Kerosene PDF

January 27, 2023 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Kerosene PDF...

Description

 

Kerose Kero sene ne known as paraffin, lamp oil, and coal oil  (an obsolete term), is a Kerosene, also known combustible hydrocarbon liquid which is derived from petroleum. It is widely used as a fuel in aviation  aviation  as well as households. households. Its name derives from Greek: κηρός ( keros) meaning meanin g wax, and was registered as a trademark by Canadian geologist and inventor Abraham Gesner Gesner in 1854 before  before  evolving into a genericized trademark. It is sometimes spelled kero kerosine sine  in scientific and industrial industri al usage.[1]   The term kerosene  is common in much of of Argentina, Argentina, Australia, Canada, India, New Zealand, and the United States, [2][3] while the term paraffin  (or a closely related variant) is used in Chile, eastern Africa, South Africa, Norway, and in the United Kingdom.[4]   The term lamp oil, or the equivalent in the local languages, is common in the majority of Asia and "Earth Oil" in some parts parts of southern southern Asia. Asia. Liqui Liquid paraffin (called mineral oil in the US) is a more viscous and highly refined product which is used as a laxative. Paraffin wax is a waxy solid extract extracted ed from petroleum. Kerosene is widely used to power jet engines of aircraft (jet fuel) and some ro cket engines and is also commonly used as a cooking and lighting fuel, and for fire toys such su ch as poi. In parts of Asia, ke kerosene rosene is sometimes used as fuel for small outboard motors mot ors or even [5] motorcycles.  World total kerosene consumption for all purposes is equivalent equivalent to about 1.2 million barrels (50 million  million  U.S. gallons; gallons; 42 42 million million imperial imperial gallons; gallons; 190 million liters) per day.[6] To prevent confusion between kerosene and the much more flammable and volatile gasoline, some jurisdictions regulate markings or colorings colorings for  for containers used used to store or dispense dispen se kerosene kerosene. For example, in the in the United Sta States, tes, Pennsylvania requires that that portable containers used at retail service stations for kerosene be colored blue, as opposed op posed to red (for gasoline) or yellow (for diesel fuel). [7]

Contents Properties History Illuminating oil from coal and oil shale Kerosene from petroleum Use As fuel Heating and lighting Cooking Engines In chemistry In entertainment In industry Others Toxicity

Australian kerosene An Australian bottle, containing bottle,  containing blue-dyed kerosene keros ene

 

See also References Notes External links

Properties Kerosene is a low viscosity, clear liquid formed from hydrocarbons obtained from the fractional distillation of petroleum between 3

150 and 275 °C (300 and 525 °F), resulting in a mixture with a density of 0.78–0.81 g/cm  (0.45–0.47 oz/cu in) composed of carbon chains that typically contain between 10 and 16 carbon atoms per molecule. [8]  It is miscible in petroleum solvents but immiscible in water. The typical number of carbon atoms in the mixture of molecules making up kerosene ranges from 8 to 17 (C8-C17). The ASTM International standard specification D-3699-78 recognizes two grades of kerosene: grades 1-K (less than 0.04% sulfur by weight) and 2-K (0.3% sulfur by weight). 1-K grade kerosene burns cleaner with fewer deposits, fewer toxins, and less frequent maintenance than 2-K grade kerosene, and is the preferred grade of kerosene for indoor kerosene heaters and stoves. [9] Regardless of crude oil source or processing history, kerosene's major components are branched and straight chain alkanes and naphthenes (cycloalkanes), which normally account for at least 70% by volume. Aromatic hydrocarbons in this boiling range, such as alkylbenzenes (single ring) and alkylnaphthalenes (double ring), do not normally exceed 25% by volume of kerosene streams. Olefins are usually not present at more than 5% by volume. [10] The flash point of kerosene is between 37 and 65 °C (100 and 150 °F), and its autoignition temperature is 220 °C (428 °F). [11] The freeze point of kerosene depends on grade, with commercial aviation fuel standardized at −47 °C (−53 °F). 1-K grade kerosene freezes around −40 °C (−40 °F, 233 K). [12] Heat of combustion of kerosene is similar to that of diesel fuel; its lower heating value is 43.1 MJ/kg (around 18,500 Btu/lb), and its higher heating value is 46.2 MJ/kg (19,900 Btu/lb).[13] In the United Kingdom, two grades of heating oil are defined. BS 2869 Class C1 is the lightest grade used for lanterns, camping stoves, wick heaters, and mixed with gasoline in some vintage combustion engines as a substitute for tractor vaporising oil. BS 2869 Class C2 is a heavier distillate, which is used as domestic heating oil. Premium kerosene is usually sold in 5-or-20-liter (1.1 or 4.4 imp gal; 1.3 or 5.3 U.S. gal) containers from hardware, camping and garden stores and is often dyed purple. Standard kerosene is usually dispensed in bulk by a tanker and is undyed. National and international standards define the properties of several grades of kerosene used for jet fuel. Flash point and freezing point properties are of particular interest for operation and safety; the standards also define additives for control of static electricity and other purposes.

History The process of distilling crude oil/petroleum into kerosene, as well as other hydrocarbon compounds, was first written about in the 9th century by the Persian scholar Rāzi (or Rhazes). In his  Kitab al-Asra al-Asrarr (Book of Secrets), the physician and chemist Razi described two methods for the production of kerosene, termed naft abyad (‫ﺾ‬‫ﻴ‬ ‫ﻂ‬‫ﻧﻔ‬  "white "white naphtha"), using an apparatus called an alembic. One method used clay as an absorbent, whereas the other method used ammonium chloride ( sal ammoniac). The distillation process was repeated until most of the volatile hydrocarbon fractions had been removed and the final product was perfectly clear and safe to burn. Kerosene was also produced during the same period from oil shale and bitumen by heating the

 

rock to extract the oil, which was then distilled.[14]  During the Chinese Ming Dynasty, the Chinese made use of kerosene through extracting and purifying petroleum and then converted it into lamp fuel.[15]  The Chinese made use of petroleum for lighting lamps and heating homes as early as 1500 BC. [16]

Illuminating oil from coal and oil shale Although "coal oil" was well known by industrial chemists at least as early as the 1700s as a byproduct of making coal gas and coal tar, it burned with a smoky flame that prevented its use for indoor illumination. In cities, much indoor illumination was provided by piped-in coal gas, but outside the cities, and for spot lighting within the cities, the lucrative market for fueling indoor lamps was supplied by whale oil, specifically that from sperm whales, which burned brighter and cleaner.[17][18] Canadian geologist Abraham Pineo Gesner claimed that in 1846, he had given a public demonstration in Charlottetown, Prince Edward Island of a new process he had discovered.[17][note

1]

Persian scholar Rāzi (or Rhazes)  was the first to distill distill kerosene kerosene in in the 9th century. He is depicted here in a manuscript by Gerard of Cremona.

  He heated coal in a retort, and distilled from it a

clear, thin fluid that he showed made an excellent lamp fuel. He coined the name "kerosene" for his fuel, a contraction of keroselaion, meaning wax-oil.[19] The cost of extracting kerosene from coal was high. Gesner recalled from his extensive knowledge of New Brunswick's geology a naturally occurring asphaltum called albertite. He was blocked from using it by the New Brunswick coal conglomerate because they had coal extraction rights for the province, and he lost a court case when their experts claimed albertite was a form of coal.[20]  In 1854, Gesner moved to Newtown Creek, Long Island, New York. There, he secured backing from a group of businessmen. They formed the North American Gas Light Company, to which he assigned his patents. Despite clear priority of discovery, Gesner did not obtain his first kerosene patent until 1854, two years after James Young's United States patent. [21][22]  Gesner's method of purifying the distillation products appears to have been superior to Young's, resulting in a cleaner and better-smelling fuel. Manufacture of kerosene under the Gesner patents began in New York in 1854 and later in Boston—  being distilled from bituminous coal and oil shale.[19]  Gesner registered the word "Kerosene" as a trademark in 1854, and for several years, only the North American Gas Light Company and the Downer Company (to which Gesner had granted the right) were allowed to call their lamp oil "Kerosene" in the United States.[23]

Abraham Gesner first distilled kerosene from bituminous coal and oil shale experimentally in 1846; commercial production followed in 1854

In 1848, Scottish chemist James Young experimented with oil discovered seeping in a coal mine as a source of lubricating oil and illuminating fuel. When the seep became exhausted, he experimented with the dry distillation of coal, especially the resinous "boghead coal" (torbanite). He extracted a number of useful liquids from it, one of which he named  paraffinee oil because at low temperatures, it congealed into a substance that resembled paraffin wax. Young took out a patent on  paraffin

his process and the resulting products in 1850, and built the first truly commercial oil-works in the world at Bathgate in 1851, using oil extracted from locally mined torbanite, shale, and bituminous coal. In 1852, he took out a United States patent for the same invention. These patents were subsequently upheld in both countries in a series of lawsuits, and other producers were obliged to pay him royalties.[19]

Kerosene from petroleum

 

In 1851, Samuel Martin Kier began selling lamp oil to local miners, under the name "Carbon Oil". He distilled this by a process of his own invention from crude oil. He also invented a new lamp to burn his product. [24]  He has been dubbed the Grandfather of the American Oil Industry  by historians.[25] Since the 1840s, Kier's salt wells were becoming fouled with petroleum. At first, Kier simply dumped the useless oil into the nearby Pennsylvania Main Line Canal, but later he began experimenting with several distillates of the crude oil, along with a chemist from eastern Pennsylvania.[26] Ignacy Łukasiewicz, a Polish pharmacist residing in Lviv, and his Hungarian

A queue for kerosene. Moscow, Russia, 1920s

partner Jan Zeh had been experimenting with different distillation techniques, trying to improve on Gesner's kerosene process, but using oil from a local petroleum seep. Many people knew of his work, but paid little attention to it. On the night of 31 July 1853, doctors at the local hospital needed to perform an emergency operation, virtually impossible by candlelight. They therefore sent a messenger for Łukasiewicz and his new lamps. The lamp burned so brightly and cleanly that the hospital officials ordered several lamps plus a large supply of fuel. Łukasiewicz realized the potential of his work and quit the pharmacy to find a business partner, and then travelled to Vienna to register his technique with the government. Łukasiewicz moved to the Gorlice region of Poland in 1854, and sank several wells across southern Poland over the following decade, setting up a refinery near Jasło in 1859. [27] The petroleum discovery at the Drake Well in western Pennsylvania in 1859 caused a great deal of public excitement and investment drilling in new wells, not only in Pennsylvania, but also in Canada, where petroleum had been discovered at Oil Springs, Ontario in 1858, and southern Poland, where Ignacy Łukasiewicz had been distilling lamp oil from petroleum seeps since 1852. The increased supply of petroleum allowed oil refiners to entirely side-step the oil-from-coal patents of both Young and Gesner, and produce illuminating oil from petroleum without paying royalties to anyone. As a result, the illuminating oil industry in the United States completely switched over to petroleum in the 1860s. The petroleum-based illuminating oil was widely sold as Kerosene, and the trade name soon lost its proprietary status, and became the lower-case generic product "kerosene".[28]  Because Gesner’s original Kerosene had been also known as "coal oil," generic kerosene from petroleum was commonly called "coal oil" in some parts of the United States well into the 20th century. In the United Kingdom, manufacturing oil from coal (or oil shale) continued into the early 20th century, although increasingly overshadowed by petroleum oils. As kerosene production increased, whaling declined. The American whaling fleet, which had been steadily growing for 50 years, reached its all-time peak of 199 ships in 1858. By 1860, just two years later, the fleet had dropped to 167 ships. The Civil War cut into American whaling temporarily, but only 105 whaling ships returned to sea in 1866, the first full year of peace, and that number dwindled until only 39 American ships set out to hunt whales in 1876.[29] Kerosene, made first from coal and oil shale, then from petroleum, had largely taken over whaling’s lucrative market in lamp oil. Electric lighting started displacing kerosene as an illuminant in the late 19th century, especially in urban areas. However, kerosene remained the predominant commercial end-use for petroleum refined in the United States until 1909, when it was exceeded by motor fuels. The rise of the gasoline-powered automobile in the early 20th century created a demand for the lighter hydrocarbon fractions, and refiners invented methods to increase the output of gasoline, while decreasing the output of kerosene. In addition, some of the heavier hydrocarbons that previously went into kerosene were incorporated into diesel fuel. Kerosene kept some market share by being increasingly used in stoves and portable heaters. [30] In 2013, kerosene made up about 0.1 percent by volume of petroleum refinery output in the United States. [31]

Use

 

As fuel Heating and lighting The fuel, also known as heating oil in the UK and Ireland, remains widely used in kerosene lamps and Fuels for heating lanterns in the developing world[32]. Although it replaced whale oil, the 1873 edition of  Elemen  Elements ts of 

Heating oil

Chemistry said, "The vapor of this substance [kerosene] mixed with air is as explosive as gunpowder." [33]

Wood pellet

This may have been due to the common practice of adulterating kerosene with cheaper but more volatile

Propane

hydrocarbon mixtures, such as

naphtha.[34] Kerosene

was a significant fire risk; in 1880, nearly two of every

Kerosene Natural gas Wood

[35]

five New York City fires were caused by defective kerosene lamps.

Coal

In less-developed countries kerosene is an important source of energy for cooking and lighting. It is used as a cooking fuel in portable stoves for backpackers. As a heating fuel, it is often used in portable stoves, and is sold in some filling stations. It is sometimes used as a heat source during power failures. Kerosene is widely used in Japan as a home heating fuel for portable and installed kerosene heaters. In Japan, kerosene can be readily bought at any filling station or be delivered to homes.[36]  In the United Kingdom and Ireland, kerosene is often used as a heating fuel in areas not connected to a gas pipeline network. It is used less for cooking, with LPG being preferred because it is easier to light. Kerosene is often the fuel of choice for range cookers such as Rayburn. Additives such as RangeKlene can be put into kerosene to ensure that it burns cleaner and produces less soot when used in range cookers. [37]

A truck delivering kerosene in Japan

The Amish, who generally abstain from the use of electricity, rely on kerosene for lighting at night. More ubiquitous in the late 19th and early 20th centuries, kerosene space heaters were often built into kitchen ranges, and kept many farm and fishing families warm and dry through the winter. At one time, citrus growers used a smudge pot fueled by kerosene to create a pall of thick smoke over a grove in an effort to prevent freezing temperatures from damaging crops. "Salamanders" are kerosene space heaters used on construction sites to dry out building materials and to warm workers. Before the days of electrically lighted road barriers, highway construction zones were marked at night by kerosene fired, pot-bellied torches. Most of these uses of kerosene created thick black smoke because of the low temperature of combustion.

Kerosene Storage Tank

A notable exception, discovered in the early 19th century, is the use of a gas mantle mounted above the wick on a kerosene lamp. Looking like a delicate woven bag above the woven cotton wick, the mantle is a residue of mineral materials (mostly thorium dioxide), heated to incandescence by the flame from the wick. The thorium and cerium oxide combination produces both a whiter light and a greater fraction of the energy in the form of visible light than a black body at the same temperature would. These types of lamps are still in use today in areas of the world without electricity, because they give a much better light than a simple wick-type lamp does. Recently, a multipurpose lantern that doubles as a cook stove has been introduced in India in areas with no electricity. [38]

Cooking

 

In countries such as India and Nigeria, kerosene is the main fuel used for cooking, especially by the poor, and kerosene stoves have replaced traditional wood-based cooking appliances. As such, increase in the price of kerosene can have a major political and environmental consequence. The Indian government subsidizes the fuel to keep the price very low, to around 15 U.S. cents per liter as of February 2007, as lower prices discourage dismantling of forests for cooking fuel.[39]  In Nigeria an attempt by the government to remove a fuel subsidy that includes kerosene met with strong opposition. [40] Kerosene is used as a fuel in portable stoves, especially in Primus stoves invented in 1892. Portable kerosene stoves earn a reputation of reliable and durable stove in everyday use, and perform especially well under adverse conditions. In outdoor activities and mountaineering, a decisive advantage of pressurized kerosene stoves over gas cartridge stoves is their particularly high thermal output and their ability to operate at very low temperature in winter or at high altitude. Wick stoves like Perfection's or wickless like Boss continue to be used by the Amish and off grid living and in natural disasters where there is no power available.

Advertisement for an oil stove, from the Albion Lamp Company,, Birmingham, Company Bir mingham, England, c. 1900

Engines In the early to mid-20th century, kerosene or tractor vaporising oil (TVO) was used as a cheap fuel for tractors and hit 'n miss engines The engine would start on gasoline, then switch over to kerosene once the engine warmed up. On some engines a heat valve on the manifold would route the exhaust gases around the intake pipe, heating the kerosene to the point where it was vaporized and could be ignited by an electric spark. In Europe following the Second World War, automobiles were similarly modified to run on kerosene rather than gasoline, which they would have to import and pay heavy taxes on. Besides additional piping and the switch between fuels, the head gasket was replaced by a much thicker one to diminish the compression ratio (making the engine less powerful and less efficient, but able to run on kerosene). The necessary equipment was sold under the trademark "Econom".[41] During the fuel crisis of the 1970s, Saab-Valmet developed and series-produced the Saab 99 Petro that ran on kerosene, turpentine or gasoline. The project, codenamed "Project Lapponia", was headed by Simo Vuorio, and towards the end of the 1970s, a working prototype was produced based on the Saab 99 GL. The car was designed to run on two fuels. Gasoline was used for cold starts and when extra power was needed, but normally it ran on kerosene or turpentine. The idea was that the gasoline could be made from peat using the Fischer–Tropsch process. Between 1980 and 1984, 3,756 Saab 99 Petros and 2,385 Talbot Horizons (a version of the Chrysler Horizon that integrated many Saab components) were made. One reason to manufacture kerosene-fueled cars was that in Finland kerosene was less heavily taxed than gasoline. [42] Kerosene is used to fuel smaller-horsepower outboard motors built by Yamaha, Suzuki, and Tohatsu. Primarily used on small fishing craft, these are dual-fuel engines that start on gasoline and then transition to kerosene once the engine reaches optimum operating temperature. Multiple fuel Evinrude and Mercury Racing engines also burn kerosene, as well as jet fuel. [43] Today, kerosene is mainly used in fuel for jet engines in several grades. One highly refined form of the fuel is known as RP-1, and is often burned with liquid oxygen as rocket fuel. These fuel grade kerosenes meet specifications for smoke points and freeze points. The combustion reaction can be approximated as follows, with the molecular formula C 12H26 (dodecane): 2 C12 H26(l) + 37 O2(g) → 24 CO2(g) + 26 H2O(g); ∆ H ˚ = -7513 kJ In the initial phase of liftoff, the Saturn V launch vehicle was powered by the reaction of liquid oxygen with RP-1. [44] For the five 6.4 meganewton sea-level thrust F-1 rocket engines of the Saturn V, burning together, the reaction generated roughly 1.62 × 1011 watts (J/s) (162 gigawatt) or 217 million horsepower. [44]

 

Kerosene is sometimes used as an additive in diesel fuel to prevent gelling or waxing in cold temperatures. [45] Ultra-low sulfur kerosene  is a custom-blended fuel used by the New York City Transit Authority to power its bus fleet. The

transit agency started using this fuel in 2004, prior to the widespread adoption of ultra-low-sulfur diesel, which has since become the standard. In 2008, the suppliers of the custom fuel failed to tender for a renewal of the transit agency's contract, leading to a negotiated contract at a significantly increased cost.[46] JP-8, (for "Jet Propellant 8") a kerosene-based fuel, is used by the United States military as a replacement in diesel fueled vehicles and for powering aircraft. JP-8 is also used by the U.S. military and its NATO allies as a fuel for heaters, stoves, tanks and as a replacement for diesel fuel in the engines of nearly all tactical ground vehicles and electrical generators.

In chemistry Kerosene is used as a diluent in the PUREX extraction process, but it is increasingly being supplanted by dodecane. In X-ray crystallography, kerosene can be used to store crystals. When a hydrated crystal is left in air, dehydration may occur slowly. This makes the color of the crystal become dull. Kerosene can keep air from the crystal. It can be also used to prevent air from re-dissolving in a boiled liquid, [47] and to store alkali metals such as potassium, sodium, and rubidium (with the exception of lithium, which is less dense than kerosene, causing it to float). [48] Kerosene vapor diffused in air (as from a lamp wick) will burn at a maximum flame temperature of 990 C. (1814 F). In a stochiometric mixture with oxygen the flame temperature of kerosene can reach 2393 C (3801 F)

In entertainment Kerosene is often used in the entertainment industry for fire performances, such as fire breathing, fire juggling or poi, and fire dancing. Because of its low flame temperature when burnt in free air, the risk is lower should the performer come in contact with the flame. Kerosene is generally not recommended as fuel for indoor fire dancing, as it produces an unpleasant (to some) odor, which becomes poisonous in sufficient concentration. Ethanol was sometimes used instead, but the flames it produces look less impressive, and its lower flash point poses a high risk.

In industry As a petroleum product miscible with many industrial liquids, kerosene can be used as both a solvent, able to remove other petroleum products, such as chain grease, and as a lubricant, with less risk of combustion when compared to using gasoline. It can also be used as a cooling agent in metal production and treatment (oxygen-free conditions). [49] In the petroleum industry, kerosene is often used as a synthetic hydrocarbon for corrosion experiments to simulate crude oil in field conditions.

Others Kerosene can be applied topically to hard-to-remove mucilage or adhesive left by stickers on a glass surface (such as in show windows of stores).[47] It can be used to remove candle wax that has dripped onto a glass surface; it is recommended that the excess wax be scraped off prior to applying kerosene via a soaked cloth or tissue paper. [47] It can be used to clean bicycle and motorcycle chains of old lubricant before relubrication.[47]

 

It can also be used to thin oil based paint used in fine art. Some artists even use it to clean their brushes; however, it leaves the bristles greasy to the touch. Killing mosquito larvae.[50]

Toxicity Ingestion of kerosene is harmful or fatal. Kerosene is sometimes recommended as a folk remedy for killing head lice, but health agencies warn against this as it can cause burns and serious illness. A kerosene shampoo can even be fatal if fumes are inhaled.[51][52] People can be exposed to kerosene in the workplace by breathing it in, swallowing it, skin contact, and eye contact. The US National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit of 100 mg/m3 over an 8hour workday.[53]

See also Aviation fuel Gasoline gallon equivalent List of CO2 emitted per million Btu of energy from various fuels Synthetic Paraffinic Kerosene Tractor vaporising oil Adiabatic flame temperature

References 1. "Kerosene". Webster's New World College Dictionary . 2. "Kerosene". Oxford English Dictionary . 3. Anonymous (August 2006). "Environmental Protection Agency lists new kerosene-labeling rules" (https://search.p  (9). Retrieved 14 December 2012. roquest.com/docview/223291007).. National Petroleum News. 98 roquest.com/docview/223291007) 98 (9). 4. What is Kerosene – Ingoe Oils Ltd (http://ingoeoils.co.uk/kerosene/). (http://ingoeoils.co.uk/kerosene/). Ingoeoils.co.uk. Retrieved on 2015-06-02, 5. "Kerosene Outboard Motors" (http://www.marineenginedigest.com/specialreports/kerosene-outboards.htm). (http://www.marineenginedigest.com/specialreports/kerosene-outboards.htm). Retrieved 25 October 2011. 6. International Energy Statistics (http://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=5&pid=64&aid=2&cid=re gions,&syid=2006&eyid=2010&unit=TBPD). United States Department of Energy gions,&syid=2006&eyid=2010&unit=TBPD). 7. "Pennsylvania Combustible and Flammable Liquids Act" (http://www.portal.state.pa.us/portal/server.pt?open=514 &objID=552949&mode=2).. Retrieved 28 April 2014. &objID=552949&mode=2) 8. Collins, Chris (2007). "Implementing Phytoremediation of Petroleum Hydrocarbons". Methods in Biotechnology . Humana Press. 23  (23): 99–108. doi doi::10.1007/978-1-59745-098-0_8 (https://doi.org/10.1007%2F978-1-59745-09 23 (23): 8-0_8).. ISBN 8-0_8) ISBN  978-1-58829-541-5 978-1-58829-541-5.. 9. "1301:7-5-10 Fuel for kerosene heaters". Baldwin's Ohio Monthly Record . Banks-Baldwin Law. 2: 1109. 1984. 10. American Institute of Petroleum (September 2010). "Kerosene/Jet Fuel Assessment Document" (https://web.arch EPA A. p. 8. ive.org/web/20140228144933/http://www.epa.gov/hpv/pubs/summaries/kerjetfc/c15020ad2.pdf)  (PDF). EP Archived from the original (http://www.epa.gov/hpv/pubs/summaries/kerjetfc/c15020ad2.pdf) (PDF) (http://www.epa.gov/hpv/pubs/summaries/kerjetfc/c15020ad2.pdf) (PDF) on 28 February 2014. Retrieved 28 October 2016. 11. "Kerosene" (http://www.inchem.org/documents/icsc/icsc/eics0663.htm). (http://www.inchem.org/documents/icsc/icsc/eics0663.htm). Retrieved 10 June 2009. 12. "Ask.com" (http://www.ask.com/science/freezing-point-kerosene-52221b0bdd2ecc07). (http://www.ask.com/science/freezing-point-kerosene-52221b0bdd2ecc07). Retrieved 14 December 2015.

 

13. Annamalai, Kalyan; Ishwar Kanwar Puri (2006). Combustion Science and Engineering. CRC Press. p. 851. ISBN  978-0-8493-2071-2 ISBN 978-0-8493-2071-2.. 14. Bilkadi, Zayn. "The Oil Weapons" (http://www.saudiaramcoworld.com/issue/199501/the.oil.weapons.htm). (http://www.saudiaramcoworld.com/issue/199501/the.oil.weapons.htm). Saudi   (1): 20–27.  Aramco  Aramc o World . 46 46 (1): 15. Feng, Lianyong; Hu, Yan; Hall, Charles A. S; Wang, Jianliang (2013). The Chinese Oil Industry: History and  Future. Springer (published 28 November 2012). p. 2. ISBN ISBN  978-1441994097 978-1441994097.. 16. Chang, Samuel Hsu; Robinson, Paul R. (2006). Practical Advances in Petroleum Processing. 1. Springer. p. 2. 17. Ed Butts (4 Butts (4 October 2019). "The cautionary tale of whale oil" (https://www.theglobeandmail.com/opinion/article-th e-cautionary-tale-of-whale-oil/) . The Globe and Mail . Archived (https://web.archive.org/web/20191006064852/http s://www.theglobeandmail.com/opinion/article-the-cautionary-tale-of-whale-oil/)  from the original on 6 October 2019. Retrieved 7 October 2019. "Then in 1846, a Nova Scotian physician and geologist named Abraham Gesner invented kerosene. This pioneering form of fossil fuel, which some called coal oil, burned cleaner and brighter than whale oil, and didn’t have a pungent odour." 18. Samuel T. Pees, Whale oil versus the others (http://www.petroleumhistory.org/OilHistory/pages/Whale/whale.htm l), l), Petroleum History Institute, accessed 17 November 2014. 19. Russell, Loris S. (2003). A Heritage Heritage of Light: Light: Lamps Lamps and Lighting in the Early Early Canadian Canadian Home. University of Toronto Press. ISBN ISBN  978-0-8020-3765-7 978-0-8020-3765-7.. 20. Black, Harry (1997). Canadian Scientists and Inventors. Pembroke Publishers. ISBN ISBN  978-1-55138-081-0 978-1-55138-081-0.. 21. Gesner, Abraham, "Improvement in kerosene burning-fluids," U.S. Patent no.s 11,203 (http://pdfpiw.uspto.gov/.pi  ; 11,204 (http://pdfpiw.uspto.gov/.piw?docid=00011204) ; (http://pdfpiw.uspto.gov/.piw?docid=00011204) ; 11,205 (http://pdfpiw.uspto.gov/.pi  w?docid=00011  w?doci d=00011203) 203) ;  w?docid=00011  w?doci d=00011205) 205) (issued:  (issued: 27 June 1854). 22. Young, James, "Improvement in making paraffine-oil," (http://pdfpiw.uspto.gov/.piw?Docid=00008833) U.S. (http://pdfpiw.uspto.gov/.piw?Docid=00008833) U.S. Patent no. 8,833 (issued: 23 March 1852). 23. Asbury, Herbert (1942). The golden flood: an informal history of America's first oil field . Alfred A. Knopf. p. 35. 24. World, American Manufacturer and Iron (1901). Greater Pittsburgh and Allegheny County, Past, Present, Future; (https://books.google.com/?id=lkcVA com/?id=lkcVAAAA AAAY YAAJ&pg=PT57&dq=refinery+kier+pittsburgh) AAJ&pg=PT57&dq=refinery+kier+pittsburgh).. The Pioneer Oil Refiner  (https://books.google. The American Manufacturer and Iron World. 25. McInnis, Karen. "Kier, Samuel Martin- Bio" (http://www.pabook.libraries.psu.edu/palitmap/bios/Kier__Samuel_Ma rtin.html).. biography . The Pennsylvania State University. Retrieved 12 December 2008. rtin.html) 26. Harper, J. A. (1995). "Samuel Kier – Medicine Man & Refiner" (https://web.archive.org/web/20120315221502/htt p://www.oil150.com/essays/2007/02/samual-kier).. Pennsylvania Geology . Oil Region Alliance of Business, p://www.oil150.com/essays/2007/02/samual-kier) Industry & Tourism. 26  (1). Archived from the original (http://www.oil150.com/essays/2007/02/samual-kier) 26 (1). (Excerpt from Yo-Ho-Ho and a Bottle of Unrefined Complex Liquid Hydrocarbons) on 15 March 2012. Retrieved 12 December 2008. 27. Steil, Tim; Luning, Jim (2002). Fantastic Filling Stations. MBI Publishing. pp. 19–20. ISBN ISBN  978-0-7603-1064-9 978-0-7603-1064-9.. 28. Paul Lucier, Scientists & Swindlers (https://books.google.com/books?i (ht tps://books.google.com/books?id=fNsKrN56RKEC&pg=P d=fNsKrN56RKEC&pg=PA161&lpg=P A161&lpg=PA161 A161 &dq=kerosene+trademark&source=bl&ots=FMF6zImmKq&sig=0BrtS4eWN5vqixu2bOYC30Y4bhY&hl=en&sa=X &ei=zdl5VKDvDsGrogSptIHADQ&ved=0CDoQ6AEwBg#v=onepage&q=kerosene%20trademark&f=false) (Baltimore: Johns Hopkins, 2008)232–233. 29. United States Bureau of the Census, 1960, Historical Statistics of the United States, Colonial Times to 1957, p.445. 30. Harold F. Williamson and Williamson and others, The American Petroleum Industry: the Age of Energy, 1899–1959  (Evanston, Ill.: Northwestern Univ. Press, 1963) 170, 172, 194, 204. 31. US EIA, Refinery yield (http://www.eia.gov/dnav/pet/pet_pnp_pct_dc_nus_pct_a.htm), (http://www.eia.gov/dnav/pet/pet_pnp_pct_dc_nus_pct_a.htm), accessed 29 Nov. 2014. 32. https://www.ft.com/content/ccfaa1ba-d0f1-11e5-831d-09f7778e7377 33. Cooley, Le Roy Clark (1873). Elements of Chemistry: for Common and High Schools. Scribner, Armstrong. p. 98. 34. Crew, Benjamin Johnson; Ashburner, Charles Albert (1887). A Practical Practical Treatise Treatise on on Petroleum Petroleum. Baird. pp. 395. This reference uses "benzene" in the obsolescent generic sense of a volatile hydrocarbon mixture, now called benzine, petroleum ether, ligroin, or naphtha, rather than the modern meaning of benzene benzene as  as the specific aromatic hydrocarbon C6H6.

 

35. Bettmann, Otto (1974). The Good Old Days – They Were Terrible!. Random House. p. 34. ISBN ISBN  978-0-39470941-3.. 70941-3 36. "Heating Your Home in Winter: Kerosene Fan Heater" (http://www.nic-nagoya.or.jp/en/e/archives/423). (http://www.nic-nagoya.or.jp/en/e/archives/423) . Nagoya International Center . 30 November 2011. 37. "Additives (KeroKlene and Range Klene)" (https://craggsenergy.co.uk/info/kerosene/). (https://craggsenergy.co.uk/info/kerosene/). Craggs Energy. 25 January 2016. Retrieved 30 May 2017. 38. Lanstove:A lamp that's also a stove (http://ibnlive.in.com/news/lanstove-a-lamp-thats-also-a-stove/143262-11.ht ml).. Ibnlive.in.com (2011-02-14). Retrieved on 2015-06-02. ml) 39. Bradsher, Keith (28 July 2008). "Fuel Subsidies Overseas Take a Toll on U.S." (https://www.nytimes.com/2008/0 7/28/business/worldbusiness/28subsidy.html)  New York Times. 7/28/business/worldbusiness/28subsidy.html) 40. Ibikun, Yinka (25 July 2011). "Nigeria Kerosene Too Expensive For Oil-Rich Country's Poor" (http://www.huffingto npost.com/2011/07/25/nigeria-kerosene-too-expensive_n_908837.html) . Huffington Post . 41. Baer, Frederick H. (December 1951). "Report from abroad on kerosene-fed cars" (https://books.google.com/book s?id=nCEDAAAAMBAJ&pg=RA2-PA193).. Popular Science December 1951. Bonnier Corporation. p. 193. s?id=nCEDAAAAMBAJ&pg=RA2-PA193) 42. Bakrutan: "Saab 99 Petro" by Petri Tyrkös, n. 4, 2008 43. Banse, Timothy (7 July 2010). "Kerosene Outboards: An Alternative Fuel?" (http://marineenginedigest.com/speci alreports/kerosene-outboards.htm).. Marine Engine Digest . alreports/kerosene-outboards.htm) 44. Ebbing, Darrell (3 December 2007). General Chemistry  (https://books.google.com/books?i  (ht tps://books.google.com/books?id=V d=VakHAAAAQBAJ akHAAAAQBAJ&p &p g=PA251).. Cengage Learning. pp. 251–. ISBN g=PA251) ISBN  978-1-111-80895-2 978-1-111-80895-2.. 45. Kerosene blending (http://www.epa.gov/diesel/presentations/keroseneblding.pdf), (http://www.epa.gov/diesel/presentations/keroseneblding.pdf), (pdf from EPA) 46. "How a Plan for Bus Fuel Grew Expensive" (https://www.nytimes.com/2008/09/25/nyregion/25fuel.html). (https://www.nytimes.com/2008/09/25/nyregion/25fuel.html) . The New York Times. 25 September 2008. 47. Kerosene: Other uses: Miscellaneous (http://oilfielddirectory.com/oilfield/kerosene.htm). (http://oilfielddirectory.com/oilfield/kerosene.htm) . Oilfielddirectory.com. Retrieved on 2015-06-02. 48. "S and P Block Elements – Solved Problems for IIT JEE - askIITians" (http://www.askiitians.com/iit-jee-s-and-p-bl ock-elements/solved-problems.html).. www.askiitians.com. ock-elements/solved-problems.html) 49. "Oil atomisation puts a different face on iron alloy powders". Metal Powder Report . 59  (10): 26–06. 2004. 59 (10): doi::10.1016/S0026-0657(04)00279-6 (https://doi.org/10.1016%2FS0026-0657%2804%2900279-6). doi (https://doi.org/10.1016%2FS0026-0657%2804%2900279-6). 50. Guidance on use of rainwater tanks (https://www.health.gov.au/internet/main/publishing.nsf/Content/0D71DB86E 9DA7CF1CA257BF0001CBF2F/$File/enhealth-raintank.pdf) (PDF). 9DA7CF1CA257BF0001CBF2F/$File/enhealth-raintank.pdf)  (PDF). Australian Government Department of Health. March 2011. pp. 22, 23. ISBN ISBN  978-1-74241-325-9 978-1-74241-325-9.. Retrieved 16 March 2019. 51. Levine, Michael D.; Gresham, Chip, III (30 April 2009). "T "Toxicity, oxicity, Hydrocarbons" (http://emedicine.medscape.com/ (http:/ /emedicine.medscape.com/ article/821143-overview).. emedicine. Retrieved 1 December 2009. article/821143-overview) 52. Mahdi, Awad Hassan (1988). "Kerosene Poisoning in Children in Riyadh" (http://tropej.oxfordjournals.org/cgi/cont of Tropical Tropical Pediatri Pediatrics cs. Oxford University Press. . Journal 34 (6): 34  (6): 316–318. ent/abstract/34/6/316). ent/abstract/34/6/316) doi doi: :10.1093/tropej/34.6.316 (https://doi.org/10.1093%2Ftropej%2F34.6.316) (https://doi.org/10.1093%2Ftropej%2F34.6.316). . PMID PMID   3221417 (https://www.ncbi.nl m.nih.gov/pubmed/3221417).. Retrieved 1 December 2009. "Radiological signs of pneumonia were shown in nine m.nih.gov/pubmed/3221417) out of 27 patients who had chest X-rays. There was one death."

53. "CDC - NIOSH Pocket Guide to Chemical Hazards - Kerosene" (https://www.cdc.gov/niosh/npg/npgd0366.html) . www.cdc.gov . Retrieved 6 November 2015.

Notes 1. In his book of 1861 and its second edition of 1865, Gesner claimed to have demonstrated liquid  kerosene  kerosene – an "oil" – in 1846 during his public lectures on Prince Edward's Island. Gesner, Abraham (1861) A Practical Practical Treatise Treatise on Coal Coal,, Petroleum, Petroleum, and Other Distilled Distilled Oils. (https://archive.or g/stream/apracticaltreat02gesngoog#page/n16/mode/2up)  New York, New York, USA: Bailliere Brothers, p. 9. Gesner, Abraham ; Gesner, George Weltden (1865)  A Practical Practical T Treatise reatise on Coal, Coal, Petroleum, Petroleum, and Other  Distilled Oils (https://  (https://books.google.com/books?id=KTkKAAAAIAAJ&pg=P books.google.com/books?id=KTkKAAAAIAAJ&pg=PA9#v=onepage&q&f=false) A9#v=onepage&q&f=false),, 2nd ed.,

 

New York, New York, USA: Bailliere Brothers, p. 9. However, John Butt characterized Gesner's book as " … a piece of propaganda designed to get people to believe that he had been constantly interested in inventing burning oil from 1846 to 1854." Butt also stated that "No independent documentary proof has ever been produced to support Gesner's claim." Furthermore, "He [Gesner] omitted to mention that kerosene had first been used to describe an illuminating gas." Butt, John (1963) "James Young, Scottish Industrialist and Philanthropist," (http://theses.gla.ac.uk/3894/1/196  Ph.D. thesis (University of Glasgow, Scotland, UK), p. 227. 3ButtPhD.pdf) Ph.D. 3ButtPhD.pdf) As late as 1850, Gesner promoted his "kerosene" as an illuminating gas: In his U.S. patent of 1850, Gesner called the product of his distillations an "illuminating gas", not an oil: Gesner, Abraham "Manufacture of illuminating-gas from bitumen" (http://pdfpiw.uspto.gov/.piw?docid=000070  U.S. Patent no. 7,052 (issued: 29 January 1850). 52) U.S. 52) In his prospectus of 1850, Gesner repeatedly identified "kerosene" as a gas, not an oil: Gesner, Abraham (1850) "Prospectus of Gesner's patent kerosene gas, obtained from bitumen, asphaltum, or mineral pitch." (ht tps://babel.hathitrust.org/cgi/pt?id=aeu.ark:/13960/t9960mm6j;view=1up;seq=7)  New York, New York, USA: Trehern & Williamson.

External links "Kerosene" (https://web.archive.org/web/20061209193139/http://www.websters-online-dictionary.org/definition/en glish/ke/kerosene.html), Webster Online Dictionary Article on Gesner (http://epe.lac-bac.gc.ca/100/205/301/ic/cdc/heirloom_series/volume4/136-139.htm) Kerosene Fuel Primer (http://www.endtimesreport.com/kerosene_fuel_primer.html) San Diego Union-Tribune Article (http://www.signonsandiego.com/news/military/20030805-9999_1n5bomb.html) Material Safety Data Sheet (http://www.nafaa.org/K1_MSDS.pdf) CDC – NIOSH Pocket Guide to Chemical Hazards (https://www.cdc.gov/niosh/npg/npgd0366.html) Retrieved from "https://en.wikipedia.org/w/index.php?title=Kerosene&oldid=926990352"

This page was last edited on 19 November 2019, at 17:55 (UTC). Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF