Lab Manual 2017

April 19, 2018 | Author: haudeitba | Category: Viscosity, Reynolds Number, Pressure, Shear Stress, Fluid Dynamics
Share Embed Donate


Short Description

ok...

Description

UNIVERSITI MALAYSIA SABAH FACULTY OF ENGINEERING

CHEMICAL ENGINEERING PROGRAMME (HK03)

LAB

MANUAL

Semester

Laboratory

WORKSHOP BLOCK E MAKMAL SAINS HABA 2 BLOCK C Lecturer Dr. S.M. Ani!""#$#n Lab. Assistants Mr. R#"i Mr. M!%& R!'#n Mr. S#i!'

T#*'+ , C,n-+n- N,.

Ti-'+

P#+

1.0 Laboratory safety !.0 Re"ort #ritin$ %ui&e'ines

 (

E/+ri$+n-

)M )'o* +easure+ent usin$ ,enture +eter

-

1 )M )riction 'osses in strai$t "i"es

1/

! )M ressure &ro" across ,a',es

!(

 )M entrifu$a' "u+" caracteristics

!

/ )M 3eter+ination of coe4cient of ori5ce +eter

//

2

2

T#*'+ , C,n-+n- N,.

Ti-'+

P#+

1.0 Laboratory safety !.0 Re"ort #ritin$ %ui&e'ines

 (

E/+ri$+n-

)M )'o* +easure+ent usin$ ,enture +eter

-

1 )M )riction 'osses in strai$t "i"es

1/

! )M ressure &ro" across ,a',es

!(

 )M entrifu$a' "u+" caracteristics

!

/ )M 3eter+ination of coe4cient of ori5ce +eter

//

2

2

1.0 L#*,r#-,r S#+- in G+n+r#'  Tese $ui&e'ines are +eant for safety a*areness a*areness in te 'aboratory. 'aboratory. Ho*e,e Ho*e,er6 r6 s"eci s"ecia'i a'i7e& 7e& 'abora 'aborator tory y +ay +ay re8ui re8uire re s"eci s"eci5c 5c safet safety y ru'es. ru'es. %oo& %oo& +ana$e+ent of 'aboratory is i+"ortant to "rotect 'aboratory "ersonne'9users a$ainst a7ar&s at *or:. 1.1L#*,r#-,r S#+- A#r+n+

• E,eryone is res"onsib'e for is or er o*n safety an& te safety of  oters *i'e *or:in$ in te 'aboratory.

• Before *or:in$ *it a ce+ica'6 assess+ent +ust be +a&e of its a7ar&s an& ris:.

• Be fa+i'i fa+i'iar ar *it *it a""ro a""ro"ri "riate ate "rote "rotect ction ion +easur +easure e *en *en you are are *or:in$ *it te fo''o*in$; 

)'a++ab'e substances



orrosi,e an& to; 'ist>; c'oro c'orofor for+6 +6 ben7i& ben7i&ine ine66 ben7e ben7ene6 ne6 +ety' +ety'c' c'or oro+ o+et ety' y' eter6 eter6 ,iny' ,iny' c'or c'ori&e i&e66 acry'onitri'e6 for+a'&ey&e6 etc.

• Ne,er use 'ubricants on ,a',e re$u'ators of co+"resse& $ases. 1.4L#*,r#-,r H,!+5++in H,!+5++in

• A'' e8ui"+ent sou'& be ins"ecte& carefu''y before use&. • E8ui"+ent an& *or: benc +ust be c'eane& after use. • Use non?cro+ate c'eanin$ so'ution if "ossib'e. Ma:e sure c'eanin$ is &one in te fu+e oo& if su'"uric aci& $'ass c'eaner is use&.

4

• ee" 'aboratory @oor &ry at a'' ti+es. Any s"i''s +ust be i++e&iate'y atten&e& to. 1.6A-+r H,!r7L,n H,!r E/+ri$+n-

• A,oi& e so',ent s"i''s C a""'y acti,ate& carcoa' an& +i< torou$'y unti'

5

+ateria' is &ry. Transfer +i

2

)or turbu'ent @o* te re'ationsi" bet*een ea& 'oss an& ,e'ocity is e

 Te unit of ,iscosity is in te c$s syste+ is te "oise . A +easure of te W@ui&ity of a substance is te :ine+atics ,iscosity *c is &e5ne& as;? =!.(> i.e. X   µ  =!.J>

 ρ 

2.1.3 L#$in#r F', in # Cir!'#r Pi+

onsi&er te @o* of @ui& in a concentric in a circu'ar "i"e as so*n in 5$ure. Let te "ressure &ro" &ue to @ui& friction o,er a "i"e 'en$t L be .

)i$ !.1Strea+tube in a ircu'ar i"e  Te force e )or &yna+ic e8ui'ibriu+ tese t*o forces +ust ba'ance   Z &! 9 /  [ Z &L =!.10> σ 

= ∆ P  ⋅ d    ∆ L 4

At te *a'' of te "i"e *ere &  3 te sear stress

16

=!.11>

σ  0

 is

=

σ 0

∆ P  d  ⋅ ∆ L 4

 

=!.1!>

An& substitute for δ  P / δ  L  bac: into te e8uation $i,es σ  d 

=

σ 0

cons tan t 

=

 D

=!.1> )ro+ *ic it fo''o*s tat te sear stress ,aries 'inear'y fro+ 7ero at te centre to a +a

2 µ  ∆ L

In,esti$atin$ fro+ te "i"e centre =r  0> to te "i"e *a'' =r  R an& V  0> yie'&s V 

2 2 =  R − r 

∆ P 

4 µ 

=!.1J>

∆ L

 Te ,e'ocity &istribution is terefore "arabo'ic *it +a

∆ P  =

32   µ  LV mean

=!.!0>

 D 2

E an& te ea& 'oss e8uation is ten *ritten as f     f  ' L V   D

2

2 g 

=!.0> 2.1.6 R+n,'& n!$*+r

#en Reyno'&s "'otte& te resu'ts of is in,esti$ation of o* te ener$y ea& 'oss ,arie& *it te ,e'ocity of @o*6 e obtaine& t*o &istinct re$ions se"arate& by a transition 7one. In te 'a+inar re$ion te y&rau'ic $ra&ient is &irect'y "ro"ortiona' to te +ean ,e'ocity. In te turbu'ent @o* re$ion te y&rau'ic $ra&ient is "ro"ortiona' to te +ean ,e'ocity raise& to so+e "o*er n ,a'ue of n bein$ in@uence& b te rou$ness of te "i"e *a''. i  V1.J i  V! i  V1.J to !

)or s+oot "i"e )or ,ery rou$ "i"e In te transition re$ion 19

2.1.8 Fri-i,n #-,r

 Te ea& 'oss &ue to friction for bot 'a+inar an& turbu'ent @o* can be "resicte& by te 3arcy #eisbatc e8uation i=

32 µ V 

=!.1>

 ρ  gD 2

By +u'ti"'yin$ to" an& botto+ by V an& rearran$in$ i=

4 × 16 µ  V 

VD ρ 

2

2 g 

or

i=

64 µ 

V  2

VD ρ  2 g 

=!.!> i=

 f   =

*ere

4  f   V 

 D

16 µ 

VD ρ 

2

2 g 

=

16

 Re

or or

i=

  f  ' V   D

 f  ' =

2

2 g 

64 µ  VD ρ 

=!.>

=

64  R e

=!./>

are as to be use& &ue to tese t*o &ierent &e5nitions of te friction factor6 *ic are bot in e8ua''y co++on use6 an& terefore in coosin$ te a""ro"riate re'ationsi" bet*een te friction factor an& te ea& 'oss. #en usin$ $ra" of friction factor a$ainst Reyno'&s nu+ber a'*ays cec: te re'ationsi" for 'a+inar @o* as a +ean of  &istin$uisin$ bet*een te t*o. If  f   = If

16

 Re

  f  ' =

64

 Re

ten use ten use

h f   h f  

= =

4  fLV  2  D 2 g 

=!.2>

2

 f  ' LV   D 2 g 

=!.(>

)or turbu'ent @o* te friction factor is a function of Reyno'&s nu+ber6 te re'ati,e rou$ness of te "i"e *a'' ε  / D . )or i$'y turbu'ent @o*s te friction factor beca+e in&e"en&ent of te Reyno'&s nu+ber in a @o* re$i+e :no*n as fullydeveloped turbulent ow. Te +ost *i&e'y acce"te& &ata for friction factors for use *it te 3ar'ey #eisbac: for+u'a is tat "ro&uce& by rofessor L.).Moo&y. Se'ection of "i"e si7e for a "i"e to carry a $i,en @o* rate6 *ic is a ,ery co++on e Fut'et Hea& H! =++> 22

OBSER;ATIONS> 2.8

RESULTS AND ANALYSIS>

1. Recor& te resu'ts on a co"y of te resu'ts seet. !. 3eter+ine te *ater &ensity an& ,iscosity fro+ Anne< 1 of art 1 of  te +anua'. . )or eac resu't ca'cu'ate te +ean ,e'ocity an& ence te Reyno'&s nu+ber an& friction factor ] ’ . /. 'ot a $ra" of 'o$^ f  a$ainst 'o$ ^ V6 &ra* a strai$t 'ine trou$ te resu'ts an& +easure its s'o"e to e  Ti+e to o''ect #ater6 t =sec> Vo'u+e )'o* Rate6 Q ='itres9+in> Mean Ve'ocity6 V =+9sec> Lo$e V Reyno'&s Nu+ber6 Re Lo$e Re In'et Hea&6 H1 =++> Fut'et Hea&6 H! =++> )riction Hea& Loss6  f  =++> =H1?H!> Lo$e f  )riction )actor6 f Lo$e f !. Test Section 3ia+eter;OOOOO++ #ater Te+"erature;OOOOO.O. \  23

3ensity;OOOOOOOO.. :$9+ ! Viscosity;OOOOOOOOO.c Quantity of #ater o''ecte&6 Q ='itre>  Ti+e to o''ect #ater6 t =sec> Vo'u+e )'o* Rate6 Q ='itres9+in> Mean Ve'ocity6 V =+9sec> Lo$e V Reyno'&s Nu+ber6 Re Lo$e Re In'et Hea&6 H1 =++> Fut'et Hea&6 H! =++> )riction Hea& Loss6  f  =++> =H1?H!> Lo$e f  )riction )actor6 f Lo$e f

24

APPENDI:

)i$ure !. Te Stanton 3ia$ra+9Moo&y art

25

FLUID MECHANICS LABORATORY E:PERIMENT 3 PRESSURE DROP ACROSS ;AL;ES

3.0

INTRODUCTION

ressure &ro" is a critica' e'e+ent in ,a',e si7in$ an& ,a',e se'ection. Te +ost critica' factors to &eter+ine te "ressure &ro" are te ori5ce si7e an& interna' @o* "at.  Tere are ,arious ty"es of ,a',es *ic can be use& to contro' te @ui& @o*. Ho*e,er6 &ierent ty"es of ,a',es a,e teir o*n @o* caracteristics. Te @o* caracteristics an& @o* rate are in@uence& by te &e$ree of ,a',e o"enin$. Te &esi$n of "i"in$ an& "u+"in$ syste+s for ce+ica'6 "ar+aceutica' an& foo& "rocessin$ in&ustries re8uires :no*'e&$e of te "ressure &ro" &ue to @o* in strai$t "i"e se$+ents an& trou$ ,a',es an& 5ttin$s. resence of ,a',es an& 5ttin$s *i'' cause friction 'osses. Tese usua''y resu't fro+ &isturbances of te @o*6 *ic is force& to can$e &irection abru"t'y to o,erco+e "at obstructions an& to a&a"t itse'f to su&&en can$es in te cross section or sa"e of te &uct. Va',es fa'' into t*o broa& ty"es6 'inear an& rotary. In a 'inear ,a',e suc as a $'obe ,a',e te &is: 'ifts fro+ te seat. Te &is: rotates in te seat of a rotary ,a',e suc as a ba'' ,a',e. In tis e

an& assu+in$ tat te s"eci5c $ra,ity is 1.0 ten hv

=

Q2

 ρ  gC v2

=

 A 2V  2

 ρ  gC v2

=./>

No* intro&ucin$ a ,a',e 'oss coe4cient6  , *ic sou'& not be confuse& *it te Euro"ean for+ of te ,a',e @o* coe4cient6 : ,. hv =  K v



2

2 g 

=.2>

E8uatin$ tese t*o e

Linear in *ic  ,  `.

b>

E8ua' ercenta$e in *ic  ,  `!. Te i+"ortance of  e8ua' "ercenta$e ,a',e is tat for any $i,en o"enin$6 any

27

"ro"ortiona' increase in ,a',e o"enin$ causes te sa+e "ro"ortiona' increase in @o* "ro,i&in$ te "ressure across te ,a',e re+ains constant. )or e to "ro,i&e a s+a'' o,er@o* fro+ te in'et tan: an& o,er@o* "i"e. Ensure tat any air bubb'es are b'e& fro+ te +ano+eter tubes. /. Set u" a @o* con&ition *it a &ierentia' ea& of 20++. arefu''y +easure te @o* rate usin$ te ,o'u+etric tan: an& a sto" *atc. 2. arefu''y c'ose te ,a',e in s+a'' but +easurab'e incre+ents6 unti' te ,a',e is fu''y c'ose&. Recor& te ,a',e "osition an& +easure te @o* rate at eac ,a',e "osition. (. Measure te *ater te+"erature. 3.6

RESULTS SHEET

#ater Te+"erature OOOOOO. \   3ensity OOOOO.:$9+! Viscosity OOOO.. c  Test Section 3ia+eter OOO++

29

Quantity of *ater o''ecte&6 Q ='itres>  Ti+e to o''ect #ater6 t =sec> Vo'u+e )'o* Rate6 Q ='itres9+in> Mean Ve'ocity6 V =+9sec> Ve'ocity Hea&6 V ! 9!$ =+> In'et Hea&6  1 =++> Fut'et Hea&6  ! =++> i"e )riction Loss6   =++> Va',e )riction Loss6  V =+> Va',e ressure Loss6   =a> Va',e )'o* oe4cient6  V =$"+9"si 19!> Va',e F"enin$6 &e$rees =°> Va',e F"enin$6 t ercent => OBSER;ATION>

3.8

RESULTS AND ANALYSIS

1. Recor& te resu'ts on a co"y of te resu't seet. !. 3eter+ine te *ater &ensity an& ,iscosity fro+ Anne< 1 of art 1 of  te +anua'. . a'cu'ate te ,e'ocity an& ence te ,e'ocity ea& for eac resu't. /. )ro+ te resu'ts for te 10++ "i"e use& in e or 1/.J "oun& "er s8uare inc. Since baro+eter is use& to +easure at+os"eric "ressure6 tis "ressure is often referre& to as Baro+eter "ressure6  b. %enera''y "ressure +easurin$ &e,ice +easure "ressure &ierence fro+ tat of at+os"eric. Te resu'tin$ "ressure is ca''e& %au$e "ressure6  $ *ic can be "ositi,e or ne$ati,e ,a'ue. Tus6 Abso'ute "ressure  Baro+eter ressure  %au$e ressure abs  b  a  =/.1>  Te at+os"eric "ressure or baro+eter "ressure can be in&icate& by b

 101 C 0.1022EL

=/.!>

*ere b is te at+os"eric "ressure in +i'ibar Fne +i'ibar e8ua' 0.01/2 "oun& "er s8uare inc or e8ua' to *ater co'u+n at / o of 0.0101J+. EL is te e'e,ation of abo,e +ean seas 'e,e' for te "oint to be +easure&. In "u+" insta''ation ca'cu'ations6 te at+os"eric "ressure +ay be e8uate& to a *ater co'u+n ei$t as; H"  10. C 0.001-EL

=/.>

H" is te at+os"eric "ressure e or "oun& "er s8uare inc =SI> 'i8ui& "ressure is often in&icate& as ei$t of co'u+n creatin$ "ressure on te co'u+n su""ortin$ surface. Tis ei$t of 'i8ui& co'u+n is ca'' ressure Hea&. Tus *ere

d  $ H"

    

H"

 9d  9$

s"ecific *ei$t Li8ui& &ensity Acce'eration &ue to $ra,ity =N9+!>  =:$9.-1N>  =+ 9 d:$> =9 d> +

33

=/./>

4.1.1.3

;+',i- H+#&6 =H9>

Any 'i8ui& +o,in$ in a "i"e or o"en canne' as a ,e'ocity6 ence :inetic ener$y. Tis ener$y +ay be e

In case no ener$y is ta:en in or out of te ! "oints6 te &ierence bet*een H T is )riction Hea&. )riction Hea& bet*een oint 1 an& ! Hf1!  HT1 C HT!  19 d C !9 d  V1!9!$ C V!!9!$  1 C !  =/.J> In te case of a "u+"6 an ener$y is e.

4.1.2

H T3  H T1 C H T!  = ! C 1>9 d  =V!! C V1!>9!$  =!?1>

=/.->

If friction is consi&ere&6 H T3  H T1 C H T!  Hf1! = ! C 1>9 d  =V!! C V1!>9!$  =!?1>  Hf1!

 =/.>

P,+r #n& P!$ E@i+n.

o*er is te a+ount of *or: &one "er unit ti+e. Tis unit +ay be in #atts =N?+9s>. Fne Horse o*er e8ua' J/2.J #atts or 220ft?'b9s. In "u+" o"eration6 *e consi&er ! ty"es of "o*er. 4.1.2.1

P,+r ,!-!- , P!$ (W,)

 Tis is "o*er tat "u+" &e'i,ers to te 'i8ui& an& often referre& to as Hy&rau'ic o*er or #ater o*er. Hy&rau'ic o*er &e"en& on te rate of @o* =Q> an& ea& =H T3> or "ressure =>. If

#o  Q or QH T3 #o is te 'i8ui& "o*er in #atts Q is te )'o* rate in 't9+in  is te "ressure in :$9c+ !

W 0 = Q

 L m$n

×

1 m$n

×

60 se

1m

3

1000 L

 1.(2 Q  =N? +>9sec 36

×  P 

kg   f   cm

2

×

=/.10>

10

4

cm 2

m

2

×

9.81 N  1kg   f  

 1.(2 Q  #atts.

4.1.2.2

=/.11>

P,+r In!- -, -%+ P!$ (Wi)

 Tis is te "o*er tat is &e'i,ere& to te "u+" by +o,er suc as +otor or en$ine so tat te "u+" can &e'i,er "o*er to te 'i8ui&.  Tis in"ut "o*er can be +easure& by a &yna+o+eter. #i  )r  !Zn   *ere

=/.1!>

#i  o*er In"ut )  3yna+o+eter turnin$ force R  3yna+o+eter ar+ 'en$t n  ri+e +o,er s"ee& rev

 Tus W i =  kg  f   × rm × n m$n × 2π 

#atts :$ + r"+

rad ($m ensionless ) 9.81 N  1 m$n × × rev 1kg  f   60 se

 1.0!JJ)+ =N?+>9sec  1.0!JJ)+ #atts

=/.1>

Increase of &yna+o+eter tor8ue =T)r> is +easure& &irect'y by an in&icator to rea& in N?+ W i

= !N  − m × n

rev m$n

× 2π  rad ($m ensionless) × 1 m$n rev

60 se

 0.10/J( Tn =N?+>9sec  0.10/J( Tn #atts

=/.1/>

In"ut "o*er to te =an& a'so to te in,erter> can be +easure& by a *att+eter. 4.1.2.3

P!$ Eii+n ( P)

u+" e4ciency  o*er tat "u+" &e'i,ers to 'i8ui& 9 In"ut "o*er   #o 9 #i

 

=/.12>

Note ; If a *att +eter is use&6 te *att+eter *i'' in&icate& +otor in"ut not "u+" in"ut6 ence te e4ciency beco+es "u+"? +eter e4ciency not "ure e4ciency. 4.2

OB u+" 1 In'et "ressure6 1 =bar> u+" 1 Fut'et "ressure6 ! =bar> u+" 1 S"ee&6 =Re,9sec> u+" 1 E'ectrica' In"ut o*er6 #i =#atts> u+" 1 Mano+etric Hea&6 H+ =+eter> u+" 1 Hy&rau'ic o*er6 # =#atts> u+" 1 F,era'' E4ciency6 η0 => C,n-#n- S++& i. C,n-#n- S!' (0 r+97+)

Quantity of *ater co''ecte&6 Q ='itres>  Ti+e to co''ect *ater6 t =sec> Vo'u+e )'o* Rate Q ='itres9+in> u+" 1 In'et "ressure6 1 =bar> u+" 1 Fut'et "ressure6 ! =bar> u+" 1 S"ee&6 =Re,9sec> u+" 1 E'ectrica' In"ut o*er6 #i =#atts> u+" 1 Mano+etric Hea&6 H+ =+eter> u+" 1 Hy&rau'ic o*er6 # =#atts> u+" 1 F,era'' E4ciency6 η0 => ii. C,n-#n- S!' (0 r+97+)

