Jee 2014 Booklet6 Hwt Integral Calculus 2

August 28, 2017 | Author: varunkohliin | Category: Trigonometric Functions, Logarithm, Pi, Integral, Sine
Share Embed Donate


Short Description

Jee 2014 Booklet6 Hwt Integral Calculus 2...

Description

Vidyamandir Classes DATE :

TIME : 40 Minutes

MARKS : [ ___ /10]

TEST CODE : IC-2 [1]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 

1.



5.

dx is : 5  4 cos x

(A) (C)

0

/2 /3

(A) (C)

/4 /6

(B) (D)

Let f : R  R and g : R  R be continuous functions. Then the value of the integral  2



3.

7.

    f    f   2    2

(D)

    g   g  2    2

1

and

f

(x)

be

a

function

 f  x  g  x  dx is : e7 4

that

4.

If I1 



dx and I 2  log x

(D)



1

0 120

(A)

I1  2 I 2

(B)

I 2  2 I1

(C)

I1  I 2  0

(D)

I1  I 2  0

10.

5/2 0

(B) (D)

3 5

f  3a  x   g  x  , g  3a  x   h  x 

If

h  3a  x   f  x  .

and

f  x

3a

Then

 f  x   g  x   h  x  dx is : 0

(A) (C)

VMC/Integral Calculus-2

120 120

e

1

e

(B) (D)

log e x dx is : x

(A) (C)

e2 3 e  2 2

e dx , then : x

1 2

30

e3 2

2 x

(B) (D)

 |cosx|dx 

(A) (C) 9.

(B)

e2 3 e  2 2 e2

1 0

30

e2

0

(C)

(B) (D)

 x  1dx , where [ ] represents the greatest integer

8.

1

(A)

1 /4

1

satisfies f  x   g  x   x 2 . Then the value of the integral



2/3 5/3

 sin3 x  2 x sin2 x( x2  1)  x2 sin x (1  2 x2  x4 ) dx

function equals : (A) 0 (C) 1

Let g (x) be a function satisfying g   x   g  x  and =

(B) (D)

 y  | x  1| is :

1

1 0

(0)

2



 f  x   f   x    g  x   g   x   dx 

(C)

g

1/3 4/3

is: (A) (C)

 2

(A) (B)

 x, y  :  x  1



6. 2.

Area of the region

101

a 3a

(B) (D)

2a 3a/2

HWT-6/Mathematics

Vidyamandir Classes DATE :

TIME : 40 Minutes

MARKS : [ ___ /10]

TEST CODE : IC-2 [2]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. e

1.

 tan 1 x log x    x 1  x2 1



 tan 1 e

(A) 1

2.



 sin x  1

6

  sin

1

log  tan e 

(C)

1 tan 1   e

(D)

tan 1 e

(B)

2 8 4

(C)

2 8 2

(D)

2 8 2

dx

is :

2 8 4

(A)

(B)

2

1   sin x

1

3.

  dx is :  

 x d  x , where {x} is fractional part function is : 2

0



3  8

(A) 4.





 2

2

3  8

(B)

The area bounded by 2 y  1  y

2





3 2 8 (C)

2

 x and its vertical asymptotes is : 

(B)

(C)



2



3 2 8 (D)

(D)



2

4

Area bounded by y 2  x  3  4  4  x  , the ordinate x = 3, x = 4 and above the x-axis is : 5

5 6

(A)

6.

 2

(A) 5.

2

(B)

5 8

(C)

3 8

(D)

 2

x x Area bounded by x-axis and the curve f  x   e  . e|x| . e  between the lines x  1 and x = 2, where [ ] represents greatest

integer function and { } represent fractional part function, is : e 1 2

(A) x

7.

If



x

(A)

8.



(B)

1  f  t 

2

e2  1 2

(C)

e3  1 2

(D)

e4  1 2

3 x    dt   f  z  dz  t  dt , [.] represents greatest integer function and f  0   1 , then f   is :   2 20  (B) (C) 2 (D) 0 1

 

1

If f  a  b  x   f  x  , then

b

 xf  x  dx is : a

(A)

ab 2

b

 f  x  dx a

VMC/Integral Calculus-2

(B)

ab 2

b

 f  x  dx

b

(C)

a

 a  b   f  x  dx a

102

b

(D)

 a  b   f  x  dx a

HWT-6/Mathematics

Vidyamandir Classes 2 3



9.

 

x cos 2 x3 2 dx is :

0

(A) 4

10.

If



 3

f  x  dx  4 and

1

(A)

(B) 4



 4

7  f  x   dx  7 , then the value of

VMC/Integral Calculus-2

 6

(D)

 12

(D)

3

2

 f  x  dx is :

1

2

5

(C)

(B)

4

(C)

103

3

HWT-6/Mathematics

Vidyamandir Classes DATE :

TIME : 40 Minutes

MARKS : [ ___ /10]

TEST CODE : IC-2 [3]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.5

1.

  x

2

 dx , where [ ] denotes the greatest integer function, equals :

1

2 2

(A)

(B)

2 2

(C)

2.25

(D)

1.25

(B)

 3

(C)

0

(D)



5

(D)

0

 2

2.

n  log tan x  dx is : 0

 2

(A)

 2

x2 2

3.

The number of points at which

 0

(A)

1

t  5t  4 2  et

(B)

dt has extremum is :

2

(C)

 3

4.

3 2   p sin x  q cos x  r  dx depends on the value of :

If p, q, r are constants, then the value of

 3

(A)

5.

 sin

2

(A) x

7.

If

 0

(A)



1

p and q only

(C)

p only

(D)

all of p, q, and r

 cos x   cos 1  sin x  dx is : 2 2

(B)

2 4

(C)

2 8

(D)

2  1 4

1

 1  f  t  dt  x  tf  t  dt then the quadratic equation whose roots are f   and f (2) is :  2 

 x

2

3x  7 x  2  0

(B)

3x 2  7 x  2  0

(C)

3x 2  7 x  2  0

(D)

3x 2  7 x  2  0

(C)

18

(D)

98 3



10

8.

(B)

The area of the region in the first quadrant enclosed by the x-axis, the line x  3 y and the circle x 2  y 2  4 is :    2 (A) (B) (C) (D) 4 3 2 3 5 2

6.

q and r only

x  2 x  1  x  2 x  1 dx is :

1

(A)

110

VMC/Integral Calculus-2

(B)

110 3

104

HWT-6/Mathematics

Vidyamandir Classes 9.

 

P(x) is a non-zero polynomial such that P(0) = 0 and P x3  x 4 P  x  , P  1  7 and

1



1



P  x  dx  1.5 then P  x  P   x  dx is :

0

(A)

10.

6

(B)

8

(C)

1 1 If for a non-zero x, af  x   bf     5 a  b ; and x x

(A)

a log 2 

VMC/Integral Calculus-2

7b  5a 2

(B)

a log 2 

2

7.5

0

(D)

None of these

(D)

a log 2 

 f  x  dx  a2  b2 then k is : k

1

7b  5a 2

(C)

105

a log 2 

7b  5a 2

7b  5a 2

HWT-6/Mathematics

Vidyamandir Classes DATE :

TIME : 40 Minutes

MARKS : [ ___ /10]

TEST CODE : IC-2 [4]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

If [x] is the greatest integer less than or equal to x, then the area bounded by y  x   x  and y   x   x  , and the x-axis between x  2 to x = 2 is : (A) 1 (B) 2 (C) 3/2 (D) 1/2  2

2.



x sin x cos x sin 4 x  cos 4 x

0

2 32

(A) 

3.

dx 

(B)

2 8

(C)

2 16

(D)

 16

(B)

2 4

(C)

2 2

(D)

 2

(C)

1

(D)

3 2

 1  cos2 x dx  x sin x

0

4.

(A)

 4

If g  x  

1 x

(A)

1 2

x

 3t  2 g  t  dt , then g   2 is : 2

5.

1 n n lim

2

If

e

n 1

8.

(B)

5

0

0

 f t  dt  

f  t  dt where, 0    5 the interval in which H    is increasing is :

5   2 , 5  

(C)

 5  0, 2   

(D)

(1. 5)

1

(C)

1 e

(D)

0

(C)

2e 4  e  

(D)

 2e

(C)

1 2

(D)

1

k

k 0

e t2



 log 1  n  equals : (B) e4

dt   , then,

1

(A)

2

(0, 5)

(A)

7.

3 4

Let f  x   2 x  15 x  24 x and H     3

(A)

6.

(B)



log t dt equals :

e

e2    2

(B)

e4  e2  1  

4

e



The area bounded by the curves x  2| y |  1 and x = 0 is : (A)

1 4

VMC/Integral Calculus-2

(B)

1 3

106

HWT-6/Mathematics

Vidyamandir Classes

9.

 n  n3  r3 1  dx r 1 , P  lim  Let   3  n   1 x n 3n 0   



(A)  2

10.



log 2  1  



1/ n

       

then log P is :

(B)

log 2  3  3

(C)

2 log 2  

(D)

log 4  3  2

(B)

 8

(C)

1

(D)

1 2

 1  sin 3 x 

  1  2 sin x  dx is : 0

(A)

 2

VMC/Integral Calculus-2

107

HWT-6/Mathematics

Vidyamandir Classes DATE :

TIME : 40 Minutes

MARKS : [ ___ /10]

TEST CODE : IC-2 [5]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

Let f (x) be differentiable in R and f  x   2  x 2

2



2



f  t  dt  tf  t  dt . Then

0

6 19

(A) 2.

(B)

 f  x  dx is :

0

3 19

1

0

(C)

14 19

6 19

(D)

 x2 8   , the x-axis and the ordinates x  3 , equals : Area enclosed by the curve f  x      4 x2  4    4 4 3 1 3  8 tan  2  8 tan 1  2 (A) (B) 3 2 3 2 4 3  8 tan 1   (C) (D) None of these 3 2 log 4

*3.

If the function f  x   Ae

2x

39   f  x   cx  dx  2 , then :

 Be  Cx satisfies the condition f  0   1, f   log 2   31 and x

0

(A)

A=5 1

*4.



If I1  2

1



x3

dx, I 2  2

0

 2

If A 

x4

2



dx, I 3  2

0

I 2  I1

(A)

*5.



x3

(C) 2



sin x dx and B  sin x  cos x



(D)

B=6

4

1

I3  I 4

 2

C=3

dx , and I 4  2 x dx, then :

1

(B)

0

(A)

B  6

(B)

(C)

I 4  I3

(D)

I1  I 2

(C)

A B 

(D)

AB

cos x dx , then : sin x  cos x

0

A+B=0

(B)

A B 

 2

 4

2

6.

, 5  x  0  2 x  1 , 3  x  1  4 x  7 Let f  x    2 and g  x    2 . Then value of  g  f   x  dx equals : x 1 x0 3 x  2 , 5 x  x  7 , 2 (A) 0 (B) 101/12 (C) 1991/6 (D) 1991/12



1

7.

xe x

0 1  x 2 dx  (A)

 / 2  sin /2

8.

e 2

(A)

2

(B) x  sin 4 x

4 15

VMC/Integral Calculus-2

1  2   e  1  

(C)

1  2   e  2  

(C)



(D)

None of these

(D)

2 15

  sin x  cos x  dx is equal to : (B)

0

108

4 15

HWT-6/Mathematics

Vidyamandir Classes 9.

The values of a and b which satisfy f  1  2 , (A)

(C)

10.

3

0 f  x  dx  7, f  x   a2

1, 2 2 3  loge 2   1   1 , 2 loge 2 7  log 2 

 b , are :

(B)

1 ,0 log e 2

(D)

2 7  log 2   1   1 , 2 loge 2 3  log 2 

3 1 If x 2 f  x   f    2 for all x except at x = 0, then f  x  dx  1/ 3 x (A) 4/3 (B) 8/3 (C) 1/3

VMC/Integral Calculus-2

x



109

(D)

None

HWT-6/Mathematics

Vidyamandir Classes DATE :

TIME : 40 Minutes

MARKS : [ ___ /10]

TEST CODE : IC-2 [6]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. /4

1.

(A) (C) 2.

1

 / 4 sec2 x 1  sinx   dx

6.

/4 

/2 2

(B) (D)

(A) (C)

2

2

Area common to the circle x  y  64 and the

(B)





(D)

None of these

(C)

 16   3  4  3  

The

(A) (C)

5.



(A)

y

4.



 16   3  8  3  

 16   3  4  3  

area 2

1  x2 

bounded

by

the



7.

y  x and

curves

3  3  2  6

 3  2 

(B)

3 9.

(D)

None of these

The area enclosed between the curves y = tan x, tangent  drawn to it at x  and y  0 is : 4  log 4  1  log 4  1 (A) (B) 4 2  log 4  1 (C) (D) None of these 4 The area bounded by the hyperbola between the lines x = 2 and x = 4 is :

  3  4 log  2  3  (D)

8 3  4 log 2  3

(C)

8

4

VMC/Integral Calculus-2

(B) (D)

0  x  dx ,

 1 2 None

where {} denotes the

(B) (D)

25/3 None

e x sin x dx is equal to :

(A)

e / 2  1 2

(B)

(C)

e / 2  1 2

(D)

e / 2  1 2 None

If f  x   min, 2 sin x, 1  cos x, 1 , then

(C)

5 6 2 1 3  3 3 1

(B) (D)



0

f  x  dx 

2 3 5 1 3  6 3 1

bc

10.

  3  2 log  2  3 

4 3  2 log 2  3 (B)

0

(A)

x2  y 2  4

(A)

 1 2  1

The value of

/2

8.

is :

 3  3

x dx 

fractional part of x is : (A) 16/3 (C) 7/3



2

1

4

parabola y 2  12 x is equal to :

3.

0 sin

a  c f  x  c  dx  b (A) a f  x  c  dx b (B) a f  x  dx b (C) a f  a  b  c  x  dx (D)

110

None of these

HWT-6/Mathematics

Vidyamandir Classes DATE :

TIME : 40 Minutes

MARKS : [ ___ /10]

TEST CODE : IC-2 [7]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1/ 2

1.

2.

1/ 2

2

1

2

 x 1  x 1  x  1    x  1   2 dx     

(A)

3

(B)

(C)

3 1  cos 1

(D)

6. 3 1  cos 1 2 None of these

Area included between the parabolas y 2  4ax and 7.

x 2  4ay is equal to :

3.

(A)

8a 2 3

(C)

4a 2 3

(D)

5  2 6 

(B)

(C)

5  2 6    4  2 6 

2

4.

1 10100

(D)

None

Let f be real valued function such that f  2   2

(C) 2

  2  4

  2  2



1

1

1 1

(B) (D)

The value of the integral

(A) (C)

(D)

0 None

 0 f  k  1  x  dx is : 1

k 1

24

(B)

dt  x2 (B) 12 (D) None

1

10.

  2  None of these

|cosx  sinx | dx 

(A)

4 2

(B)

2 2

(C)

2

(D)

None

If I1 

2

0 f  x  dx n 0 f  x  dx a

(B) (D)

0 f  x  dx 1 n f  x  dx 0

a

0 x dx, I 2  0 x dx, x  fractional part of

x,    = G.I.F., a  Z  , then :

2

0

VMC/Integral Calculus-2

2

1 / 4 x tan  x  x  dx 

The area of the smaller region bounded by the

(A)

f  x  4t 3

6 32

3

circle x 2  y 2  1 and the lines | y | = x + 1 is :

5.

(C)

n

9.

24

4 None of these

1 10010

3

2

(D)

(B)

(A) (C)

2 2

11 10100

4

8.

5  2 6    4  2 6 

(A)

(A) (C)

Area bounded by | y |  x  1, 8 y  x 2 & x-axis is equal to: (A)

dx 

x2

None of these

2

99

and f   2   1 , then lim

16a 2 3

(B)

0 x 1  x 

111

 a  1

(A)

I2 

(C)

I1   a  1 I 2

I2

(B)

I1  aI1

(D)

I 2  aI1

HWT-6/Mathematics

Vidyamandir Classes DATE :

TIME : 40 Minutes

MARKS : [ ___ /10]

TEST CODE : IC-2 [8]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

Area bounded by the curves | x |  2 is given by : (A) 5 (C) 9/2

2.

The

area

y  | x  1|, y  0 and

(C) 3.



bounded

2

3e  2e  3

3e

3e 2

 2e  3

by



3



(B)

 / 2

the

2

curves

(A) (C)

x  1





7.

e 1

If

(B) (D)

0 

dx

  x2  4  x2  9  k , then the value of k is : 0

e

(D)

1 1

(A) (C)

1/60 1/40

(B) (D)

1/80 1/20

None of these The area of the figure bounded by the lines x  0 x   / 2 f  x   sin x and g  x   cos x is:

tangent and normal at 1, 3 and x-axis in A1 and A2.

8.

(A)

Then A1/A2 =

(C)



(C)







(B)

3   3 

(D)

3

3  



The value of

0

3

 3 

9.

 3  1 2 1

3 1

(B) (D)

2





2 1

An inflection point on the graph of the function x

None of these

dx

y

1  cot x

is equal to :

 t  1 t  2

2

dt is :



(B)

/2

(C)

/4

(D)

 /3



(A)

x  1

(B)

x  3/ 2

(C)

x  4/ 3

(D)

x 1

2

(A)

The value of



 2 2

0

/2

5.



  f  x   f   x   g  x   g   x  dx 

4 None

Let the circle x 2  y 2  4 divide the area bounded by

(A)

4.

If f  R  R g  R  R are continuous functions then the value of the integral /2

(B) (D)

y  x 2  2 x  1, e x  y  1  0 and ordinates and x = 1 is : (A)

6.

x dx

 4 cos2 x  9 sin2 x

 /4

10.

The value of



sin

 x  dx is :

0

(A) (C)

is equal to :

0 2

(B) (D)

1 None of these

0

2

(A)

 / 12

(B)

2 / 4

(C)

2 / 6

(D)

2 /3

VMC/Integral Calculus-2

112

HWT-6/Mathematics

Vidyamandir Classes DATE :

TIME : 40 Minutes

MARKS : [ ___ /10]

TEST CODE : IC-2 [9]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

Let f be a periodic continuous function with period

6.

T

T 0.

I

If

 f  x  dx ,

then

the

value

 cos x If f  x   e2e . sin x for | x |  2 ,  3

of then

0 4  4T

I1 



2

f  3 x  dx is :

(A) (C)

4

(A) (C) 2.

I 3I

(B) (D)

2I 4I

3 / 4

2  2 x  1  dx , where [x] is the greatest The value of x 

7.



integer less than or equal to x is : (A) 2 (B) (C) 4 (D)

8/3 None of these

The area bounded by the curves y  5  x 2

/4

8.

 5   2   4 

(C)

 5  2     2  x2  4

4.

f  x 

If



(B)

 5  2     4 

(D)

    5 2 

2

e t dt , then the function

 1 2 

(C) /4

5.



(B) (D)

 0    2 

9.

(C)

2 1/2

2 1 / 2

5/3 2/3

Let f  x  

(B) (D)

1/3 4/3

x



6  x 2 dx , then the real roots of the

(A)

x 6

(B)

x  3

(C)

x 2

(D)

x  1

1

10.

Let f be an odd function, then

 | x|  f  x  cos x  dx is

1

log 1  tan 2   2 tan d   log  2 

(B)

 log  2  2

 log  2  4

(D)

log  2 

VMC/Integral Calculus-2

(B) (D)

dx is equal to : 1 cos x

equation x 2  f   x   0 are :

f  x

equal to : (A) 0 (C) 2

0

(A)

1 3

0





(B) (D)

The area of the plane region bounded by the curves

(A) (C)

x2

increases in : (A)    0 

0 2

x  2 y 2  0 and x  3 y 2 1 is equal to :

and

y | x  1| is :

(A)



(A) (C)

0

3.

 f  x  dx  otherwise :

113

(B) (D)

1 None of these

HWT-6/Mathematics

Vidyamandir Classes DATE :

TIME : 40 Minutes

MARKS : [ ___ /10]

TEST CODE : IC-2 [10]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. /4

1.

The value of the integral



sin x  cos x dx is : 3  sin 2 x

0

(A)

2.

4.

(B)

log(3)

(C)

1 log(3) (D) 4

1 log(3) 8

The area of the plane figure bounded by the interval 5 / 6   of the x-axis, the graph of the function y  cos x and the segment so the straight lines x   5 / 6 and x   is : (A)

3.

log(2)

3/2

(B)

5/2

(C)

3/4

sin x  sin 2 x  sin 3x sin 2 x sin 3x /2 3  4 sin x 3 4 sin x then the value of If f  x   f  x  dx is : 1  sin x sin x 1 0 (A) 3 (B) 0 (C) 2/3

(D)

7/2

(D)

1/3

(D)

2



Let f   0    R and F  x  

x



 

f  t  dt . If F x 2  x 2 1  x  then f  4  equals :

0

(A)

5.

5/4

(B)

7

(C)

4

The area bounded by the curve y  f  x   x 4  2 x3  x 2  3 , x-axis and the ordinates corresponding to minimum of the function f  x  is : (A)

6.

1

(B)

91 30

(C)

30 9

(D)

Suppose that the graph of y  f  x  contains the points (0 , 4) and (2, 7). If f  is continuous then

4 2

 f   x  dx is equal to: 0

(A)

2

(B)

–2

(C)

3

(D)

None of these

0

(C)

2

(D)

None of these

(D)

3/2

x

 sint dt 2

7.

The value of lim 0 x 0

(A) 8.

1

sin x 2

is : (B)

The area between the curves y  x 2 and y  x1 3 taking x  1 1 is : (A) 1/2 (B) (C) 3/4 2

VMC/Integral Calculus-2

114

HWT-6/Mathematics

Vidyamandir Classes 9.

10.

 1 22 n2   is : The value of lim    ..........  n   13  n3 23  n3 n3  n3  1 1 log  2  (A) (B) (C) 3 3 1 If x 2 f  x   f    0 for all x R ~  0  then x

(A)

sin  2 

VMC/Integral Calculus-2

(B)

1

sec 



1 log  3 2

(D)

1 log  3 3

sec   cos 

(D)

0

f  x  dx =

cos 

(C)

115

HWT-6/Mathematics

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF