u(&")n. 1.5. S% $u%d% 0(&%+ un (u*'% "n%( d% #n"#!* &u(d+(d!* %n un $($% !2(+'#"&! E*'( $+%2un'( *% +%(&"!n( &!n % '"$! d% '%nd%n&"( /u% $+%*%n'(n !* d('!* ( 2+(,"&(+!* *!+% un '"$! d% $($% %* d%&"+ &u(nd! $+"#%+! *% 2+(,"&( %n $($% *%#"!2(+"'#"&! %n % &(*! d% /u% ( '%nd%n&"( *%( un( &u+3( u*u(#%n'% *% "n'%n'( #"+(+ *" 0(= un( &!++%*$!nd%n&"( !2(+'#"&( 4! %@$!n%n&"(7 d% !* d('!* = *" *% !'"%n% un( n%( +%&'( n! &(% dud( /u% *% '+('( d% %*'% '"$! d% '%nd%n&"( $%+! *" n! *% !'"%n% un( +%&'( ( 2+(,"&(+*% !* d('!* *!+% $($% *%#"!2(+'#"&! d%% "n'%n'(+*% 2+(,"&(+ *!+% $($% !2(+'#"&!. En % &(*! d% /u% *% $+%*%n'% un( +%&'( !* d('!* !%d%&%n ( un( '%nd%n&"( $!"n)#"&( = *" n! *% $+%*%n'( un( '%nd%n&"( +%&'"n%( d%% "n'%n'(+*% (2un( 'é&n"&( d% "n%(";(&")n. En'!n&%* &!n&u"#!* /u% *" *% $u%d% 0(&%+ un (u*'% d% #n"#!* &u(d+(d!* %n un $($% !2(+'#"&!. 6. En ( %@$%+"%n&"( ?: FÍSICA I 4FS - 1567 – SEMESTRE 6889 II
DEPARTAMENTO DE MATEMÁTICA Y FÍSICA – INGENIERÍA CIVIL
6.1. D%#u%*'+% %n ,!+#( (n('"&( (* %&u(&"!n%* d% $éndu! &!#$u%*'! = % '%!+%#( d% S'%"n%+. &éndulo compuesto# %* un *)"d! %n +!'(&")n (+%d%d!+ d% un %% ,"!. Cu(nd! *% *%$(+( un n2u! q d% ( $!*"&")n d% %/u""+"! = *% *u%'( *!+% % *)"d! (&'>( %
#!#%n'! d% $%*! /u% '"%n% *"2n! &!n'+(+"! ( d%*$(;(#"%n'!.
L( %&u(&")n d% ( d"n#"&( d% +!'(&")n *% %*&+"% I ,-a . /mg0b *"n 1 D!nd% b %* ( d"*'(n&"( %n'+% % &%n'+! d% #(*( = % &%n'+! d% !*&"(&")n O. I , %* % #!#%n'! d% "n%+&"( d% &u%+$! +%*$%&'! d% %% d% +!'(&")n /u% $(*( $!+ O. Lu%2! %@$+%*(#!* ( %&u(&")n d% ( d"n#"&( d% +!'(&")n %n ,!+#( d% %&u(&")n d",%+%n&"(:
S" ( (#$"'ud %* $%/u%( $!d%#!* ($+!@"#(+ % *%n! d% n2u! ( n2u! #%d"d! %n +(d"(n%*. En'!n&%* ( %&u(&")n d",%+%n&"( *% %*&+"%:
E*'( %* ( %&u(&")n d",%+%n&"( d% un M.A.S. d% ,+%&u%n&"( (n2u(+:
FÍSICA I 4FS - 1567 – SEMESTRE 6889 II
DEPARTAMENTO DE MATEMÁTICA Y FÍSICA – INGENIERÍA CIVIL
D!nd% P %* % $%+"!d! d% !*&"(&")n d% $éndu! &!#$u%*'!. 'eorema de $teiner
M('%#'"&(#%n'% '%n%#!*: D!nd%: I e2e %* % #!#%n'! d% "n%+&"( +%*$%&'! ( %% /u% n! $(*( $!+ % &%n'+! d% #(*( I 4CM 7 e2e %* % #!#%n'! d% "n%+&"( $(+( un %% $(+(%! ( (n'%+"!+ /u% $(*( $!+ % &%n'+! d% 2+(3%d(d M %* ( #(*( '!'( = 3 %* ( d"*'(n&"( %n'+% !* d!* %%* $(+(%!* &!n*"d%+(d!*. L( d%#!*'+(&")n d% %*'% '%!+%#( ! 0(+%#!* &!n*"d%+(nd! ( d%*&!#$!*"&")n d% &!!+d%n(d(* +%('"3( ( &%n'+! d% #(*(* C0
D!nd% % *%2und! 'é+#"n! %* nu! $u%*'! /u% ( d"*'(n&"( 3%&'!+"( $+!#%d"! d% #(*( %n '!+n! ( &%n'+! d% #(*( %* nu( $!+ ( $+!$"( d%,"n"&")n d% &%n'+! d% #(*(. Y ,"n(#%n'% *% '"%n% % '%!+%#( d% S'%"n%+: 6.6. C!#$(+(+ % 3(!+ d% I CM !'%n"d! 4d% 2+,"&! I 4 3*. I 5 6 &!n % 3(!+ d% ( ,!+#u( (n('"&( $(+( un( (++( d% !n2"'ud L = (n&0! /u% %++!+ %@$%+"#%n'( !'u3! = u*'","/u% ( &(u*( d% /u% En ( $(+'% d% +%*u'(d!* d% %*'% "n,!+#% *% !'u3! % 3(!+ d%
#%d"(n'% %
(u*'% d% ( &u+3( $!+ % #é'!d! d% #n"#!* &u(d+(d!* d(nd! &!#! 3(!+
FÍSICA I 4FS - 1567 – SEMESTRE 6889 II
DEPARTAMENTO DE MATEMÁTICA Y FÍSICA – INGENIERÍA CIVIL
A0!+( "%n &!n ( ,!+#u( (n('"&( L1858#.
8.8?9?#.
$(+( ( (++( d% =
M1688882.
S%
!'u3!
%n'!n&%* $!d%#!* %2(+ ( ( &!n&u*")n d% /u% % %++!+ %@$%+"#%n'( %* +%('"3(#%n'% #(=!+ d%"d! ( ( ,('( d% %@(&'"'ud %n ( #%d"&")n. .- CONCLUSIONES :
S% 0( d%'%+#"n(d! %@$%+"#%n'(#%n'% !* $%+!d!* d% !*&"(&")n d% un $éndu! *"#$% = ( $(+'"+ d% %!* *% &!#$+!) ( %&u(&")n '%)+"&( . L( %&u(&")n !'%n"d( d% ( %@$%+"%n&"( '"%nd% ( *%+ "2u( ( ( %&u(&")n '%)+"&( . V(% +%&(&(+ /u% *"%#$+% 0(= un #(+2%n d% %++!+ .
D% !* +%*u'(d!* *% $u%d% (,"+#(+ /u% % $%+!d! d%$%nd% d% ( !n2"'ud (d%#* % $%+!d! n! d%$%nd% d% ( #(*( d% !%'! u%2! *% $!d+( d%&"+ /u% % $%+!d! d% (&u%+d! ( !* +%*u'(d!* '"%nd%n ( n! d%$%nd%+ d% ( ,!+#( d% ( #(*( . D% %*'% >'"#! *% $u%d% d%&"+ /u% %n ( %@$%+"%n&"( d% ( Kd%$%nd%n&"( d% $%+!d! d% un $éndu! *"#$% &!n ( ,!+#( d% ( #(*( /u% &u%2( d% 0"! %n +%("d(d d%$%nd%+( d% ( ,!+#( d% ( #(*( 4% $éndu! *"#$% %* (#(d! '(#"én $éndu! #('%#'"&!7 .
En ( %@$%+"%n&"( d% $éndu! &!#$u%*'! *% %2) ( &!#$+!(+ % K'%!+%#( d% S'%"n%+ .
D% $éndu! &!#$u%*'! 4+%(&"!n(d! ( ( 2+,"&( T 6 3%+*u* L7 *% $u%d% (,"+#(+ /u% #"%n'+(* (u#%n'(( ( d"*'(n&"( d% %% d% !*&"(&")n ( %% $!+ C.M. d"*#"nu( % &u(d+(d! d% $%+!d! = $!&! d%*$ué* &u(nd! (u#%n'(( d"&0( d"*'(n&"( *% ($+%&"(( /u% (u#%n'(( % &u(d+(d! d% $%+!d! .
.- SUGERENCIAS :
P(+( '!d(* (* %@$%+"%n&"(* un( *u2%+%n&"( &!#>n *%+( /u% ( *%%&&"!n(+ (* !n2"'ud%* d% 0"! $(+( % $éndu! *"#$% %*'(* d%%n '+('(+*% /u% *%(n %@(&'(* '(#"én *% d%% '+('(+ d% !'%n%+ &!n $+%&"*")n = %@(&'"'ud (* d",%+%n'%* #(*(* d% !* !%'!* /u% &u%2(n d% un 0"! '(#"én $(+( '!d!* !* &(*!* *% d%% '+('(+ #%d"+ &!n $+%&"*")n % '"%#$! /u% d%#!+(n 18 !*&"(&"!n%* &!#$%'(* = (* !'%n%+ un u%n $+!#%d"! d% $%+!d! d% "2u( #(n%+( %*'% >'"#! $(+( % &(*! d% $éndu! &!#$u%*'! .
P!+ >'"#! !* ($un'%* *% d%%n +%(";(+ +%*$%'(nd! !* d",%+%n'%* %++!+%* *"*'%#'"&!* d% &(d( "n*'+u#%n'! .
FÍSICA I 4FS - 1567 – SEMESTRE 6889 II
DEPARTAMENTO DE MATEMÁTICA Y FÍSICA – INGENIERÍA CIVIL
9.- ZIZLIOGRAFÍA :
7&8&T LI9#&S 0 !'sica 1 la enciclopedia 0 &ditorial Mos3era0 5::; 0 0 3ttp?@@"""0)isicarecreativa0com@in)ormes@in)orAmecanica@penduloAsimple40 pd) 3ttp?@@es0"iBipedia0org@"iBi@MomentoAdeAinercia 3ttp?@@"""0sc0e3u0es@sb"eb@)isica@solido@pendulo@pendulo03tm 3ttp?@@iteso0mx@2orgeaguilar@pendAsimple03tm
FÍSICA I 4FS - 1567 – SEMESTRE 6889 II
View more...
Comments