Joe Pass Blues Chord Solo

April 24, 2018 | Author: randywimer | Category: N/A
Share Embed Donate


Short Description

Descripción: blues chord solo by joe pass...

Description

  

Joe Pass Blues Chord Solo      

 



Bb13

E13

xx1231



3

E9#5

xx1334

6fr

             

6 8 7 6

6 8 7 6

Eb9

xx1333 6fr

9 7 7 6



E9

xx1334 6fr

8 7 7 6

6 6 6 5

                  4

Fm7

Bb13

xx111x



Bm9

xx1231

3 3

2 2

   

4

6

8 7 6

Eb9

7 6

    

  

 10

Cm11

xx1324



 

  

Eb%

Cm9

10fr xx1114

6 6 5

Gb13

xx1133 5fr

8fr

 

x1342x

F13

    B9

x1342x 7fr

4 6 5 4

6 6 5

x132xx 6fr

 

4 6 5 4

6 4 4 3

Bb9

4 5

10 8 8 8

6 6 5 5

9 8 8 7

6 7 7 6

6 7 6

5 6 5

2 2

3 3

F7#5#9 x1214x

5fr

6fr

6 6 6 5

9 6 7 6

6

4 3

          

  



C13b9

8fr

5

G7b5

6 4 4 3

9 10 9 8

8

11

9 10 9 8

8

11 9

           

G7#5

xx231x

xx1231

5fr

C7 13 11 12 10

6 7

xx1243

   

x132xx 6fr

Eb9

8 8 10 11

3fr

3

1 1

     

xx1333 8fr

9 9 10 8

xx1334 4fr

5

Eb9

Db13

Ab13

xx1231 5fr

6 5

  

  

xx4311 8fr

13 13 12 11

3

3

 

xx1423 11fr

6 6 6 5

     

xx133x



9 7 7 7

6 7 6

Bbm7

xx1244 5fr

9 7 7 7

     

B¨7

7

1 1

1 1

Eb13

xx1333 7fr

2

6fr

6 5 6 5

6 5

      

Eb9

xx1114 6fr

7 6

2

3

xx132x

5fr

  

3

4

4 6 5

      

Bb7

xx1324

4fr

8

 

Bbdim7

xx231x 5fr

7 7 7 6

  

Eb7

xx1333 6fr



Joe Pass (fingered and edited by R. Wimer)

3

3

2 4 3

3

3 4 4 3

6

F7

5 5

5 3

5

4 2

3

2 2 1

2 3

2

   

Bb9



Bb11

         

Fm9

Bb7

xx1341



9 7 7 6

   -3

3 2

-2

-2

6 6 6 5

6fr

6 8 8 6

xx1234 6fr

7fr

6 5 6 5

6 7 6

         

  

-1

-3

3

3

1

Bbm9

Bbm9

xx1341

Db%

xx1114 11fr



E9

xx1244 3fr

9 7 6

     

9 7 6

7 6



   

Bb9

5 4

4 6

6 6

6 5

8 9

11 13 13 11

8 6 6 6

    

  

8

4 4 3 3

13 13 12 11

6



6 6 5 6

6

6 5 4 5

6

A13

        

  

F#13

F13

xx1334 8fr

13 8 8 8 8

xx1324

10fr

12 12 11 12 11

11 9 9 8

   

xx1324

8fr

B13

x1214x

5fr

6fr

7fr

10 8 8 7

6 6 5 5

6 7 7 6

 

 

  

11 11 10 9

    

Ab13

Gb13 G13

xx1231 xx1231

xx1231

6fr

5 7 6 5

13 11 10 9

6 5 4 5

9 11 10 9

11

9 8 9 8

    

6 5 6 5

x1213x 8fr

10 10 9 8

11

9

C9

C7#5#9 C9

10 10 9 8

11 8 9 8



C9

x1214x 8fr

9 6 7 6

  

C#13

xx1244

9fr

xx133x

x1342x 5fr

6 6 5 4

  

