Jee 2014 Booklet6 Hwt Differential Equations
Short Description
Jee 2014 Booklet6 Hwt Differential Equations...
Description
Vidyamandir Classes DATE :
TIME : 40 Minutes
MARKS : [ ___ /10]
TEST CODE : DE [1]
START TIME :
END TIME :
TIME TAKEN:
PARENT’S SIGNATURE :
This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.
2.
x
dy y x 2 y 2 is the differential equation of the family of curves represented by : dx
(A)
y x 2 y 2 Cx 2
(B)
x x 2 y 2 Cy 2
(C)
x x 2 y 2 Cy
(D)
x x 2 y 2 Cx
A curve passes through the point (5, 3) and at any point (x, y) on the curve, the product of its slope and the ordinate is equal to its abscissa. The equation of the curve is : (A)
3.
x 1
(B)
x2
x 2 y 2 16
(C)
5 x 2 3 y 2 98
(D)
3x 5 y 0
(D)
x2 x 1
x 2 2 x 1 dy x2 y , is : dx x x 1 x 1
x 1
(C)
x2
x2 x 1
The slope of a curve at any point is the reciprocal of twice the ordinate at the point and it passes through the point (4, 3). The equation of the curve is : (A)
5.
(B)
An integrating factor of the equation
(A) 4.
x 2 y 2 34
y2 x 5
(B)
y2 2x 1
(C)
x2 y 5
(D)
2x 5 y
y C . e2 x 1
(D)
ye x 2 x C
e 2 x y dx 1 is : General solution of x x dy (A)
y 2 x e 2 x C (B)
y x e 2 x C (C) 2
6.
dy dy If the curves given by the solutions of x y x y 0 are passing through (2, 3) then another point of intersection is: dx dx
(A) 7.
8.
3, 2
(B)
3, 2
The general solution of the differential equation
(C)
(3, 2)
3, 2
dy y tan x y 2 sec x is : dx
(A)
tan x c sec x y
(B)
sec y c tan y x
(C)
sec x c tan x y
(D)
None of these
If
(D)
dy 3 x 2 y 2 3 x 2 y 2 1 ; y 0 0 . Then y equals : dx
1 tan x .tan x tan x x tan x tan x3
(A)
(C)
3
1
3
VMC/Differential Equations
(B)
(D)
116
tan x tan x3 1 tan x .tan x3
tan 1 x tan 1 x3
HWT-6/Mathematics
Vidyamandir Classes 9.
The differential equation of the family of curves y Ae3 x Be5 x , where A, B are arbitrary constants is : (A)
d2y dx
2
2
(C)
10.
d y dx 2
8 5
dy 15 y 0 dx
2
dx (D)
d y dx 2
1 dy 1 ecos x is : y dx 1 x2 1 x2
2 e 1 x
e 2
VMC/Differential Equations
(B)
d2y 2
dy 6y 0 dx
An integrating factor of
(A)
(B)
2
e
.e
cos 1 x
2
8
8
dy 5y 0 dx
dy 15 y 0 dx
sin 1 x 2
(C)
117
e
e 2
(D)
None of these
HWT-6/Mathematics
Vidyamandir Classes DATE :
TIME : 40 Minutes
MARKS : [ ___ /10]
TEST CODE : DE [2]
START TIME :
END TIME :
TIME TAKEN:
PARENT’S SIGNATURE :
This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.
The differential equation whose general solution is y 2 x 1 my where m is an arbitrary constant, is : (A)
2.
3.
(A)
(C)
dx
2
x
x2
dy y 0 (C) dx
d2y
x2
x
dy y0 dx
dx
2
2 x3 2 log x c 3 3
y2 x2 y2
2 x3 2 log x c 3 3
(B)
x3 2 log x c 3 3
(D)
None of these
dydx
y x y2 1
(D)
(C)
ey
y2
2 x
x2
(B)
y2
3x
x2 y2
2
(D)
ex
2
2 y
3x
2 y 2 x2 3 y
(B) (D)
If for the differential equation y
(A)
y2
x2 y 2 and it passes through the point (2, 1). The equation of the curve is : 2 xy
2 x2 y 2 3 y 2
x2
dx 2 x 10 y 2 , is : dy y
The slope of a curve at any point (x, y) on it is
(C)
6.
d2y
(B)
An integrating factor of the equation
(A)
5.
dy 2 dx
Solution of the equation xdy y xy 3 1 log x dx 0 is :
(A)
4.
yx
2
x2
x x y x the general solution is y then is given by : log Cx x y y
(B)
y2 x2
x2
(C)
y2
(D)
y2 x2
The equation of the curve satisfying the differential equation y2 x 2 1 2 xy1 passing through the point (0, 1) and having slope of tangent at x = 0 as 3 is : (A)
7.
(B)
General solution of the equation x cos (A)
8.
y x 2 3x 2
xy k sec xy
(B)
y x3 3 x 1
(C)
y x 2 3x 1
y y ydx xdy y sin xdy ydx x x y x xy k sec (C) xy k sec x y
(D)
None of these
(D)
xy k cosec
y x
The differential equation of the family of curves represented by y 3 cx c3 c 2 1 , where c is an arbitrary constant is of (A)
order 1, degree 1
VMC/Differential Equations
(B)
order 2, degree 1
(C)
118
order 1, degree 2
(D)
order 2, degree 2
HWT-6/Mathematics
Vidyamandir Classes 9.
2e 1
(A)
10.
The solution of the initial value problem x 2 y 2 dy xy dx, y 1 1 is y y x . If y x0 e , then x0 equals : (B)
e 3
(C)
e2 1
(D)
A curve passes through (2, 0) and the slope of the tangent at P(x, y) on the curve is given by
e 3
x 12 y 3 . Then, the area x 1
bounded by the curve and the x-axis in the 4th quadrant is : (A)
2 3
VMC/Differential Equations
(B)
4 3
(C)
119
1
(D)
5 3
HWT-6/Mathematics
Vidyamandir Classes DATE :
TIME : 40 Minutes
MARKS : [ ___ /10]
TEST CODE : DE [3]
START TIME :
END TIME :
TIME TAKEN:
PARENT’S SIGNATURE :
This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.
y y If the differential equation y cos x dy y dx x sin x dy y dx 0 with y 1 has the solution in the form 2 x x
y sin , then k equals : k xy x (A) 2.
2
y C1 x5 C2
If f x (A)
4.
1
(C)
3
(D)
1 2
Equation of the curve y f x , satisfying xy5 y4 (suffixes denoting differentiation) & which is symmetric with respect to yaxis, is: (A)
3.
(B)
1 2
x 1 x 1 log 2 1 2
log e 2 x 1 c
(C)
y C1 x 4 C2
(D)
y C1 x 4 C2 x 2 C3
2 1
(D)
log
(D)
None of these
1 2 then f (1) equals : 2
and f 0
1 log 2
(B)
If f x f x , f 0 1 , then (A)
y C1 x 2 C2
(B)
2 1
(C)
log
f x f x
2 1
dx
log (e 2 x e x ) c (C)
(B)
tan 1 e x c
2
5.
dy dy Solution of the equation x y x y 0 is : dx dx (A) (B) x 2 y c xy c 0 (C)
6.
(C)
If x (A)
8.
(D)
Solution of the equation xdx ydy
(A)
7.
x y c 2 xy c 0 x2 y 2
c x2 y 2 y xtan 2 2 2 cx y y xtan 2
0 is :
(B)
x x2 y 2 x y tan 2
(D)
None of these
f x .y dy yx. then f x . y is equal to : (k being an arbitrary constant) dx f x . y ke x
2 2
Integral curve satisfying y (A)
xdy ydx
x y c xy c 0 x y c xy c 0
5 3
VMC/Differential Equations
ke y
(B)
x y 2
2
x2 y 2 (B)
2 2
(C)
ke xy
2
(D)
None of these
, y 1 1 has the slope at the point (1, 0) of the curve equal to :
1
(C)
120
1
(D)
5 3
HWT-6/Mathematics
Vidyamandir Classes 9.
10.
The solution of y 1 x y 2 xy 2 , y 0 0 is : (A)
x2 y 2 exp . x 1 2
(C)
y tan c x x 2
(B)
(D)
The integrating factor of x 1 x 2 dy 2 x 2 y y ax3 dx 0 is e (A)
2 x2 a2
x 1 x2
VMC/Differential Equations
(B)
2 x3 1
(C)
121
x2 y 2 1 c exp . x 2 x2 y 2 tan x 2
Pdx , then P is : 2 x2 1 ax3
(D)
2 x2 1
x 1 x2
HWT-6/Mathematics
Vidyamandir Classes DATE :
TIME : 40 Minutes
MARKS : [ ___ /10]
TEST CODE : DE [4]
START TIME :
END TIME :
TIME TAKEN:
PARENT’S SIGNATURE :
This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.
Solution of y dx x dy x 2 y dx is : (A)
2
ye x cx 2
(B)
2
ye x cx 2
2
2
y 2 e x cx 2
(D)
y 2 e x cx 2
(C)
y 2x 4
(D)
y 2 x2 4
(C)
xy y 2 x 2 C
(D)
x y
(C)
x
(D)
ex
(C)
2
2.
dy dy A solution of the differential equation : x y 0 dx dx (A)
3.
y
3
y2
(B)
4 y x2
2 x 2 y dx 2 xy 2 x3 dy 0 represent the curve :
x 2 x y 2 C (B) xy x 2 y 2 C y dy y x3 3 ; x 0 is : Integrating factor of dx x (A)
4.
(A) 5.
6.
y x log x y 2 c
(B)
y 2 x log x y 2 c
(C)
2 y x log x y 2 c
(D)
2 y 2 x log x y 2 c
The solution of the
1 x 2 1 Ce x x y 1
x y
2
(B)
x 1 Ce x
(D)
1
x y
2
x 2 1 Ce x
2
2 1 x 1 Ce x x y
4 x y 3 x cy 4 3
3
3
(B)
3 x3 y 4 4 x3 cy 3 (C)
3 x 4 y 3 4 x3 cy 3 (D)
None of these
y f cxy x
(D)
None of these
(D)
None of these
f y x Solution of the equation xdy y x dx is : y x f
(A)
10.
dy 3 x x y x3 x y 1 is : dx
Solution of equation xy 4 y dx xdy 0 is : (A)
9.
log x
(A)
(C)
8.
(B)
Solution of x y 1 dx 2 x 2 y 3 dy 0 is :
(A)
7.
x
y 2 x2 C
x f cy y
(B)
y f cx x
(C)
The degree of the differential equation of all tangent lines to the parabola y 2 4ax is : (A) 1 (B) 2 (C) 3
The order and degree of the differential equation, of which xy ce x be x x 2 is a solution, is : (A) 1, 3 (B) 2, 1 (C) 3, 2 (D)
VMC/Differential Equations
122
None of these
HWT-6/Mathematics
Vidyamandir Classes DATE :
TIME : 40 Minutes
MARKS : [ ___ /10]
TEST CODE : DE [5]
START TIME :
END TIME :
TIME TAKEN:
PARENT’S SIGNATURE :
This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.
2.
Solution of the equation (A)
e y e x 1 ce e
x
(C)
e x e y 1 ce e
y
(C)
5.
ex – 2 = 3 2 cos y ex + 2 = 3 2 cos y
g x log 1 y g x C
(C)
g x log 1 y g x C
(D)
None of these
x
(x2 + y2) y = 2xy
is : 4
(B)
ex + 2 =
(D)
None of these
2 cos y
dy yg x g x . g x where g(x) is a given function of x, is : dx g x log 1 y g x C (B)
(D)
None of these
Differential equation for y Acos x B sin , x , where A and B are the arbitrary constants, is : d2y dx 2
2 y 0
(B)
d2y dx 2
2 y 0
dy y xy 1 cos is : dx x 1 y tan c 2 2x 2x c y cos 1 x x
(C)
d2y dx 2
y 0
(D)
d2y dx 2
y 0
The solution of x 2
(C)
The solution of (A)
8.
e x e y 1 ce e
(D)
(A)
(A)
7.
2 (x2 – y2) y = xy
The general solution of the differential equation
(A)
6.
(B)
The particular solution of cos y dx + 1 2e x sin y dy = 0 when x = 0, y = (A)
4.
The differential equation for the family of curves x2 + y2 – 2ay = 0, where a is an arbitrary constant is : (A) (x2 – y2) y = 2 xy (B) 2 (x2 + y2) y = xy (C)
3.
dy e x y e x e y is : dx
y 1 c x x
(B)
tan
(D)
x 2 c x 2 tan
(C)
x cex y 0
(D)
x c ex y 1 0
x cx y
(D)
log
y x
dy 1 e x y is : dx
x y ex y 0
(B)
x cex y 0
dy y log y log x 1 , then the solution of the equation is : dx y x log cy (A) (B) (C) log cy x y
If x
VMC/Differential Equations
123
log
y cx x
HWT-6/Mathematics
Vidyamandir Classes 9.
10.
Solution of differential equation
dy x y x y is : dx 1 x 2
y 1 x c 1 x
(A)
3 y 1 x2 c 1 x2
(C)
3
2
14
2
dydx y is : x y c y
(B)
3 y 1 x2 c 1 x2
(D)
None of these
(C)
x 2 y c y2
14
Solution of the differential equation x 2 y 3 (A)
x y2 c y2
VMC/Differential Equations
(B)
2
124
(D)
x y c y2
HWT-6/Mathematics
View more...
Comments