Laboratorio 4 Fisica1
November 10, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Laboratorio 4 Fisica1...
Description
TOIVDQXINKN ND DG XKGVKNLQ DO GÍODK FKHTG^KN ND IOCDOIDQÍK Y KQ[TI^DH^TQK DXHTDGK ND IOCDOIDQÍK ND XIX^DMKX IOFLQMË^IHLX DNTHKHIØO K NIX^KOHIK FÍXIHK I
Cuík nd Gkalrktlril Toinkn > > ^rkakbl y Dodrcík
‗
”
Hlotdoinl
;.
LABD^IVLX LABD^ IVLX .................................. ................. .................................. ................................... ................................... ................................... .................................... ........................... ......... 1
1.
IO^QLNTHHIØO IO^QLN THHIØO ^DØQIHK ^DØQIH K.................................. ................. ................................... ................................... ................................... ................................... ..................... .... 1
8.
XIMTGKNLQDX XIMTGKN LQDX K TXKQ ................................... .................. ................................... ................................... ................................... ................................... ........................ ....... 4
>.
NDXKQQLGGL ND GK PQËH^IHK PQËH^IHK ND GKALQK^LQIL .................. ........................... .................. .................. .................. .................. ................ ....... 4
;
;. ;. LABD^IVLX Flrmugkr dg tdlrdmk ndg trkakbl y gk dodrcík, y dg priohipil nd hlosdrvkhiøo nd dodrcík do
•
cdodrkg, ksí hlml gk kpgihkhiøo nd dggls do gk rdslguhiøo nd prlagdmks. Kpgihkr dg hlohdptl nd ^rkakbl
•
Kpgihkr dg priohipil nd hlosdrvkhiøo nd gk dodrcík mdhëoihk
•
1. 1. IO^QLNTHHIØO ^DØQIHK Gks ndfioihilods nd hkotinknds hlml plsihiøo, vdglhinkn, khdgdrkhiøo y fudrzk buotl k priohipils hlml gk sdcuonk gdy nd Odwtlo eko pdrmitinl dohlotrkr muheks slguhilods k iotdrrlckotds l prlagdmks. Xio dmakrcl, kgcuols prlagdmks, qud plnríko rdslgvdrsd tdørihkmdotd hlo gks gdyds nd Odwtlo, slo muy nifíhigds do gk prëhtihk, pdrl ds plsiagd simpgifihkrgls hlo uo pgkotdkmidotl nifdrdotd. Do dstk uoinkn, sd dstunikrë dstd oudvl pgkotdkmidotl qud iohguirë ndfioihilods nd mkcoitunds qud do dstk mktdrik kòo ol sd eko kalrnknl. Dg koëgisis hlmidozk kg dxpglrkr gk olhiøo nd dodrcík. Dg hlohdptl nd dodrcík ds uol nd gls tdmks mës implrtkotds do hidohik d iocdoidrík. Do gk vink hltinikok sd pidosk do gk dodrcík do térmiols nd hlmaustiagd pkrk trkosplrtd y hkgdotkmidotl, dgdhtrihinkn pkrk guz y dgdhtrlnlméstihls, y kgimdotls pkrk dg hlosuml. Ol lastkotd, dstks indks ol ndfiodo gk dodrcík: søgl ndbko vdr qud gls hlmaustiagds slo odhdskrils pkrk rdkgizkr uo trkakbl y qud nihels hlmaustiagds prlplrhiloko kgcl qud sd ggkmk dodrcík. Gk dodrcík dstë prdsdotd do dg Toivdrsl do vkriks flrmks. ^lnl prlhdsl físihl qud lhurrk do dg Toivdrsl iovlguhrk dodrcík y trkosfdrdohiks l trkosflrmkhilods nd dodrcík. Dg hlohdptl nd dodrcík sd kpgihk k sistdmks mdhëoihls sio rdhurrir k gks gdyds nd Odwtlo. Hlohdptl nd trkakbl. ^rkakbl nd uok fudrzk hlostkotd. Xdcurkmdotd ustdn dstkrë nd khudrnl do qud hudstk trkakbl mlvdr uo slfë pdsknl, gdvkotkr uok pigk nd giarls ndg pisl ekstk hlglhkrgk do uo dstkotd kgtl, l dmpubkr uo kutlmøvig kvdriknl pkrk rdtirkrgl nd gk hkrrdtdrk. ^lnls dstls dbdmpgls hlohudrnko hlo dg sicoifihknl hltinikol nd trkakbl2 hukgquidr khtivinkn qud rdquidrd dsfudrzl mushugkr l mdotkg. Do físihk dg trkakbl tidod uok ndfioihiøo muhel mës prdhisk. Xd rdkgizk trkakbl dbdrhidonl uok fudrzk slard uo hudrpl midotrks éstd sd mudvd nd uo guckr k ltrl, ds ndhir, sufrd uo ndspgkzkmidotl. Dfdhtukmls mës trkakbl si gk fudrzk ds mkylr l si dg ndspgkzkmidotl ds mkylr. mkylr. Tok ndfioihiøo nd trkakbl mës flrmkg, sdrík gk sicuidotd2 ^rkakbl ds gk dodrcík trkosfdrink k l ndsnd uo labdtl, ndainl k gk khhiøo nd uok fudrzk. Dg trkakbl plsitivl ds uok trkosfdrdohik nd dodrcík kg labdtl, y dg trkakbl odcktivl ds gk trkosfdrdohik nd dodrcík ndsnd dg labdtl. Dstunikrdmls primdrl dg trkakbl rdkgizknl plr uok fudrzk hlostkotd, plr dbdmpgl, dg pdsl, hukonl uo hudrpl sd mudvd do hkínk giard l sd dgdvk ekhidonl trkakbl hlotrk gk crkvdnkn. 1
⃓
∆⃓
Tok fudrzk dxtdrok khtòk slard uo hudrpl midotrks dstd dxpdrimdotk uo ndspgkzkmidotl , dg trkakbl rdkgizknl sd ndfiod y sd hkghugk pkrk uok fudrzk hlostkotd hlml dg prlnuhtl dshkgkr nd gk fudrzk y dg ndspgkzkmidotl2 ndspgkzkmidotl2 Do ltrk olmdohgkturk sd rdprdsdotk dg ndspgkzkmidotl hlo X. Xlgl ekhd trkakbl gk hlmplodotd nd gk fudrzk do nirdhhiøo ndg ndspgkzkmidotl, hlml mudstrk gk
= ⃓ ∙∆⃓ = ∆ = ⃓ ∙∆⃓ =
ficurk ;. Plr kelrk, suplonrdmls qud tlnl hudrpl pudnd trktkrsd pkrtíhugk y ndsprdhikrdmls hukgquidr rltkhiøo l hkmail do gk flrmk ndg hudrpl.
Ficurk ;. ^rkakbl nd uok fudrzk hlostkotd.
Gk uoinkn nd trkakbl do dg XI ds dg blugd blugd (qud (qud sd kardvik B y sd prlouohik ‗yug”, olmarknl ksí do elolr ndg físihl iocgés ndg sicgl UIU Bkmds Prdshltt Blugd). Do gk dhukhiøo nd trkakbl, kotdrilrmdotd mlstrknk, vdmls qud, do hukgquidr sistdmk nd uoinknds, gk uoinkn nd trkakbl ds gk uoinkn nd fudrzk mugtipgihknk plr gk uoinkn nd nistkohik. Do dg XI gk uoinkn nd fudrzk ds dg odwtlo y gk uoinkn nd nistkohik ds dg mdtrl, ksí qud ; blugd dquivkgd k uo odwtlo-mdtrl (O.m)2 ; blugd = (; odwtlo)(; mdtrl) l aido, ; B = ; O.m
Ficurk 1. Dbdmpgl nd trkakbl nd uok fudrzk hlostkotd.
8
Do dg sistdmk aritëoihl, gk uoinkn nd fudrzk ds gk giark (ga), gk uoinkn nd nistkohik ds dg pid (ft), y gk uoinkn nd trkakbl ds dg pid-giark (ft.ga). Gks hlovdrsilods qud sicudo slo òtigds2 ; B = 0.3836 ft.ga ; ft.ga = ;.846 B Dbdmpgl2 Tok pdrslok dbdrhd uok fudrzk hlostkotd nd mkcoitun icukg k 1;0 1; 0 O (kprlximknkmdotd >3 ga) slard dg kutlmøvig kvdriknl nd gk ficurk 1, midotrks gl dmpubk uok nistkohik nd ;5 m. Kndmës, uo odumëtihl sd ndsiofgø, ksí qud, pkrk glcrkr qud dg kutl kvkohd kg frdotd. Dstk pdrslok ndad dmpubkrgl hlo uo ëocugl nd 80° hlo rdspdhtl k gk nirdhhiøo ndg mlvimidotl. k) k) ¼Huëotl trkakbl dfdhtòk< a) a) Hlo ëoiml nd kyunkr, gk pdrslok dmpubk uo sdcuonl kutlmøvig kvdriknl hlo uok fudrzk hlostkotd Dg ndspgkzkmidotl ndg kutlmøvig do ds . ¼Huëotl trkakbl dfdhtòk Xtdvd do dstd hksl<
(;; ;;))
⃓ = ( = (;60 ;60)) ∑ (>0 >0)) . .
⃓ = = ( (;> ;>)) ∘
Xlguhiøo2 k) a)
(1;0)()(;5 = . = = (1;0 ;5)) hls hls((80) = . (;60 ∓ ;>) = ⃓ ∙∆⃓ = ∆ ++ ∆ = (;60 ;>) + (∑> ∑>0 0 ∓;; ∓ ;;) = .
^rkakbl plsitivl, odcktivl l hdrl. Do dg dbdmpgl kotdrilr, dg trkakbl dfdhtuknl kg dmpubkr gls kutls fud plsitivl. Ol lastkotd, ds implrtkotd dotdondr qud dg trkakbl tkmaiéo pudnd sdr odcktivl l hdrl. Dstk ds gk nifdrdohik dsdohikg dotrd gk ndfioihiøo nd trkakbl do físihk y gk ndfioihiøo ‗hltinikok” ndg misml. Xi gk fudrzk tidod uok hlmplodotd do gk mismk nirdhhiøo qud dg ndspgkzkmidotl ( dotrd 0° y 90°), hls do gk dhukhiøo nd trkakbl ds plsitivl y dg trkakbl S ds plsitivl, ficurk 8.
∄
∄
Ficurk 8. ^rkakbl plsitivl. plsitivl.
∄
∄
Xi gk fudrzk tidod uok hlmplodotd lpudstk kg ndspgkzkmidotl ( dotrd 90° y ;50°), hls ds odcktivl y dg trkakbl ds odcktivl (ficurk >).
Ficurk >. ^rkakbl odcktivl.
>
∄
∄
Xi gk fudrzk ds pdrpdonihugkr kg ndspgkzkmidotl, = 90°, hls =0 y dg trkakbl rdkgizknl plr gk fudrzk ds hdrl (ficurk 4).
^rkakbl tltkg
Ficurk 4. ^rkakbl icukg k hdrl.
¼Høml hkghugkmls dg trkakbl hukonl vkriks fudrzks khtòko slard uo hudrpl< Plndmls uskr gks dhukhilods nd trkakbl mlstrknks do dg hlotdoinl >.; pkrk hkghugkr dg trkakbl rdkgizknl plr hknk fudrzk ionivinukg. Pudstl qud dg trkakbl ds uok hkotinkn dshkgkr, dg trkakbl tltkg S ttltkg ltkg rdkgizknl plr tlnks gks fudrzks slard dg hudrpl ds gk sumk kgcdarkihk nd gls trkakbls rdkgizknls plr gks fudrzks ionivinukgds. Ltrk flrmk nd latdodr S ttltkg ltkg ds hkghugkr gk sumk vdhtlrikg nd gks fudrzks (ds ndhir, gk fudrzk odtk) y uskrgk do guckr nd do gk dhukhiøo.
⃓
8. 8. XIMTGKNLQDX K TXKQ Nurkotd gk prëhtihk nd gkalrktlril uskrdmls gls sicuidotds simugknlrds2 ettps2//pedt.hlglrknl.dnu/sims/heddrpb/ted-rkmp/gkt ettps2//pedt.hlglrknl.dnu/sims /heddrpb/ted-rkmp/gktdst/ted-rkmp.etmg. NDXKQQLGGL ND GK PQËH^IHK ND GKALQK^LQIL Tskonl dg simugknlr ionihknl do dg kpkrtknl kotdrilr pkrk hknk tdmëtihk, rdsudgvk gl qud sd gd pind, ndbkonl hlostkohik nd sus rdsugtknls r dsugtknls mdnikotd prlhdnimidotls mktdmëtihls, hkpturks nd pkotkggk l krcumdotkhilods mktdmëtihks l tdørihks sdcòo sd gd slgihitd sl gihitd do hknk kpkrtknl2
4
k) k) ^QKAKBL ND TOK FTDQRK (40 %) Tskonl
dg
simugknlr,
ettps2//pedt.hlglrknl.dnsims/h lglrknl.dnsims/heddrpb/ted-rkmp/gktds eddrpb/ted-rkmp/gktdst/tedt/tedettps2//pedt.h
rkmp.etmg8.>
1;5;.1
0.0>
5.>9
1;68.9
11.8
1;56.1
1.18
4.60
9>0.1
;8;;.0
114;.1
8.31
0.18
;.6
1;5>.4
1;56.1
Hkghugl Kokgítihl D= mv1+mce=(;/1)60jc(0.94m/s) 1 +(60jc)(9.5m/s1)(8.65m) = 1;9;.0 B D= mv1+mce=(;/1)60jc(4.80m/s) 1 +(60jc)(9.5m/s1)(1.15m) = 1;58.8B D= mv1+mce=(;/1)60jc(0.94m/s) 1 1 +(60jc)(9.5m/s )(8.65m) = 1;56.0 B 1 D= mv +mce=(;/1)60jc(0.94m/s) 1 +(60jc)(9.5m/s1)(8.65m) = 1141.0 B D= mv1+mce=(;/1)60jc(0.94m/s) 1 +(60jc)(9.5m/s1)(8.65m) = 1;59.0 B
9
View more...
Comments