KVPY SA Stream Solution 2011

May 13, 2018 | Author: Nilesh Gupta | Category: Gases, Chemistry, Physical Sciences, Science, Physical Chemistry
Share Embed Donate


Short Description

KVPY SA Stream Solution 2011...

Description

HINTS & SOLUTIONS (YEAR-2011) ANSWER KEY  Ques.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

 Ans.

A

C

A

B

B

D

A

A

A

C

B

C

B

B

C

A

A

C

D

A

Ques. 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

 Ans.

B

C

C

D

C

B

B

D

A

C

D

C

D

D

A

D

A

A

B

D

Ques. 41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

 Ans.

D

D

B

B

C

B

D

C

B

C

D

A

C

C

A

B

A

B

B

D

Ques. 61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

 Ans.

C

B

B

A

B

B

B

C

A

A

C

B

A

A

B

D

C

A

C

C

PART-A (1 Mark)

MATHEMATICS

1.

( x  b)( x  c ) ( x  c )( x  a) ( x  a)( x  b) + + (a  b)(a  c ) (c  a)(c  b) (b  c )(b  a)

P(x) = Let

f(x) = P(x) – 1 f(a) = 1 + 0 + 0 – 1 = 0 f(b) = 0 + 1 + 0 – 1 = 0 f(c) = 0 + 0 + 1 – 1 = 0

f(x) is a polynomial of degree atmost 2, and also attains same value (i.e., 0) for 3 distinct values of x (i.e. a,b,c).

 

2.

f(x) is an identity with only value equal to zero. f(x) = 0

 x  R  P(x) = 1,  x  R

Using cauchy schwartz’s inequality (a2 + b2) (x2 + y2)  (ax + by) 2 equality holds at

a x

 =

b y



ay – bx = 0

Aliter : a2 + b2 = 81

......(i)

x2 + y2 = 121

......(ii)

ax + by = 99 2

2

2

......(iii) 2

(a  + b ) (x + y ) = 81 × 121

......(iv)

[(i) × (ii)]

(ax + by)2 = 992

......(v)

[squaring (iii)]

(iv) – (v) (ay – bx)2 = 0   ay – bx = 0

CAREER POINT : 128, Shakti Nagar, Kota-324009 (Raj.), Ph: 0744-2503892

Page # 125

3.

x

 Then,

  x    x2 +

  x    x3 +

1 

1 x

 a  and x 2  1  b 3 x

2

  a2 x  1

x

+2 = a2

2

1 

.........(i)

3

  = a3

x 

  1   3 x    = a 3   x  x 1

.........(ii)

3

add equation (1) and (2)

  2 1     3 1      x  3    x  2   2  3 x  x     x        b +

x3

4.



1 

  = a2 + a3

x 

  3 1    x  2   + 2 + 3a = a 2 + a3 x     1 x2

= a3 + a2 – 3a – b – 2

|a – b| = 2, |b – c| = 3, |c – d| = 4 a–b=±2 b–c=±3 c–d=±4 possible values of (a – d) are ± 9, ± 5, ± 3 |a – d| = 9, 5, 3, 1 Sum of all possible values are 18

5.

Given 0 < r < 4 in all the obtain (Base) x =

9 5

the option having least base will give the largest x.

   

So, in option B base 1 

r   

  is minimum for 0 < r < 4.

17 

Aliter : (1 +  x =

4 5



x log (1 + ) = log (1.8)



x=

log (1.8) log (1   )

CAREER POINT : 128, Shakti Nagar, Kota-324009 (Raj.), Ph: 0744-2503892

Page # 126

For x to be maximum log (1 + ) should be minimum r 

 = r  17 6.



or

2r

or

 

r  17

1

or 

in 0 < r < 4



 is minimum.

 Angle bisector theorem x 6

 =

y z

 

20 = 6y



y=

xz = 6y

10 3

6

x

2

10cm y

cm

z

ALITER : Let

 ACB =  BC = 6 cos  , AB = 6 sin   BD : CD = AB : AC  = 6 sin   : 6  = sin   : 1 BD =

CD =

6 cos 

1  sin 

 sin 

  6 cos      1  1  sin  

.........(i)

.........(ii)

BD = CD sin 

  ADC = 10 cm 2 Now, area of   1 × 6(CD) sin = 10 2 CD sin = 10/3 cm

7.

 

Slant height = 13

  by    = r   2.5 = 13 





10  13

CAREER POINT : 128, Shakti Nagar, Kota-324009 (Raj.), Ph: 0744-2503892

Page # 127

8. 20  x 12  = 8 x



x2 – 20x + 96 = 0 x = 8, 12

ALITER :

 A(0,12)

C(20,8) B(0,0)

= 4 52

 42

1

 AC =

20 2



(122 + x2) + (82 + (20 – x) 2)

E(x,0)

D(20,0)

= 4 26 = 202 + 42

2x2 – 40x + 400 + (12 2 – 202) + (82 – 42) = 0 2x2 – 40x + 144 + 12.4 = 0 x2 – 20x + 72 + 24 = 0 x2 – 20x + 96 = 0 x = 12, 8

9.

 AP = 2 sin 60° =

 10.

3

d = 2 3

5123 – (2533 + 2593) = 5123 – [(512) (253 2 + 2592 – 253.259)] = 512 (5122 – ((512)2 – 3(253)(259)) = 512 (3.253 – 259) = 29. 3. 253 . 7.37 = 29. 3. (11) . (23). 7.37 So, number of distinct prime divisors are 6.

11.

Top layer has (13 × 13) balls Simillary one layer below top layer will have (14 × 14) balls and we have 18 lesens to t otal number of ball N = (13)2 + (14)2 + .............+ (30)2 N=

30  31 61 6

 –

12  13  25 6

N = 8805

CAREER POINT : 128, Shakti Nagar, Kota-324009 (Raj.), Ph: 0744-2503892

Page # 128

12.

Let distance is 6d Mud

:

Tar

:

Stream

Distance

d

:

3d

:

2d

Speed

3V

:

5V

:

4V

time

d 3V

:

3d 5V

:



10

:

18

:

2d 4V 15

(Note : order is changed in questions)

13.

3 step

14.

The clock well show 1 in an hour for 19 tim e for 11 hours it will show the incorrect time for (19 × 11) time. The last 12 th hour will always show the incorrect time so total incorrect tim e (19 × 11 + 60) min = 269 min there are 24 hours in a day to = 269 × 2 = 538 min 538 min =

269 30

= 9 hou hours rs

the fraction day when the clock shows correct tim e is = 1  = 1

3 8



9 24 5 8

15. Righ Rightt 15 14 13 12 11 10

Wrong ong 15

Una Unattemp tempte ted d 0 4 8 12 16 20

6 cases only

CAREER POINT : 128, Shakti Nagar, Kota-324009 (Raj.), Ph: 0744-2503892

Page # 129

PHYSICS 16.

By mechanical energy conservation KEi + Ui = KEf  + Uf  O + U i = 0 + Uf  Ui = Uf  hi = h f  So D will lie on line AB

17.

Since toy is not accelerating so net external for ce on toy is zero. So (A)

18. |S1| + |S2| = H 1 2

gt 2  + ut –

ut = H .

2

gt 2  = H

....(I)

u2

H=

1

....(II)

2g

u

t = 2g

S2 = ut – =

3 4

1 2

gt 2  = 4

u 1 u2  g 2 2g 2 4g



3u2 8g

H

19.

By concept of centre of mass 36x = 9(20–x) 36x = 180 – 9x 45x = 180 x = 4m 20.

 All three will will be in thermal equilibrium with air of room. so temperature of the three will be same

21.

Pressure of gas is same everywhere in the vessel.

22.

To travel from P to Q in minimum time, she should travel on path PCQ.

23.

i = 45°  C C = 45° for minimum    sin 45 = 1

 =

2  = 1.42

CAREER POINT : 128, Shakti Nagar, Kota-324009 (Raj.), Ph: 0744-2503892

Page # 130

24. In this case only half part of lens is used to form the image so intensity will reduce

25.

R= R=

R=

R =

  A

  A



 

2 V

(2)2 V

 = 4R

26. E1 = Electric field due to +Q E2 = Electric field due to –2Q There resultant is 0 at this point

27.

mgh / t

 =

750

 100

300  10  6 60 = 750

=

300 750

 100

 100

= 40%

28.

6A from Q to P

CAREER POINT : 128, Shakti Nagar, Kota-324009 (Raj.), Ph: 0744-2503892

Page # 131

29.

pb 314 82

 2e –1 +

4  + X210 He 2 82

So 82 proton and 128 Neutron 30.

PV = NKT 105 × 100 = N × 1.38 × 10 –23 × 273 N  3 × 1027

CHEMISTRY 31.

Since pressures of the gases are same in both the containers. So, the final pressure will not change

32.

Reativity towards Friedel-Crafts alkylation is pr oportional to electron density in the benzene ring.

33.

n=2 l = 0, 1

0   m  = 0,   1  1   

34.

 Average Kinetic Energy depends only on temperature temperature (KE)avg =

35.

Ideal gas

3kT  per molecule 2

H = 0 S > 0

(randomness increases)

36.

   Cr 2O3 + N2 + 4H2O (NH4)2 Cr 2O7   

37.

 Accord  Acc ording ing to the graph gra ph solu bility bili ty 40° is appr ox. 200 g per 100 ml. ml . For 50 ml, amount amo unt is 100 g approx.

38.

 Aldehyde, ketones with acetyl acetyl group CH3 –

39.

40.

1 n

2



1 16

– show Iodoform test.

 n, number of half-lives = 4 = 2 hrs. half-life half-life = 30 min.

ZnS   ZnSO 4 during roasting, sulphide ore is converted into sulphate.

41.

42.

Cl 2 + 2KBr  → 2KCl + Br 2 reddish brown

CAREER POINT : 128, Shakti Nagar, Kota-324009 (Raj.), Ph: 0744-2503892

Page # 132

43.

(i) and (iv) are hetro aromatic and the resonance form of azulene (iii) is arom atic.

(ii) Is nonaromatic.

44.

Simple nomenclature of alkane.

45.

The major product formed in the reaction :

 Product is :

Sol.

( A) i (B ) ii ( C ) ii i ( D ) iv (C) The given reaction is S N2 which occurs at sp 3 carbon with good leaving group.

PART-II (2 Marks)

MATHEMATICS 61.

f(x) = ax 2 + bx + c, given,

f ( 1) = 0

f(1 f(1) = 0 a+b+c=0

and

4 0 < f (6 ) < 5 0 40 < 36a + 6b + c < 50 40 < 35a + 5b < 50 8 < 7a + b < 10

7a + b = integer = 9 and

.......(1)

6 0 < f (7 ) < 7 0 60 < 49a + 7b + c < 70

60 < 48a + 6b < 70 10 < 8a + b < 11.6 8a + b = 11

.......(2)

solving equation (1) and (2) a = 2, b = –5, so c = 3 f(x) = 2x2 – 5x + 3 f(50) = 4753 t= 4

CAREER POINT : 128, Shakti Nagar, Kota-324009 (Raj.), Ph: 0744-2503892

Page # 133

62.

We can write the expression as

  2 1  1  =   r  1r  1  r 2  1

2011 r 2



r 2

1 1     1    r  1 r  1

=

Putting r = 2, 3, ............, 2011 1

= 2010 + 1 +

= 2011 +

2



1 2012



1 2011

1   1   2  2011 2012  1

1 ) 2

this lies between (2011, 2011

63.

Let initially 2 bases have radii 5 & r. and finally bases have radii (1.21 × 5) & r.



Ratios of volumes =

h

V2 =

3

h

V1 =

V2 V1

3

V2 V1

 1.21

 ((6.05)2 + 6.05 r + r 2)

(52 + 5r + r 2)

 1.21 

( 6.05 )2

 6.05 r  r 2  1.21 5 2  5r  r 2

36.602 36.6025 5 + 6.0 6.05 5 r + r 2 = 30.25 + 6.05r + 1.21 r 2 .21r 2 = 6.3525 r 2 =

r=

64.

6.3525 .21 11 2

 cm. = 55 mm

Let speed of B = V km/hr. Let speed of A = 3V km/hr.

  V = 30 km/hr  Given 4r = 2 × 60 km/hr   Distance covered by then after 10 min. = 2 × 10 = 20 k m So, remaining distance = (30 – 20) km = 10 km. Time table by by B to cover cover 10 km = 65.

10 30

 = 20 min

 A

B

C

10 hr

20 hr

30 hr  

Exactly one pair of taps is open during each hour and every pair of taps is open at least for one hour. So, So,

first first we we say say, A and and B are are open open for for 1 hou hourr, then then B & C and and then then C & A.

CAREER POINT : 128, Shakti Nagar, Kota-324009 (Raj.), Ph: 0744-2503892

Page # 134

1     1 1     1   1 1       +     +     = 22  10 20   20 30   30 10  60 First then

second then

Third then th

 22    part In three hours the tank will be f illed   60  Now, for minimum tim e, the rest tank m ust be filled with A and B taps.

9     1 1      10 20 60 

th

 38    Part of tank will take 5 hour more So, the rest   60  So, the tank will be filled in 8 th hour.

PHYSICS

66.

kx1 + 1vg = vg kx1

v = g   g 1 kx2 + 2vg = vg kx 2

v = g   g 2 kx1 (  1)g



kx 2 (  2 )g

x1 – x1 = x2 – x2 x1 – x2) = x1 – x2  =

2x1  1x 2 x1  x2

8

67.

 4

1 2

F.dx

1

1

2

2

 mv 2f   mv i2

 × 3 × 8 –

1 2

 × 1.5 × 4 =

1 2

 × 0.5 (vf 2 – 3.16)2

24 – 6 = 0.5 (v f 2 – 3.162) 36 = vf 2 – 3.16 2 vf   6.8 m/s

CAREER POINT : 128, Shakti Nagar, Kota-324009 (Raj.), Ph: 0744-2503892

Page # 135

68.

vi = vf  5 2

×1 × V +

5

 × 0.5 × 4v =

2

5 2

 P 5V

3V = 5PV P=

3 5

 = 0.6

69.

sin(90 – ) = sinr  4

cos = 3 

cos =

2 3

x/2 h2 

1 2

h x

2

2

x 4

2

4

= 3 53



2 1 4

=

= 3

1 49 16



4 16

8 3 53

70.

Pi = i 2R 2

100  10  P =   1  16   4  

Pf  = i2R 2

100 100  10  9  =   9   = P 12  12 16  12  CAREER POINT : 128, Shakti Nagar, Kota-324009 (Raj.), Ph: 0744-2503892

Page # 136

CHEMISTRY 71.

100 mL 0.1 M CH 3COOH 50 mL 0.4 M CH3COONa

CH3COO 

Ch3COOH  = 1 pH = pKa + log 1 = pKa = 4.76 72.

9-structural isomers are possible. CH3CH2CCH, CH2 =CH–CH=CH2 ,

CH3 –CC–CH3 CH2 =C=CH–CH3

73.

74.

75.

Co+3 Ni+2 Cr +3 Fe+2 Co+3

: 3d6 45° 45° stro strong ng fiel field d lig ligan and d (NH (NH3) 8 : 3d 45° SFL (NH3) : 3d3 45° WFL (H2O) : 3d6 45°  45° WFL (H2O) will be be diamagnetic (i)

Reac Reacti tion on quot quotri rien entt Q =

[H] 2 [H2 ] [ 2 ]

 =

(0.4 )2 0.1 0.2

=8

Q< K reaction proceeds in the forward direction.

CAREER POINT : 128, Shakti Nagar, Kota-324009 (Raj.), Ph: 0744-2503892

Page # 137

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF