Key & Solut_new
Short Description
Download Key & Solut_new...
Description
NARAYANA IIT ACADEMY INDIA SR IIT-IZ3-SPARK
JEE MAINS MODEL)
TIME : 3 HRS
DATE :10-1-2015
CTM-2
MARKS : 360
KEY PHYSICS 01) 4
02) 1
03) 2
04) 1
05) 2
06) 2
07) 3
08) 1
09) 2
10) 4
11) 4
12) 3
13) 4
14) 4
15) 2
16) 3
17) 3
18) 1
19) 1
20) 2
21) 2
22) 2
23) 4
24) 2
25) 4
26) 3
27) 4
28) 2
29) 3
30) 4
CHEMISTRY 31) 3
32) 1
33) 2
34) 2
35) 2
36) 4
37) 1
38) 4
39) 3
40) 3
41) 3
42) 1
43) 3
44) 2
45) 3
46) 4
47) 1
48) 2
49) 4
50) 4
51) 2
52) 2
53) 2
54) 3
55) 3
56) 2
57) 1
58) 1
59) 2
60) 3
MATHS 61) 3
62) 4
63) 1
64) 2
65) 3
66) 4
67) 4
68) 1
69) 2
70) 4
71) 3
72) 1
73) 2
74) 1
75) 1
76) 3
77) 3
78) 1
79) 3
80) 2
81) 1
82) 1
83) 4
84) 2
85) 1
86) 3
87) 4
88) 3
89) 1
90) 4
PHYSICS anet 01.
m2 g 2 q 2 E 2 m
T 2
T 2
l anet l qE g m
2
2
Eq Mg
02. It is a balanced wheatstone bridge.
C AB
5 3 5 3 53 53
C AB 2
15 8
C AB 3.75 F
03. Since capacitor is a dc blocking element, so no current flows through the branch containing the capacitor. However, a voltage drop will exist across this branch Rnet 4 I total
V 1.5 A Rnet
Voltage drop across parallel combination of V2 = 6 – 4.2 = 1.8 V 2 If I2 is the current in resistor, then 1.8 I2 0.9 A 2 04. Since
Rl
2
and
3
is
R1 R1
R (a ) 2 a
R 2 R2
R (2 a a ) 2 a
Similarly R R2 (2 ) 2 RAB
Since, RAB
R1 R2 R1 R2
R (2 ) 4 2
r | Fm | BIl 05. Magnetic force
acts in the direction shown in figure
Since the rod moves downwards with constant velocity, hence the net force on it is zero.
mg tan Il
B
sin 06. According to following figure 2mk 1 2mV r qB B q
sin Bd
d r
also
q 2mV
0.51 0.1
1.6 1019 1 27 3 2 1.67 10 500 10 2
30 07. Torque experienced by the coil is BI ( r 2 ) This torque will be balanced by the torque produced by weight of coil (acting from the centre) BI ( r 2 ) (mg ) r I
mg rB
10 20 08. At t = 0 i.e. when the key is just pressed, no current exists inside the inductor. So and resistors (10 20) 30 are in series and a net resistance of exists across the circuit. 2 1 I1 A t 30 15 Hence As , the current in the inductor grows to attain a maximum value ie.e. the 10 entire current passes through the inductor and no current passes through resistor. 2 1 I2 A 20 10 Hence r r d Ñ E. dr (2 r ) E dt 09. dB 2 rE a 2 dt E P
10.
1 a 2 dB 2 r dt
e2 d d ; e ( BA) A ( B0 e t ) AB0 e t R dt dt
P
A2 B02 e 2t 1 ( AB0e t )2 R R
t0 At the time of starting , so 2 2 2 2 4 ( r ) B0 B0 r P R R
P
A2 B02 R
11. The voltage VL and VC are equal and opposite so voltmeter reading will be zero.
R 30, X L X C 25 Also V
i
R2 ( X L X C )2
V 240 8A R 30
So, 12. Capacitor is a dc blocking element and hence no current flows in (1). An inductor offers a zero resistance path to flow of dc and hence maximum current flows through (2). Vr .m.s T K . E T 13. and New K .E 2 (6.211021 J ) 12.42 10 21 J 2(484) 684ms 1
New velocity 14. Let h be the distance of the apex from the middle of the base. Further by Pythagoras theorem L12 2 L2 h 2 cons tan t 4
L12 ( h ) L 4 2
2 2
1 0 2 L2 L2 (2 L1L1 ) 4 L2 ( L2 2 T )
1
1 L1 ( L11T ) 4
L1 1 L 1 and 2 2 L1 T L2 T
L1 2 2 L2 1 v v1 f v vs 1 f v v1 v vs
f1 f
15. 16. For 1st reading of oscillator f A (514 2) Hz
f A 516 Hz or 512 Hz For 2 reading of oscillator f A (510 6) Hz nd
f A 516 Hz f A 516 Hz
or 504 Hz A has a frequency of 516 Hz.
VA
V V 4l 0.60
VB
V V 2l 0.61
17.
VA VB 5 Since v v 5 0.60 0.61 v 183ms 1 VA
183 305 Hz 0.6
VB 300 Hz sin C
r 4 / 3 8 d 3 / 2 9
18. 8 C sin 1 9
For TIR i>C C
sin sin C sin
19.
m m0 me m0 1 m0
m0 20.
8 9
m
D 1 f 0 30 5 1 5
D f 0
DBM 45 DM h tan 45 h 32cm
sin i sin r
sin r
sin i sin 45 3 4/3 4 2
tan r
sin r sin r cos r 1 sin 2 r
3 3 tan r 4 2 9 23 1 32 CM h tan r 32
3 20cm 23
CD DM CM 32 20 12cm I max I (a a ) 2
21. I 4a 2 4 I 0
When either of the two slits is covered then I I 1 ( a 0) 2 a 2 4 x [( 1)t ] 22. Shift,
D d
x 5 Here D D 5 [( 1)t ] d d 5 ( 1)t ( 1)
t 5
(0.5)(6 106 ) 5
6 10 7 m 6000Å
R1 N1 and R2 N 2 ( is same for a give sample) 23. As N2 < N1 Number of atoms disintegrated in time (t2-t1) is R R R R2 N1 N 2 1 2 1 N1 N 2
( R1 R2 )T ( R1 R2 )T 0.693
24. According to Ritz combination principle EC A EC B EB A
hc hc hc 3 1 2
3
12 1 2
N1 N 0 e 10 t
25. N 2 N 0 e t
N1 1 e( 10 ) t N2 e
9 t 1 t
1 9
hv Ek 26. hv
1 2 mv 2
v
2(hv ) m
v
2(hc ) m
EK hv hv0 27.
EK y, v x, hv0 cons tan t (k ) y hx k (equation of a straight line) h 2meV
28.
1
h 2 Mev
V E d
Id A
dE A dV 0 dt d dt
Id
8.86 10 12 3.14 (2 102 ) 2 5 1013 0.1103
29.
I d 5.56 103 A
30. Ge conduct at 0.3 V and silicon at 0.7 V both Ge and Si diodes are connected in parallel. When current begins to flow, the potential difference remains at 0.3 V so no current flows through Si-diode Potential difference across RL = 12 – 0.3 = 11.7 V Potential of Y = 11.7V CHEMISTRY 5 2 31. n-factor =10 2 3 0.95 0.95 32. n-factor =0.85 M E 0.85 sys nRln
33.
V2 V1
2 R l n 2 = 11.52 J/K 3.41 1000 S sura 310 = -11 J/K
Stotal 11.52 11 =0.52 J/K I 2( s ) I 2( g ) 34.
H 2 H1 C p (T2 T1 ) C p C p ( I 2( g ) ) C p ( I 2( s ) )
= - 6.2 cal / mole H 2 U 1 2 523
5786 U 1 2 523 U 4740 x( s ) ƒ
A( g ) B( g ) x (2 x 2 y )
35. Kp1 PA .PB2
y( s ) ƒ
C( g ) 2 B( g ) y (2 y 2 x)
K P2 Pc .PB2 K P1 x x 2y KP2 y K P1 x(2 x 2 y ) 2
x = 0.1 y = 0.05
36. 37. 38. 39. 40.
PA PB PC
Total pressure = = 3 (x + y) = 0.45 atm Conceptual Conceptual Conceptual Conceptual A N 6.023 3.7 1010 3.7 104 N
N 6.023 106 atoms 1015 gm Atoms of Sr 0.05 Atoms of Rb
41.
Atoms of ( Sr Rb) 1.05 Atoms of Rb
t
n 2.303 log 0 n
3.28 109 year 42. 43. 44. 45.
Conceptual Conceptual Conceptual Conceptual [ Ni (CN )3 CH 2O)3 ]1 46. (i) For 2(2 2) n=2 8 B.M [Co( H 2O )3 F3 ]o
(ii) n 4 4(4 2)
24BM [ Fe(CN )3 ( H 2O)3 ]1
(iii)
0 n=0 [Cr (CN )3 ( H 2O)3 ]o (iv) n 3 3(3 2)
15BM 47. Conceptual 48. Conceptual 49. At, 710°C CO2 C ƒ 2CO
G 0 Cr 3 6 NH 3 [Cr ( NH 3 ) 6 ]2 (excess ) 50. 51. Conceptual 52. Conceptual 53. If I2 reacts with excess Cl2 - water it is oxidized to HIO3. 54. X Y A propyne methane B N2O N2 C NH3 NH3 D N2O NO
55. 56. 57. 58. 59. 60.
Conceptual Conceptual Conceptual Conceptual Conceptual Conceptual
MATHEMATICS | x 3 | 1 2 x 4| y 3 | 1 2 y 4 61.
A is set of all point lying with in the square fromed by x = 2, y =2, x = 4, y = 4 ( x 3) 2 ( y 32 ) 2 B {( x, y) lying with in and on the circum A B A B Circle
(ab) S ab 0 ba 0 (ba) S R aa a 0 (a, a ) S 62. For any ‘a’ , for ( a, b) S ab 0 (b, c) S bc 0 For and a.c 0 a,b,c have same sign S (a c) equivalence
f ( x ) [ x] 1 x 0 [ x] 1 x 63. From the graph of y = [x] and y + x = 1 x [1, )[ x] 1 x [1, ) Domain is
-2
-1
0
1
2 Y+x=1
3
64. If f is one-one f1(x) > 0 3x2+2(a+2)x+3a>0 x R, b 2 4ac 0 a [1, 4]
65.
x tan(log(sec )) n f ( x) lim n 1 n2 f ( x)
x 2
1
0
Required area = 1 6
x2 dx 2
x=0
e x 1 1 if 1 x 0 x 1 f ( x) 1 if x 0 ex 1 if 0 x 1 x
66.
e x 1 1 1 1 x 0 x 1 e
lim f ( x) lim
x0
ex 1 lim f ( x) lim 1 x 0 x 0 x
e
67.
e
x x 1 2 a a
lim tan
xa
x 1 a lim x a x cot 2 a
x 2 1 . . a 2 2/ lim e xa x tan 1 2 a
e
using L1 hospital
2
lim
x a
e
1
x a
x tan 2 2 a
x=1
e f ( x ) log ex f ( x ) log e log ex y (let )
68. y
log ex e y x e e f 1 ( x) ee x
x
x
g ( x) ee g 1 ( x) ee .e x e ( e
x
x)
69.
x 1 x if x 0 f ( x ) 0 if x 0 x if x 0 1 x f 1(x )
(1 x) x f 1 (0 ) 1 2 (1 x )
f 1 ( x )
(1 x) x f 1 (0 ) 1 2 (1 x)
sin[ x ] 0
[x ] 70.
is always an integer 1 [ x]2 0 x R also f ( x) 0x R f(x) is constant function x R Differentiable f 11 ( x) 6 x 4 f 1 ( x) 3 x 2 4 x c
71.
x 1, f 1 ( x) 0 C 1, f 1 ( x) 3 x 2 4 x 1 At f ( x) x3 2 x 2 x k , f (1) 5
5 k , f ( x) x 3 2 x 2 x 5 f (0) 5 f 11 ( x ) 0 f 1 ( x ) 72.
is decreasing ……….(1) h ( x) sin(2 x)[ f (sin 2 x) f 1 (cos 2 x)] 1
1
x 0, sin 2 x cos 2 x f 1 (sin 2 x) f 1 (cos 2 x) 4
73.
For and also sin(2x) > 0 h1(x) > 0 Increasing dy sin y 8sin 3 3 x 8cos dx cos
x y 8, OA 8cos cos sin
Eq. of tangent 8sin OA OB 8 2 OB = minimum value of
from …….(1)
74.
1 b 4x2 b2 A 2 2
dx 3cm / sec. dt
Area dA 1 1 dx b 8 x. dt 4 2 4 x 2 b 2 dt
dA b2 ( when x b) (3) 3b dt 3b f (1) f (1) 75.
and
1 f1 0 2
2 1 x 9 16 (4 x 2) 2 4 3 x 2 4 x 4 0 2
76. x 2,
2 3
a .r 1 |a |
77.
| a | 3 a .r 3
since r a b a ( r a ) a b 4i 2 j 5k (a .a )r (a .r )a 4i 2 j 5k 9r 3(2i j 2k ) 4i 2 j 5k 9r 2i j 11k
Q ( x, y , z ) OQ r 78. Let such that PQ r (3i 2 j 6k ) sub : r PQ (2 3s )i ( s 3) j (5s 4)k PQ
parallel to x – 4y + 3z =1 2 3s 4 s 12 15s 12 0 S
1 4
3a 2 AB.BC | AB || BC | cos( AB,BC ) a .cos(120) 2 2
79.
nˆ 80. required vector is unit vector perpendicular to the vectors i-j+k and 2i+j-3k, 222 cos(90 ) 3 5
81.
a b | a b |
1 2 5 3 3 5 3
x2 6x 82. x2 6 x k
83.
17 k 2
1 k 1
and
17 k 0 2
for 2 district solutions b2-4ac>0
1 1 k ( ,1] 2 2
largest k value 1 x 1 1 1 e log x x x x 2 dx dx
1 e x log x e x c1 ]dx x
e x log x c1 x c2 3
3 r (log x) dx x Ar (log x) B r 0
84.
log x t x et dx et dt
t .e dt t e 3
t
3 t
3t 2et 6tet 6e t
x (log x)3 3(log x) 2 6(log x) 6 3
A
1 3 6 6 2
r
r 0
x 2 ax b
85.
4(b) a 2 4
solution x = 0 4b 4b a 2 a 0
f ( x) x 2 b roots
b
b
x dx 3
x 3dx 0
b
a
a
dx dx I 1 f ( x) 1 f (a x) 0 0
I 86.
a
a
1 f (a x ) 1 f ( x) 2 f ( x ) f (a x) dx [1 f ( x ][1 f ( a x )] 1 f ( x ) f ( a x ) f ( x ) f ( a x ) 0 0
2I
a
2 I 1 dx I 0
a 2 (0,
87. 3x2 + 5y = 32 down word parabola with vertex at solving, coordinates of A and B are (-2, 4), (3, 1) required area 3 32 3 x 2 1 1 2 5 dx 2 4 4 2 11 y=x+2 (-2,4)
32 ); y | x 2 | 5
y =x-2
A
B(3,1)
4 -2
3
2
y 0 x 0,1, 1 88.
symmetric about x and y axes. 1
4 x 1 x 2 dx 0
Required area
put
x sin
-1
89.
0
1
t 2 f ( x ) x 2 f (t ) 2tf ( x ) x 2 f 1 (t ) lim 1 lim 1 tx tx tx 1
2 xf ( x) x 2 f 1 ( x) 1 x 2 f 1 ( x ) 2 xf ( x ) 1 dy 2 1 y 2 L.D.E dx x x x2 y 2 a2 2x 2 y 90.
dy dy 0 x y dx dx
xy c y (1) 1 c 1 xy 1 y (2)
1 2
x y
for orthogonal trajectory
dx x dy ydx 0 dy
View more...
Comments