Quantity of *ater co''ecte&6 Q ='itres>

42

 Ti+e to co''ect *ater6 t =sec> Vo'u+e )'o* Rate Q ='itres9+in> u+" 1 In'et "ressure6 1 =bar> u+" 1 Fut'et "ressure6 ! =bar> u+" 1 S"ee&6 =Re,9sec> u+" 1 E'ectrica' In"ut o*er6 #i =#atts> u+" 1 Mano+etric Hea&6 H+ =+eter> u+" 1 Hy&rau'ic o*er6 # =#atts> u+" 1 F,era'' E4ciency6 η0 =>

43

FLUID MECHANICS LABORATORY E:PERIMENT 6 DETERMINATION OF COEFFICIENT OF ORIFICE METER

6.0

INTRODUCTION

An Fri5ce @o* +eter is te +ost co++on ea& ty"e @o* +easurin$ &e,ice. An ori5ce "'ate is inserte& in te "i"e'ine an& te &ierentia' "ressure across it is +easure&. Te ori5ce "'ate inserte& in te "i"e'ine causes an increase in @o* ,e'ocity an& a corres"on&in$ &ecrease in "ressure at te ,enacontracta. )ro+ te @o* "attern6 @ui& &iscar$e ,e'ocities an& corres"on&in$ coe4cients can be esti+ate&.  Te coe4cient of ,e'ocity6  V6 is te ratio of te actua' ,e'ocity to te teoretica' ,e'ocity. Te coe4cient of &iscar$e6  &6 is te ratio of te actua' @o* rate to te teoretica' @o* rate. 6.1

THEORIES AND E:PLANTION C,+@i+n- , 9+',i-

)i$ure 2.1 Measure+ent for Get traGectory usin$ ori5ce.

44

At a 'e,e' H abo,e te ori5ce6 ,e'ocity of *ater &iscar$e trou$ te ori5ce is V  √!$H. Tis ,e'ocity consists of ori7onta' an& ,ertica' co+"onents. As air resistance is ne$'i$ib'e6 ,e'ocity V can be consi&ere& as constant. At te sa+e ti+e6 te Get "at is &ro""in$ &ue to $ra,ity startin$ fro+ 7ero ,e'ocity at te ori5ce. Vertica' ,e'ocity6 U =+9sec >  $t Acce'eration &ue to $ra,ity6 $  .-1 +9sec! =2.!> Vertica' &istance6 Y =+>   Ut   $t !   =2.>

=2.1>

y  0 *en te botto+ en& of te nee&'e is at te sa+e 'e,e' te center of te ori5ce. Te y  0 +ar: is +a&e on te "ane' bein& te nee&'e near te to" en& of te 5rst nee&'e. )or tis e.  Tis actua' ,e'ocity V at "oint 1 =V 1> can be foun&. Si+i'ar'y6 V !6 V +ay be foun&. oe4cient of Ve'ocity6  ,  Ve'ocity

Actua' Ve'ocity9Teoretica'

 Tus6 ,1  V19V =j19√=!Y1>=!$H>9$>>  j19!√ Y1HD V!  j!9!√ Y!H =2./> Various , +ay be foun& by ,aryin$ *ater 'e,e' in te tan: as *e'' as can$in$ te ori5ce si7e.

45

#ater is &irecte& to te benc +easurin$ tan: or a +easurin$ cu". Tus @o* rate can be &eter+ine& by ti+in$.  Teoretica' @o* rate6 Q  VA   =2.2>  Teoretica' ,e'ocity6 V  √!$H +9sec   =2.(> Fri5ce cross section area6 A  π&!9/ +!   =2.J> 3ia+eter of te ori5ce6 3  / ++ or - ++

=2.->

Let actua' @o* rate fro+ +easure+ent  Q A  Te coe4cient of &iscar$e6  &  QA9Q  QA9=π&!9/.√!$H>

=2.>

It *i'' be foun& fro+ te e Vo'u+e ='it>  Ti+e =sec> )'o* rate ='it9+in> 3istance fro+ $ra" =++> j1  206 Y1  j!  1006 Y!  j  1206 Y  j/  !006 Y/  j2  !206 Y2  j(  006 Y(  jJ  206 YJ  j-  /006 Y-  oe4cient of Ve'ocity V1 V! V V/ V2 V( VJ 47

E
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF