Jee 2014 Booklet5 Hwt Solutions Differential Calculus 1
Short Description
Jee 2014 Booklet5 Hwt Solutions Differential Calculus 1...
Description
Vidyamandir Classes
Solutions to Home Practice Test-5/Mathematics Differential Calculus - 1 1.
HWT - 1
For statement 1 x 2 0 x 2 x 2 , 1
Also
4 x2 0 x 2
For x 2, 4 x 2 0
x 2 0
and
x 2 is in domain of the function.
For
1 x 2 4 x2 0 x 2
4 x 2 0 and x 2 0 For
x 1, 2 is in domain of the function.
Domain of the function is x , 2 1, 2
x2 4 x2 0 x 2
4 x 2 0 and x 2 0
4 x2 0 x 2
x > 2 is not in domain of the function
For statement 2 2
x 4 x 3 0
y 2 4 y 3 0 , where y = [x]
y 1 y 3 0 or x , 2 3,
y , 1 3, or x , 1 3,
For statement 3 sin log 2 log3 x 0
or 4.
7.
log3 x 22 n , 2
tan x y tan y x
log 2 log3 x 2n , 2n 1
or
2 n 1 2 n x 32 , 32 ,n I
y log tan x xlog tan y
dy y x dy log tan x sec 2 x log tan y sec 2 y dx tan x tan y dx
2y log tan y dy 2 sin x cos x log tan y 2 y cos ec 2 x 2x dx log tan x log tan x 2 x cos ec 2 y 2 sin y cos y
x a cos 3
dx 3 a cos 2 sin d
y a sin3
dy 3a sin 2 cos d
dy tan dx
d2y dx 2
d dy d 1 1 sec 2 sec 2 dx dx dx 3a cos 2 sin 3a cos 4 sin
dy 2 1 dx d2y dx 2
10.
2 n 1
lim
x
3x x 7x 5 x
32
1 tan 2
3
2
1
3a cos 4 sin sec3 3a sin cos
3a cos 4 sin
3x x 4x lim 2 7 x 5 x 2 x x x
lim
VMC/Solutions/Differential Calculus - 1
11
HWT-5/Mathematics
Vidyamandir Classes
Differential Calculus - 1 1.
x1 3 a1 3 y tan 1 1 x1 3 a1 3
tan 1 x1 3 tan 1 a1 3
dy 1 1 1 dx 1 x 2 3 3 x 2 3 3 x 2 3 1 x 2 3
HWT - 2
2
3.
1 1 1 f x x2 2 x 2 x x x Put x
4.
5.
lim
1 y , to get f y y 2 2 x
a x log 1 x sin x cos 2 x ex 1
x0
f x x2 2
or
1 0 0 1 0 11
Note that f (x) is always +ve.
f x f
x f x f x
1 1 x x 1 x 0 2 2 1 1 x x 0 x 1 2 2 2 f x
7.
LHL = lim
5 sin cos x
RHL = lim x
8.
9.
lim
n
cos x 2
2
x
5 sin 1 1 2
5 sin 0 02
0
5 sin 1
2
yn xn
1n
1n
xn lim y 1 n n y
0.5log3 log1 3 x 2
4 2 4 1 log3 log1 3 x 5 0 5 17 2 4 2 4 1 x2 0 log1 3 x 1 x 15 5 5 3 17 15
or
x2
Also,
4 log1 3 x 2 0 or 5
and
x2
or
4 0 5
17 17 x , , 15 15 x2
4 1 5
or
x2
9 5
3 3 x , 5 5
or
2 2 x , , 5 5 17 3 3 17 x , , 15 5 5 15
x2
or
Combining all these results, we get :
10.
x y As 1 y
4 5
or
1 x 1 sin 2 x 1 6 1 x 1 lim x sin 6 xlim 1 x 2 x 1 x Using LH rule, we get :
1
lim
x
x 1 1 2x 1
2
2 x 1 x 1 2 2 x 12 1 x2
VMC/Solutions/Differential Calculus - 1
lim
x2
x
2 x 1
12
3x 2 x 2
lim
x
x
2 x 1
2 3 x
1 2 3
HWT-5/Mathematics
Vidyamandir Classes
Differential Calculus - 1 1.
HWT - 3
Check formula in option (B). When 0 x 3, f x x 3 2 x 3 x 2 x x 3 When x 3, f x x 3 2 x x 3 2 x 3 x 3
3.
f (x) is discontinuous when x 2 x 1 is an integer. Check the graph of y x 2 x 1 in the internal x 0 , 2 The only points of discontinuity are when x 2 x 1 1 and x 2 x 1 2
x2 x 1 1
and
x2 x 1 2
x2 x 0
and
x2 x 1 0
x 0, 1
and
x
So, we get in the desired interval x 1,
1 5 2
1 5 2 14
5.
2 x 2 2 x 1 f x 9 x 27 3 219 3
9 x 9
x 2
219 9
14 x 1
14
73 . 9 x 219 81
7.
Now,
73 x . 9 219 0 or 81
73.9 x 219 81
or
9 x 243
or
32 x 35
2x 5
or
x
or
5 2
1 x 2 x x 2 x log 1 log 1 log log 1 x 2 2 x 2 2 f x x x x
Now
2 x 1 2 x 2 x 1 2 x log 2 x 2 x 2 2 x lim lim x 1 x 0 x 0
lim
x 0
4 4 x2
(Using LH rule)
1
As f (x) is continuous at x = 0, lim f x f 0 a 1 x 0
Differential Calculus - 1 2.
x 2 0
3.
4.
x 2 0 , 1
x 2 , 1
x , 2 1,
x 2 xy y 2
HWT - 4
7 4
2x y x
dy dy 2y 0 dx dx
1 2 dy 2 x y 2 5 dx x 2y 11 4
y sin x sin x sin x . . . . sin x y
y 2 sin x y
2y
VMC/Solutions/Differential Calculus - 1
dy dy cos x dx dx
13
dy cos x dx 2 y 1
HWT-5/Mathematics
Vidyamandir Classes 5.
2 x 3 2x 3 f x sin log x , y f sin log 3 2x 3 2 x 2 x 3 3 2 x 2 3 2 x 2 x 3 2 dy cos log dx 3 2 x 2 x 3 3 2 x 2
2 x 3 12 cos log 3 2 x 2 x 3 3 2 x dy 12 cos log 5 at x = 1 is equal to dx 5
6.
lim
x 3 k 4 x 2k x3
x3
7.
lim
x3
23 k 8
3x 2 k 4 1
23 k
k 15
y sin 1 cos x cos 1 sin x x x 2 x 2 2 dy 2 dx
Differential Calculus - 1
1.
HWT - 5
tan x log 1 2 lim 4x x sin x 4 4 1 tan t 4 log 2 1 Put x t to get : lim 4 4t sint t 0
sec 2 t 4 2 1 1 1 lim lim Apply LH rule to get : lim 4 2 t 0 sint t 0 1 tan t 4 t 0 sint Hence doesn’t exist. 2.
f x 1 tan x
f (x) is not differentiable when tan x 0 or x n , n Z . Also, the function is discontinuous and non-differentiable when cos x = 0 or x 2n 1 2
4.
lim
x 1
x x4 x9 . . . . . xn n 1 4 x 3 9 x8 . . . . n 2 x n lim x 1 x 1 1
1 4 9 . . . . n2
5.
sin x lim x0 x
1x
log lim
x0
,nZ . 2
2 1
(Using LH rule)
n n 1 2n 1 6
1 sin x log x x
x 3 x5 . . . . x 2 4 1 3 5 lim 1 log 1 x x . . . log lim log x0 x x0 x x 3 5
x2 x4 . . . . 1 x2 3 5 x 1 x4 x3 lim log . . . . lim . . . . 0 or 2 4 x0 x x 0 3 5 3 5 x x . . . . 3 5
VMC/Solutions/Differential Calculus - 1
14
e0 1
HWT-5/Mathematics
Vidyamandir Classes 6.
sin 1 h sin h 1 lim f x lim lim sin1 1 h h 0 h 1 h 0 x 0 sin h lim f x lim 1 h 0 x0 h
7.
lim
x p
x p
9.
g x f p g p f x
lim f x does not exist.
x0
g x f p g p f x
lim
x p
1
g p f p g p f p 0
g p
or
g p
We need to ensure that the function is continuous at x
1
lim x
2
cos x
g p f p g p f p 1 f p f p
0
6 3 2 1
2 p
p cos x
q
lim 1 cos h cos 2 h h0 2
or
ep q
and
lim e x
cot x cot m x 2 2
tan mh tan h
h0
10.
p
cot h cot m h
lim e
or
h0
2
lim e
q
m
lim e mh h q
em
or
h0
q
q em
and
For inverse we have x
e y e y e y e y
e2 y 1 e2 y 1
x 1 e2 y 1 x
Domain is x 1, 1
log
x 1 2y 1 x
And there is no point in domain where function is discontinuous.
Differential Calculus - 1 1.
HWT - 6
f x 3 x 2 1 3 x 2 1 Critical points are 3x 2 n , n Z
4.
n 3
x
f (x) is not continuous at x
x 0,
1 , 3
2 ,1 3
1 2 , 3 3
1 k k 1 2 k 2 tk cot 1 2 k 1 k 1 k 2 k k 1 2 k 1 tan 1 tan 1 2 1 k k 1 k 2 1 k k 12 k 2
tk tan 1 k 1 k 2 tan 1 k k 1 n
t
k
tan 1 n 1 n 2 tan 1 11 1
k 1
tan 1 n 1 n 2 tan 1 2
VMC/Solutions/Differential Calculus - 1
15
HWT-5/Mathematics
Vidyamandir Classes 5.
6.
9 9 , 0 , are the critical points for mod function. 2 2 f x changes sign here. x
e 4 eh 4 lim h 3 h h h 0 h h h
lim f x lim h h0
x 0
lim f x lim h h0
x 0
7.
h h
f (x) is discontinuous at x = 0
u 3x12 , v x 6
8.
e 4 e 1 4 lim h 0 h0 1 h 1
u 3v 2
du 6v 6 x 6 dv
3 2 3 f 1 f 1 2 2 1
3
27 8
35 8 2
27 3 3 f 1 f 2 1 3 2 2 2
9.
Let
f x 3 x log 1 3x 2 x 2
f 0 0
f x 3
4 x 3 1 3x 2 x 2
f 0 0
f x
8 x 2 12 x 5
1 3x 2 x 2
2
f x 0
Now
f x 0 x 0
Let
f x 0 x 0
g x log 1 3x 2 x 2 3x
5x 2 2
g 0 0
g x
4x 3
1 3x 2 x 2
3 5x
g 0 0
g x
8 x 2 12 x 5 5 2 1 3x 2 x 2
g 0 0
g x
32 x 3 72 x 2 60 x 18
1 3x 2 x 2
3
0 x 0
g x is increasing x 0
VMC/Solutions/Differential Calculus - 1
16
HWT-5/Mathematics
Vidyamandir Classes
Differential Calculus - 1 2.
1
6 3x 1 4
4 6 3 x 4
x
x 1 1 2 x 1
x 1 , 1 1, 2
and
x
2 3
x 1 1 2 x3
or or
10 x 3, 3
3.
10 3
and
HWT - 7
x cos 2 0 form lim x 1 1 x 0
Apply LH rule
sin x 2 2 2 sin 22 1 2 x
4.
lim
x3
x 5 243 x x aa
will be 0 if a 3
a3
5.
So f (x) is continuous and differentiable at x = 0 6.
8.
It has removable discontinuity as limit exists but it is not equal to f 0 (at (x = 0))
dy dy dt dx dx dt dy 2 dt 2t 12 1 2 dx 2te t dt
9.
2
dy et dx t 4t 2 2 4t
For domain
4 x2 0 and
1 x 0
x 2 , 1
and
VMC/Solutions/Differential Calculus - 1
4 x2 0 1 x
17
HWT-5/Mathematics
Vidyamandir Classes
Differential Calculus - 1
HWT - 8
1 cos 2 x 1.
2.
sin x 2 x x Limit does not exist. 1 a2 x
1
1 a2 x
b 1 a2 x
0
b sin 2 1 a x b 1 b b b 2 1 a x
3.
0
f x f x
x 0
x 0
2a x 2 x
aR
Also f (x) should be continuous at x = 0
f x f x
x 0
4.
b=0
Look for critical points of f (x) which are x I and And
7.
x 0
x 2I 1
1 1 does not belong to any of these two sets f (x) is continuous and differentiable at x 2 2
log 0.3 x 1
1 log 0.3 x 1 2
2 log0.3 x 1 log0.3 x 1
Now,
x 1 0 x 1
Also,
x 12 x 1
or x 2 3x 2 0
Combining above results, we get :
log0.3 x 1 log0.3 x 1
x 1 x 2 0
2
x , 1 2 ,
x 2,
8.
f x 0 x R (Roots of quadratic equation)
9.
tan 1 x is little less than x in proximity of zero
tan 1 x 0 x
Differential Calculus - 1 1. 2.
lim
2
2k 12k 16k 6k 3k 2 2
f (x) is discontinuous at x 11, 6
3.
2 f x 12 f 2 x 16 f x
x0
HWT - 9
2 2 f is discontinuous at x 2 11, 6 x2
24 7 , 11 3
x
y log x
y x y log y 0 x y
y
log x y log y x 0
y log x xlog y 0
y xy log x x 2 xy log y y 2
VMC/Solutions/Differential Calculus - 1
y xlog y y x y log x x
18
HWT-5/Mathematics
Vidyamandir Classes 4.
dy 1 1 2 dt t dx 1 1 dt t
5.
dy t 2 1 dx t 2 1
Graph is like
7.
1 tan x 1 sin x
Let lim
x0
log lim
x0
1 log 1 tan x log 1 sin x sin x x log 1 tan x tan x log 1 sin x sin x 0 . . 1 1 .1 1 . 1 0 e 1 sin x tan x x sin x x
lim
x0
8.
Since 0 < a < 1
sin 2 n! 0 1 n1 a a n
We have lim
n
n1 a
As 9.
even function
cosec x
f x 0
and
1 na
0
(a constant function)
As tan I 0 I : integer 10.
f x 1
For x 0
f x f x f 0
x 0
x 0
removable discontinuity
Differential Calculus - 1 1.
1
1 1 9y
2
dy dx
d y dx
2
d2y dx 2
2.
. . . .(i)
dy 1 9 y2 dx 2
HWT - 10
9y
1 9 y2
d2y dx 2
9y 1 9y
2
dy dx
1 9 y2
9y
Since g is inverse of f we have f x y and
g y x
or
f g x x
g x cos ec g x
f g x g x 1 f g y y
VMC/Solutions/Differential Calculus - 1
19
HWT-5/Mathematics
Vidyamandir Classes 3.
sin 3 x 0 x R
And period of tan x is 1. 4.
f x sin x cos x now sin x cos x Has values from 1 to
6.
lim
2
Range of f (x) is only {1}.
sin 2 x a sin x
x0
x3
lim
b
2 x 3 2 x 5 . . . . . a x x 3 x5 . . . . . 2x 3 5 3 5 x3
x0
2
3
7.
2a 0
a 2
and
3
b
a b b 1 3
From graph it is :
Non-differentiable when 2 sin x 1 cos x [except x = 0]
10.
4 1 cos 2 x 1 cos 2 x 2 cos x
cos x
f x
2 64 2 8 6 3 10 10 10 5
5 cos 2 x 2 cos x 3 0
3 3 x cos 1 cos 1 5 5
U x V x V x U x 4 1 2 2 0 u x 2 1 V 2 x v x 1
VMC/Solutions/Differential Calculus - 1
20
HWT-5/Mathematics
View more...
Comments