C13

xx1231

9fr

11 11 10 11 10

7fr

8 7 8 7

xx1244 xx1333

6fr

F13

Eb%

xx1334 xx1133 8fr

xx1234

7fr

Bb13 5fr

 

6 6 5 4

          

G7#5#9 G7b5#9

xx1234

4fr

xx1231

22

G7#9

x21344

5fr

8

 

D7#5#9

x2133x 5fr

 

   

Eb9

x1324x

F11

   

Bbdim7 Bbdim7

x13244 11fr

9 9 8 7

  

Eb9

x13244 11fr

7

x11114

9 9 8 7

         

Eb13

xx1133 6fr

8

8

6fr

6 8 8 6

6 5 6 5

  

B13

xx121x

5fr

1

-3

Bb7

xx121x

6 6 6 5

    





 

Bbdim7 5fr

9 7 7 6

3 2

 

Eb9

xx124x

19



6

4 5 6

  

xx1333 6fr

3 1 1 0

  

xx1334 4fr

16



  

E13

xxo23x xx321x

   

   



 

13

    Db9

3        

B9

F13

xx133x xx133x

xx1231

    B9

6 8 7 6

6 8 7 6

4 6 5 4

Bb9

x132xx

4fr

x132xx 6fr

2 4 3 2

3 5 4 3

4 4 3

2 2 1

3 3 2

4 4 3 2

3 3 3 2

1 3 2 1

6 7 6

5fr

5 6 5

   

            

   

25



Bb13

Fm7

xx4321

Bm7

xx1231

xx111x 6fr



3

4 5 6



xx1231 6fr



4

6

8 7 7 6

5 5 5 4

3

3

     

3

Bb9

5fr

6 6 6 5

9 9 10 8



 

    34





12 12 12 10

 

xx1333

8fr

13 9 13 9 13 10 11 8

8 8 9 7

 

9 9 10 8

6 6 6 5

5 5 5 4

 

9 9 8 7

6 5 6 5

3

3

Bbdim7 xx1324

9 8 9 8

8 7 8 7

 

5fr

9 8 9 8

                    

Ab13

C7#9

6 8 8 6

8fr

6 5 6 5

 

6fr

9 9 8 7

xx1324

5 4 5 3

Fm11

xx1341

             

5fr

6 6 6 5

3 7fr

Bbdim7

xx1324

5fr

  

xx1234

      

Bbdim7

B13

6fr

8 8 7 6

3

 

6 5 6 5

6 5 6 5

5 4 5 4

 

 

C7b9

xx123x xx131z 4fr

6 5 6 5

3 3 3

1 1 1

4 5

3 3 3

 

6 5 4

3

3

4 6 5 4

6 6

6 4

4 4

6

3

Cm9

xx1114

3 4

6

10 8 8 8

xx1231 6fr

6 8 7

Bb13

A13

xx231x 8fr

5fr

5 7 6 5



Eb7

2 3 2

3 2

B7

3

 

Bb7

1x23xx 4fr

6fr

3 2

5 5

        

xx231x

xx1231

6 8 7 6

4 3 2

3

                   

Cm11

5

13 13 13 11

      

Eb9

xx1423 11fr

  

6 8 8 6

8

3

Bbm7

xx1333

9 9 10 8

  

xx1234 6fr

6 5 6 5

xx1231

x1314x

6 3 5 3

 

    

5fr

5 4 5 4

8 8 9 7

 

3

Bbm9

8fr

  

Bb13

xx1341 5fr

7 6 7 6

  

Fm11

x1324x 6fr

11 13 12 11

3

3

Bb9

x1324x 11fr

        

xx1423

x1324x

6 5 6 5

 

B9

xx1231

8

Bbm7

xx1333 4fr

           31

Eb9

xx1333 6fr

8 7 6

5

6

D9

xx1334

4 6 6

     

                  E13

4fr

6 6 6

28

Bb13

xxx341 6fr

7 7 7

Eb13

Bbm7

xx111x 7fr

6 8 7 6

3

Bbm7

             

3

1x23xx 7fr

6fr

6 8

7

6

4 6 5

3

5 6

8 8

6 7 8

8 7

7 6

7

6

2

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF