Jee 2014 Booklet5 Hwt Differential Calculus 2

August 28, 2017 | Author: varunkohliin | Category: Monotonic Function, Maxima And Minima, Tangent, Space, Analysis
Share Embed Donate


Short Description

Jee 2014 Booklet5 Hwt Differential Calculus 2...

Description

Vidyamandir Classes DATE :

TIME : 30 Minutes

MARKS : [ ___ /10]

TEST CODE : DC-2 [1]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. However, questions marked with '*' may have More than One correct option. 1.

The graph of y   x  1  1 is : 2

Y

X

O

2.

3.

*5.

 2 Given f  x   tan   x2  16  (A) Range of f (x) is A

(C)

X

(D)

(B)

[0, 1]

(B)

(C)

1, 1

 1 0, 3   

(D)

x3 meets the curve again at the point Q. The coordinates of Q are : 10  x

 1 1, 3   

(C)

 2,  2 

 2,  1

(D)

  and A  R  0, 1    

Maximum value of f (x) =1

(B)

Range of f (x) is A’

(D)

Maximum value of

 f  x 

1

1

The coordinates of a point on the curve x3  y 3  6 xy at which the tangent is parallel to the x-axis are : (A)

7.

 1  1, 3   

O

 1  x2   1  x2    sec 1   the set of points at which the tangent is parallel to the x-axis is : For the curve defined as y  cos ec 1   2x   1  x2      (A) [0, 1] (B) (0, 1) (C) None of these  1, 0   1,   (D)

(C) 6.

1   3 , 1  

X

O

1 is : 2  cos x

The tangent at the point (5, 5) on the curve y 2  (A)

4.

(B)

The range of the function f  x   (A)

X

O

(A)

Y

Y

Y

24 / 3 ,  25 / 3 

(B)

24 / 3 , 25 / 3 

(C)

25 / 3 , 24 / 3 

(D)

None of these

If  and  are the lengths of perpendiculars from the origin to the tangent and normal to the curve x 2 / 3  y 2 / 3  52 / 3 respectively then 4 2   2 is : (A)

8.

625

(B)

125

(C)

25

(D)

252/3

The curve y  ax3  bx 2  cx  5 touches x-axis at A  2, 0  . The curve intersects the y-axis at a point B where its slope equals 3. The value of ‘a’ is : (A)

2

VMC/Differential Calculus-2

(B)

2

(C)

69

1 2

(D)

1 2

HWT/Mathematics

Vidyamandir Classes 9.

*10.



The function f  x   x 4  42 x 2  80 x  32



3

is :

(A)

Monotonically increasing in  4,  1   5,  

(B)

Monotonically increasing in   ,  4    1, 5 

(C)

Monotonically increasing in  4 , 5 

(D)

None of these





If f  x   max x 2  4, | x  2 |, | x  4 | then : (A)

f (x) is continuous for all x  R

(B)

f (x) is differentiable except at x 

(C)

f (x) has a critical point at x = 2

(D)

f (x) has no maximum

VMC/Differential Calculus-2

70

1  33 2

HWT/Mathematics

Vidyamandir Classes DATE :

TIME : 30 Minutes

MARKS : [ ___ /10]

TEST CODE : DC-2 [2]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. However, questions marked with '*' may have More than One correct option. *1.

Given that f (x) is a linear function. Then the curves :

(B)

y

1

(C)

y

(D)

y

(A)

2.

(D)

24

Let

7.

14  10 x  x 2  x 3  Let f  x    2  3  log10 p  4

8.

None

*9.

Side of a regular hexagon increases at the rate of 3 cm/hour. At the instant when the side is 120 3 cm , find the rate of increase in the radius of the inscribed circle of hexagon :

(C) 5.

3 cm/hr 2

(B)

3 3 cm / hr

(D)

3 3 cm / hr 2

*10.

If the only point of inflection of the function f  x   x  a

m

 x  b n , m, n  N

x = a, then : (A) m, n are even (B) m is odd, n is even (C) m is even, n is odd (D)

VMC/Differential Calculus-2

, x 1

.

and m  n is at

(D

 

  14 ,  2  2, 14   

The set of values of P for which the function x x  f  x   P 2  5P  6  cos 4  sin 4    P  3 x  K 4 4  has no critical point is : (A) (0, 4) (B)   , 0 





(C)

find the rate of increase in the area of the hexagon : (A) 3040 cm2/hr (B) 3140 cm2/hr 2 (C) 3240 cm /hr (D) 3340 cm2/hr

3 cm/hr



  14 , 14   

(C)

Side of a regular hexagon increases at the rate of

(A)



, x 1



3 cm/hour. At the instant when the side is 120 3 cm ,

4.

with f  x   a0  a1 x 2  a2 x 4  . . .  an x 2n a1 , a2 , . . . an  0 . Then f (x) has : (A) only one maxima (B) only one minima (C) no extrema (D) None of these

6.

Then f (x) attains the absolute minimum value at x = 1if p takes values in the interval : (A) (4, 14) (B)  14 ,  2    2 , 14  

A balloon is in the form of a right circular cone surmounted by a hemisphere having the radius equal to half the heights of the cone. Air leaks through a small hole ; but the balloon keeps its shape. What is the rate of change of volume with respect to the total height (H) of the balloon when H = 18 cm. (A) (B) 48  (C)

3.

 x  are orthogonal f  x  and y  f   x  are orthogonal f   x  and y  f 1  x  are orthogonal f   x  and y  f 1   x  are orthogonal

y  f  x  and y  f

1

 0,  



(D)



Let g  x   log 1  3x  2 x 2  3x 

 0, 3   3, 4  5x2 . Then g   x  is 2

increasing on  1 (A) (B) (0, 1)  0, 2    (C) (0, 2) (D) (0, 3)  2 2  ax , x0  x  2  e  a  Let f  x    where a > 0, the  x3  2 x  2 , x  0  a a2  interval in which f   x  is increasing : (A) (C)

 1  0, 2    (0, 2)

(B)

(0, 1)

(D)

(0, 3)

m, n are odd

71

HWT/Mathematics



Vidyamandir Classes DATE :

TIME : 30 Minutes

MARKS : [ ___ /10]

TEST CODE : DC-2 [3]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

The points on the curve y  x3  2 x 2  x at which the tangent line is parallel to the line y  3 x  2 is(are) : (A)

2.

4.

7.

8.

2 14  , 3 27  

(D)

 2, 2  ,  2, 14 

(B)

1,  1 ,  3, 4 

(C)

(2, 14), (2, 2)

(D)

None of these

None of these

(B)

   f (x) is decreasing in   , 0   2 

(C)

  f (x) is increasing in  0 ,   2

(D)

  f (x) is decreasing in  ,   2 

Let f  x    x  2 

2/3

 2 x  1 . Then critical points of f (x) are : (D)

x = 1, 2

x=1

(B)

x=2

(C)

x = 0, 2

(D)

None

Equation of normal to the curve x  y  x y where it cuts x-axis, is : (A) (B) (C) x+y=0 x  y 1  0 x  y 1  0

(D)

None of these

Maximum area of a rectangle of perimeter 176 cm, is : (A) 1936 cm2 (B) 1854 cm2

(D)

None of these

If the tangent at (1, 1) on y 2  x  2  x  meets the curve at P, then P is : 2

(4, 4)

(B)



 1, 2 



(C)

 9 3  4 , 8  

(C)

2110 cm2

(B) (D)

decreasing for x < 0 only decreasing for all real x



1 log x 2  1 . Then f (x) is : 2 increasing for x > 0 only increasing for all real x

Let f  x   x 



If the tangent at P 4m 2 , 8m3 to the curve x3  y 2 is also a normal, them m 2  (A)

10.

 2,  2  ,  

   f (x) is increasing in   ,   2 2

(A) (C) 9.

(C)

(A)

(A) 6.

14   2   3 ,  27   

Let f (x) = cos (cos x). Then which one is not correct ?

(A) 5.

(B)

The co-ordinates of the point on the curve y  x 2  3 x  4 the tangent at which passes through the origin are : (A)

3.

 2,  2 

2

(B)

1/9

(C)

2/9

(D)

None of these

If at each point of the curve y  x3  ax 2  x  2 , the tangent is inclined at an acute angle with the positive direction of x-axis, then : (A) (B) a>0 a   3 or a  3 (C)

 3a 3

VMC/Differential Calculus-2

(D)

72

None of these

HWT/Mathematics

Vidyamandir Classes DATE :

TIME : 30 Minutes

MARKS : [ ___ /10]

TEST CODE : DC-2 [4]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

2.

3.

Let f : a, b   R be a function such that for c   a, b  , f   c   f   c   f   c   f iv  c   f v  c   0 , then : (A) f has local extremum at x = c (B) f has neither local maximum nor local minimum at x = c (C) f is necessarily a constant function (D) It is difficult to say whether (A) or (B) The largest value of 2 x3  3 x 2  12 x  10 for 2  x  4 occurs at x = (A) (B) (C) 2 2 1

2

(B) n

9/2

(D)

None

(B)

2

(C)

4

(D)

n0

(D)

None of these

(D)

(2, 4)

a sin x  b cos x is monotonically decreasing in its domain if : c sin x  d cos x

ad  bc  0

(B)

ab  cd  0

(C)

ad  bc

The complete set of values of x in which f  x   2 log e  x  2   x 2  4 x  1 increases, is : (A)

7.

(C)

n

1

The function f  x   (A)

6.

4

x y x  y The curve       2 touches the line   2 at the point (a, b) for n = a b a b (A)

5.

4

If the curves y 2  16 x and 9 x 2  by 2  16 cut each other at right angles, then the value of b is : (A)

4.

(D)

(1, 2)

(B)

(2, 3)

(C)

5   2 , 3  

Segment of the tangent to the curve xy  c 2 at the point  x , y'  which is contained between the co-ordinate axes, is bisected at the point (A)

8.

9.

 y 

(B)

 y , x  

(C)

 x y   2, 2  

(D)

None

  The tangent and normal to the curve y  2 sin x  sin 2 x are drawn at P  x   . The area of the quadrilateral formed by the 3  tangent, the normal and co-ordinate axes is : (A) (B) (C) (D) None  3  3/2 3

In 1, 2 the function f  x   x  x  1 is : (A)

10.

  x ,

increasing

(B)

decreasing

(C)

constant

(D)

None of these

f x The number of solutions of the equations a    g  x   0 , where a  0 , g  x   0 and has minimum value 1/2, is :

(A)

infinitely many

VMC/Differential Calculus-2

(B)

only one

(C)

73

two

(D)

zero

HWT/Mathematics

Vidyamandir Classes DATE :

TIME : 30 Minutes

MARKS : [ ___ /10]

TEST CODE : DC-2 [5]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

The curves ax 2  by 2  1 and a x 2  b y 2  1 intersect orthogonally if : (A)

2.

5.

7.

f  x 

1 1 1 1    a a  b b

(D)

None of these

circle

(C)

parabola

a sin x  cos x is increasing for all values of x, then : sin x  cos x (B) a1

(B)

The tangent to the curve x  a

(A) 8.

1 1 1 1    a b a  b

: x 1  6 then for f (x), x = 1 is : f  x   7  x : x  1 (A) a point of local maxima (C) neither a point of local minima nor maxima

(A) 6.

straight line

If the function f  x   (A)

4.

(B)

All the points on the curve y  x  sin x at which the tangent is parallel to x-axis lie on a / an : (A)

3.

1 1 1 1    a b a  b

[cos 1, 1]



(B)

[sin 1, 1]

(C)

[cos 1, sin 1]

(D)

[0, 1]



f  x   max . 4 , 1  x 2 , x 2  1  x  R . Total number of points, where f (x) is not differentiable, is equal to :

(A)

2

VMC/Differential Calculus-2

(B)

4

(C)

74

6

(D)

None

HWT/Mathematics

Vidyamandir Classes DATE :

TIME : 30 Minutes

MARKS : [ ___ /10]

TEST CODE : DC-2 [6]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. However, questions marked with '*' may have More than One correct option. 1.

f  x    x  

(A) (C) 2.

1/2

0 1  t3 dt

1

2b/3

(D)

None

(D)

None

at the point where x = 1 is : (C)

1/4

(B) (D)

a minimum at x = 0 f (x) is not derivable at x = 0

(0, 1)

(B)

(1, 3)

(C)

(1, 0)

(D)

None

(B)

3

(C)

5

(D)

4

x  : x 1  sin The function f  x    , where [.] denotes the greatest integer function, is : 2 2 x  3 x : x  1  Continuous and differentiable at x = 1 Discontinuous at x = 1

(B) (D)

Continuous but not differentiable at x = 1 None of these

The curve C1 : y  1  cos x, x   0,   and C2 : y  3 2 | x |  a will touch each other if a =

3   2 3

(B)

3   2 2 3

(C)

1   2 3

(D)

None

one point

(D)

no point

1/e2

(D)

2/e2

The straight line y  3 x  1 touches the curve y  x 4  2 x 2  3 x at : (A)

10.

(B)

x

(C)

f  x   sin x   cos x  , x  0, 2  , where [.] denotes the greatest integer function. Total number of points where f (x) is not

(A) 9.

8b/27

2

If f  x   x5  5 x 4  5 x3  10 has local max. and min. at x = p and x = q, then (p, q) =

(A) (C) 8.

(B)

a maximum at x = 0 neither of two at x = 0

differentiable is equal to : (A) 2

7.

Differentiable at x = 1 None of these

f  x    3  x  x 2 x  4 xe x  x then :

(A) 6.

8a/27

The slope of the tangent to the curve y 

(A) (C) 5.

(B) (D)

3

(A) *4.

Continuous but not differentiable at x = 1 Discontinuous at x = 1

If the relation between subnormal SN and subtangent ST at any point P on the curve by 2   x  a  is p  SN   q  ST  , then p/q = (A)

3.

 x , where [.] and {.} denote the greatest integer function and fractional part respectively, then f (x) is :

two points

(B)

four points

(C)

Let f  x   x 2 e 2x (x > 0). Then f (x) has maximum value equal to : (A)

1/e

VMC/Differential Calculus-2

(B)

1/2e

(C)

75

HWT/Mathematics

Vidyamandir Classes DATE :

TIME : 30 Minutes

MARKS : [ ___ /10]

TEST CODE : DC-2 [7]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. However, questions marked with '*' may have More than One correct option. 1.

Let f   x   0  x  R and g  x   f  2  x   f  4  x  . Then g(x) is increasing in : (A)

2.

5.

 1,  

(D)

None

(C)

9

(D)

6

(C)

R   1, 1

(D)

None of these

(B) (D)

Discontinuous None of these

(D)

2

(D)

None

(C)

8

(B)

10

 2x   , then f (x) is differentiable on :  1  x2 

If f  x   sin 1  (A)

4.

  , 0 

(B)

Total number of solutions of the equation sin  x  | ln | x || is : (A)

3.

  ,  1

1, 1

R  1, 1

(B)

 3x : 1  x  1 Let f  x    . Then at x = 1, f (x) is : 4  x : 1  x  4 (A) Differentiable (C) Continuous but not differentiable

 dy  Given : 2 x 2  xy  y 2  0 . Then     dx  1,  2 

(A)

2



(B)

3 2

4 3

(C)

x

6.

 x2  2 If lim    e , then a = x    ax  1 

(A) *7.

(B)

2

 2,  2

(B)

1,  2

. . . .(i)

and

Should intersect orthogonally is that 1 1 1 1 (A) (B)    a b a b

10.

4

2

14   2   3 ,  27 

(C)

(D)

(3, 6)

(D)

None of these

The condition that the curves

ax 2  by 2  1

9.

(C)

Find the points on the curve y  x  2 x  x at which the tangent lines are parallel to the line y  3 x  2 . 3

(A) 8.

1

a x 2  b y 2  1

1 1 1 1    a b a  b

. . . .(ii) 1 1 1 1    a a  b b

(C)

The equations of those tangents to 4 x 2  9 y 2  36 which are perpendicular to the straight line 5 x  2 y  10  0 , are : (A)

 117  5  y  3  2  x    2  

(B)

(C)

2 x  5 y  10  2 18  0

(D)

2 x  5 y  10  2 18  0

None of these

The point of intersection of the tangents drawn to the curve x y  1  y at the points where it is met by the curve xy  1  y , is given by: (A) (B) (1, 1) (C) (0, 1) (D) None of these  0,  1

VMC/Differential Calculus-2

2

76

HWT/Mathematics

Vidyamandir Classes DATE :

TIME : 30 Minutes

MARKS : [ ___ /10]

TEST CODE : DC-2 [8]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

a a If the sum of the squares of the intercepts on the axes cut off by the tangent to the curve x1 3  y1 3  a1 3 (with a > 0) at  ,  8 8

is 2, then a has the value : (A) 1 2.

2

(C)

4

(C)

Cut at an angle

(D)

8

The two curves x3  3 xy 2  2  0 and 3 x 2 y  y 3  2 (A)

3.

(B)

Cut at right angles (B)

touch each other

 (D) 3

Cut at an angle

 4

A curve with equation of the form y  ax 4  bx3  c  cx  d has zero gradient at the point (0, 1) and also touches the x-axis at the point  1, 0  then the values of the x for which the curve has a negative gradient are : (A)

4.

*7.

(D)

1  x  1

1

(B)

2

(C)

3 2

(D)

1 2

x=0

(B)

y=0

(C)

x y 0

(D)

x y 0

3

(D)

4

a  0, b  0

(B)

a  0, b  0

(C)

b  0, a  0

(D)

a  0, b  0

p  2 , q   7

(D)

p  2, q  7

If y  4 x  5 is a tangent to the curve y 2  px3  q at (2, 3), then : p  2 , q  7

(B)

p  2 , q  7

(C)

The curve y  e xy  x  0 has a vertical tangent at the point : (A)

10.

x  1

If the line ax  by  c  0 is normal to xy = 1, then :

(A)

9.

(C)

The number of real roots of the equation e x 1  x  2  0 is : (A) 1 (B) 2 (C)

(A)

8.

x 1

The equation of the tangent to the curve x  t cos t, y  t sin t at the origin is : (A)

6.

(B)

If the area of the triangle included between the axes and any tangent to the curve x n y  a n is constant, then n is equal to : (A)

5.

x  1

(1, 1)

(B)

at no point

(C)

(0, 1)

(D)

(1, 0)

Let a, b be two distinct roots of a polynomial f (x). Then there exists at least one root lying between a and b of the polynomial : (A)

f (x)

VMC/Differential Calculus-2

(B)

f  x

(C)

77

f   x 

(D)

None of these

HWT/Mathematics

Vidyamandir Classes DATE :

TIME : 30 Minutes

MARKS : [ ___ /10]

TEST CODE : DC-2 [9]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. However, questions marked with '*' may have More than One correct option. 1.

(A) (C) 2.

The set of all x for which log 1  x   x is : (A)

*3.

*7.

9.

 1, 0 

(D)

None of these

(1, 2)

(B)

(2, 3)

(C)

5   2 , 3  

(D)

(2, 4)

a 2  3b  15  0

(B)

a 2  3b  15  0

(C)

a 2  3b  15  0

(D)

a  0 and b  0

even

(B)

odd

(C)

increasing

(D)

decreasing

(A)

fog is an increasing function on I

(B)

fog is a decreasing function on I

(C)

fog is neither increasing nor decreasing on I

(D)

None of these

  Which of the following functions are decreasing on  0 ,  ?  2 cos x

(B)

cos 2 x

(C)

cos 3x

(D)

(B)

decreases everywhere

tan x

The function y  x3  3 x 2  6 x  17 : (A)

increases everywhere

(C)

increases for positive x and decreases for negative x

(D)

increases for negative x and decreases for positive x

The interval in which the function x3 increases less rapidly than 6 x 2  15 x  5 , is : (A)

10.

(C)

If f is an increasing function and g is a decreasing function on an interval I such that fog exists, then :

(A) 8.

 1,  

The function f  x   log e  x3  x 6  1  is of the following types :   (A)

6.

(B)

Let f  x   x3  ax 2  bx  5 sin 2 x be an increasing function on the set R. Then a and b satisfy : (A)

*5.

 0,  

The function f  x   2 log  x  2   x 2  4 x  1 increases on the interval : (A)

4.

x x and g  x   where 0  x  1 , then in this interval : sin x tan x Both f (x) and g (x) are increasing functions (B) Both f (x) and g (x) are decreasing functions f (x) is an increasing function (D) g (x) is an increasing function

If f  x  

  ,  1

(B)

 5, 1

(C)

 1, 5

(D)

 5,  

A condition for a function y  f  x  to have an inverse is that it should be : (A)

defined for all x

(C)

strictly monotone and continuous in the domain (D)

VMC/Differential Calculus-2

(B)

78

continuous everywhere an even function

HWT/Mathematics

Vidyamandir Classes DATE :

TIME : 30 Minutes

MARKS : [ ___ /10]

TEST CODE : DC-2 [10]

START TIME :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions. Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. x

1.

1 The maximum value of   is : x

(A) 2.

3.

5.

8.

(B)

2

(C)

  x  1

(A)

2

(D)

1

(B)

2 3

(B)

13

0

(B)

2

(D)

None of these

3

(D)

1 3

on [0, 1] is : (C)

8 7

On the interval [0, 1] the function x 25 1  x 

1 e

3

The difference between the greatest and least values of the function f  x   cos x  (C) 75

9 4

1 1 cos 2 x  cos 3x is : 2 3 3 (D) 8

takes its maximum value at the point :

1 4

(C)

1 2

(D)

1 3

Let P  x   a0  a1 x 2  a2 x 4  . . .  an x 2 n be a polynomial in a real variable x with 0  a0  a1  a2  . . .  an . The function P(x) has : (A) neither a maximum nor a minimum

(B)

only one maximum

(C)

(D)

None of these

(C)

20

only one minimum

The maximum value of xy subject to x  y  8 is : 8

(B)

16

(D)

24

(D)

2r 2

The maximum area of the rectangle that can be inscribed in a circle of radius r is : (A)

10.

1

13

(A) 9.

e1 e

is :

x2

The greatest value of f  x    x  1

(A) 7.

(C)

x 1

The number of critical points of f  x  

(A) 6.

ee

(B)

 1 The value of a for which the function f  x   a sin x    sin 3x has an extremum at x  is : 3 3 (A) 1 (B) (C) 0 (D) 1

(A) 4.

e

 r2

(B)

r2

(C)

 r2 4

3 x 2  12 x  1 , 1  x  2 If f  x    , then : , 2 x3  37  x

(A)

f (x) is increasing in 1, 2

(B)

f (x) is continuous in 1, 3

(C)

f (x) is maximum at x = 2

(D)

All of these

VMC/Differential Calculus-2

79

HWT/Mathematics

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF