Jee 2014 Booklet4 Hwt Sequence & Series

February 12, 2017 | Author: varunkohliin | Category: N/A
Share Embed Donate


Short Description

Jee 2014 Booklet4 Hwt Sequence & Series...

Description

Vidyamandir Classes

DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : SQS [1]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

log32 , log 62 , log122 are in : (A)

2.

A.P.

4.

a positive integer

divisible by n

(C)

equal to n 

44

1 n

(D)

never less than n

(D)

None of these

(B) (D)

A.P. H.P.

27

(B)

27

(C)

13.5

(D)

–13.5

 ab n



(B)





 ab n 2

(C)

 ab 2n

(D)

None of these

(C)

log5 2

(D)

1  log 2 5

(C)

4

(D)

None of these



If log 2 5.2 x  1 , log 4 21 x  1 and 1 are in A.P., then x equals : (B)

log 2 5

The value of  0.16 

1  log5 2

1 1 1 1 log2.5     . . . .   33  3 32

2

(B)

3

is :

If A1, A2 be two AM’s and G1, G2 be two GM’s between a and b, then (A)

10.

None of these

The product of n geometric means between a and b is :

(A) 9.

(D)

If x, 2 x  2 , 3 x  3 are in G.P., then the fourth term is :

(A) 8.

(B)

a b c , , will be in : bc ca ab no specified sequence G.P.

(A) 7.

H.P.

If a, b, c are in H.P., then

(A) 6.

(C)

The third term of G.P. is 4. The product of first five terms is : (A) 43 (B) 45 (C)

(A) (C) 5.

G.P.

The product of n positive numbers is unity. Then their sum is : (A)

3.

(B)

ab 2ab

(B)

2ab ab

A1  A2 is equal to : G1 G2 ab ab

(D)

ab ab

–5050

(D)

–5000

(C)

Coefficient of x99 in the expansion of  x  1  x  2  . . . . . x  100  is : (A)

5050

VMC/Sequence & Series

(B)

5000

(C)

36

HWT/Mathematics

Vidyamandir Classes

DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : SQS [2]

ROLL NO.

START TIME :

STUDENT’S SIGNATURE :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

If A and G be the AM and GM respectively between two numbers, then the numbers are :

A  G 2  A2

(A) 2.

1

16 : 7 1

(B)

1

6.

7.

8.

7 : 16

G  A2  G 2

(C)

74 : 169

(D)

None of these

(B)

x2

(C)

x2

(D)

None of these

A>H>G

(C)

GG>H (B)

(A) *9.

A  A2  G 2

1

1

5.

(C)

x 2 . x 4 . x 8 . x 16 . . . . . to  is equal to :

(A) 4.

A  A2  G 2

If the ratio between the sums of n terms of two A.P.’s is 3n  8 : 7 n  15 , then the ratio between their 12th term is : (A)

3.

(B)

pth term is zero

Sum of the series : 12  32  52  . . . . . .20 terms : (A)

10660

VMC/Sequence & Series

(B)

10330

(C)

37

HWT/Mathematics

Vidyamandir Classes

DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : SQS [3]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. However, questions marked with ‘*’ may have More than One correct option. 1.

 x 1  x   y 1  y 2

(A)

n



(C)

1 x



(B)

2







n  2 y2 1 yn 1  x 1 x  x  y  1 x 1 y 

   

n

(D)

1 y

None of these

n

1  I  r   3  1 , then  I  r  is equal to : r

(A)

4.

n

  y 1  y 

r 1

3.

 

x y

n

If

2

x y

x2 1  xn

2.

 

Sum of n terms of series :  x  y   x 2  xy  y 2  x3  xy 2  x 2 y  y 3  . . . . .

r 1

  1 n  2 1      3   

(B)

  1 n  1       3  

(C)

3 1 1  4   3  

n

 

Let positive numbers a, b, c, d be in A.P. then abc, abd, acd, bcd are : (A) not in A.P. or G.P. or H.P. (B) in A.P. (C) in G.P. a b c , , bca c ab b ac 3 (C) 2

(D)

None of these

(D)

in H.P.

(D)

2

If a, b, c are the sides of a triangle, then : (A)

3

(B)

5.

The harmonic mean and geometric mean of two positive numbers are in the ratio 4 : 5, then two numbers are in the ratio. (A) 4:1 (B) 3:1 (C) 2:1 (D) 1:3

6.

Sum of integers from 1 to 100 that are divisible by 2 or 5 is : (A) 3050 (B) 3150 (C)

7.

9.

None of these

2

(B)

3

(C)

4

(D)

5

If the sum of first 2n terms of the A.P. 2, 5, 8, . . . . is equal to the sum of first n terms of the A.P. 57, 59, 61 . . . . . then n equals : (A) 10 (B) 12 (C) 11 (D) 13 Coefficient of x0 in  x  a   x  b   x  c   x  d   x  e  . . . .  x  x0  is : (A)

*10.

(D)

If x > 0 and log 2 x  log 2 2  log 2 4 x  log 2 8 x . . . . . . = 4 then x equals : (A)

8.

3250

product of roots

(B)

sum of roots

(C)

A.M. ≥ G.M. for a, b where a and b are : (A) Natural numbers (B) Rational numbers (C)

VMC/Sequence & Series

38

1

Integers

(D)

depends on roots and number of roots

(D)

Positive rational numbers

HWT/Mathematics

Vidyamandir Classes

DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : SQS [4]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

If the length of sides of a right triangle are in A.P. then the sines of the acute angle are :

1 3 , 2 2

(A) 2.

If

a, b, c are in A.P. (B)

1 12



1 22



1 32

.... 



If x 





tr 

r 1

(A)

3 4 , 5 5

5 1 , 2

(D)

5 1 2



a  b, b  c, c  a are in A.P.

2 8

(D)

2 12

(C)

xy  z  y  x  z 

(D)

None of these

(C)

4n n 1

(D)

 R

(C)

 Integer

(D)

 natural number

385

(C)

1115

(D)

3025

(C) 

(B)

(B)

n



a  b  , then :   n0

xyz  x  y  z

1 n  n  1  n  2  , the value of 12 2n n 1

a, b, c are in H.P. (D)

n

t

1

is :

r 1 r

n 1

 n  1!

3n n2

2 x  2 x  2 for  x :

(A) 7.

2 6

b n , 0  a  b  1 and z 

x  yz  x  y  z  n

6.

(B)

n0

(A) If

a, b, c are in G.P. (C)



an , y 

n0

5.

(C)

1 1 1 2 , then value of 2  2  2  . . . .  is : 6 1 3 5

2 4

(A)

4.

2 1 , 3 3

If log  a  c   log  a  c  2b   2 log  a  c  , then : (A)

3.

(B)

R

(B)

If  n  55 then  n is equal to : (A) 506 (B) 2

Statement True or False for Q.8 - 10 8.

n!  n n

10.

ba bc  3. If a, b, c are in H.P. then ba bc

VMC/Sequence & Series

9.

If a and c are positive and b is negative than a, b, c can be in G.P.

39

HWT/Mathematics

Vidyamandir Classes

DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : SQS [5]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. Paragraph for Q.1 - 3 The sum of the squares of 3 distinct real numbers which are strictly in G.P. is s2. If their sum is s. 1.

2 lies in :

 1   1   3 , 0    0 , 3  (C)    

1   3 , 3  

(D)

1   3 , 1  1, 3  

If  2  2 then the value of [r] is : (A) 0 (B)

1

(C)

2

(D)

3

If r = 2 then value of  2  is :   (A) 0 (B)

1

(C)

2

(D)

3

4

(D)

64

(A) 2. 3.

4.

1   3 , 1  

(B)

If a  b  c  12  a, b, c  0  then maximum value of abc is : (A)

16

(B)

12

(C)

5.

The sum of infinite numbers of terms of a G.P. is 15 and the sum of their squares is 45. Then third term of the G.P. is : (A) 5 (B) 10/3 (C) 20/9 (D) 40/27

6.

If

1 1 1 1     0  b  a  c  then : a c a b cb

(A) 7.

a, b, c are in A.P. (B)

a, b, c are in H.P. (C)

a, b, c are in G.P. (D)

a, b, c are in AG.P.

Sum of the series 1.2 + 2.3 + 3.4 + . . . . n terms : (A)

3n  n  1  n  2  3

(B)

n  n  1  n  2  3

(C)

 n  1  n  2  2n  1 3

(D)

None of these

Statement True or False for Q.8 - 10 8.

If a, b, c, d are in G.P. then ax 2  c divides ax3  bx 2  cx  d .

9.

Only solution for system of equations :

1  x  x 2  x3 . . . . .x 23  0 is 10.

and

1  x  x 2  x3 . . . . .x19  0

x  1

If a, b, c are in G.P. then a  b, 2b, c  d are in H.P.

VMC/Sequence & Series

40

HWT/Mathematics

Vidyamandir Classes

DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : SQS [6]

ROLL NO.

START TIME :

STUDENT’S SIGNATURE :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. Paragraph for Q.1 - 3 Suppose p is the first of n A.M’s between two positive numbers a and b ; q the first of n H.M’s between the same two numbers. 1.

P is : (A)

2.

(B)

na  b n 1

(C)

nb  a n 1

(D)

nb  a n 1

Value of q is : (A)

3.

na  b n 1

ab  n  1

(B)

b  an

ab  n  1 a  bn

(C)

ab  n  1 b  an

(D)

ab  n  1 a  bn

If pq  f  x  then f  x  is : x

b

(D)

a2

558

(D)

650

1025th term in the sequence 1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8 . . . . . . . is : (A) 29 (B) 210 (C) 211

(D)

212

Sum of the series upto 10 terms is 4 + 44 + 444 + 4444 + . . . . . 10 terms ? (A) 100 (12345679) (B) 200 (12345679) (C) 300 (12345679)

(D)

400 (12345679)

(A) 4. 5. 6.

ab

(B)

a

(C)

Maximum value of the sum of the A.P. 50, 48, 46, 44, . . . . . is : (A) 648 (B) 450 (C)

Statement True or False for Q.7 - 10 7.

The number 111 . . . . 11 (91 times) is a prime number.

8.

If H n  1 

9.

If 0.272727 . . . . . , x, 0.727272 are in HP then x must be an irrational number.

10.

If a  2b  c  4 then maximum value of ab 2 c exists when a = b = c = 1.

1 1 1 n 1  1 2 3   . . . . . , then H n  n      . . . . . 2 3 n n  2 3 4

VMC/Sequence & Series

41

HWT/Mathematics

Vidyamandir Classes

DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : SQS [7]

ROLL NO.

START TIME :

STUDENT’S SIGNATURE :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. However, questions marked with ‘*’ may have More than One correct option. 1.

Find 10th term of the series 8, 8 17

(A) 2.

4.

x 2  2 Ax  G 2  0 (B)

(C)

8 21

(D)

8 10

x 2  2 Ax  G 2  0 (C)

x 2  Ax  G 2  0

(D)

None of these

(D)

440

If f  n   1 1!  2  2!  3  3!  4  4! . . . . upto n terms, then : f  n   n!  1

If a (A)

f  n   n!  1

(C)

f  n    n  1 !  1 (D)

is the A.M. between ‘a’ and ‘b’, then :  b n 1 n is odd (B) n is even

(C)

n is perfect square (D)

n is not a perfect square

(C)

1771

(D)

1881

(C)

1 2 5  

(D)

1 2 4  

(D)

–1

(D)

 2

a b n

6.

8 19

Sum of the series utpo 10 terms is 1.2 + 2.3 + 3.4 + . . . . . . 10 terms : (A) 110 (B) 220 (C) 330

(A) *5.

(B)

If A is arithmetic mean and G is geometric mean of a and b then a, b are roots of the equation. (A)

3.

8 8 , ..... 3 5

n 1

(B)

f  n    n  1 !  1

n

Sum of the series upto 11 terms is :

12  32  52  . . . . 11 terms : (A) 7.

1551

Sum to 5 terms of the series

(B)

1 3 7 15    is : 2 4 8 16

4

(A) 8.

9.

*10.

1  2 5  

1661

5

4

(B)

1  2 4  

Minimum value of logb a  log a b is : (a > 1, b > 1) (A) 1 (B) 2

(C)

3  y If cos  x  y  , cos x and cos  x  y  are in H.P., then cos x . sec   is equal to : 2 1 1 (A) (B) (C) 2 2 2

5

If x > 0, then sum of the series e  x  e2 x  e3 x . . . . .  is : (A)

always negative

VMC/Sequence & Series

(B)

always positive

(C)

42

always less than 1 (D)

always greater than one

HWT/Mathematics

Vidyamandir Classes

DATE :

IITJEE :

NAME :

  MARKS :    10 

TIME : 25 MINUTES

TEST CODE : SQS [8]

ROLL NO.

START TIME :

STUDENT’S SIGNATURE :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

2.

1 1 1 are in : , , 1 x 1 x 1 x (A) A.P. (B)

4.

(C)

G.P.

(D)

None of these

(C)

4

(D)

None of these

Least value of log100 a  log a 0.0001, a  1 is : (A)

3.

H.P.

2

(B)

3

A monkey while trying to reach the top of a pole of height 12 meters takes every jump of 2 meters but slips 1 meter while holding the pole. The number of jumps required to reach the top of the pole, is : (A) 6 (B) 10 (C) 11 (D) 12 x2  x 

(A)

tan 2  x2  x

is always greater than or equal to :

2tan

(B)

2

(C)

1

(D)

sec 2 

5

5.

 r  r  1  r  2  r  3 is equal to : r 1

1  x   x  1  x  2   x  3  x  4  5 1  x   x  1  x  2   x  3  x  4  7

(A) (C)

6.

If 1.05 

49

50

 11.658 , then

 1.05

n

(B) (D)

1  x   x  1  x  2   x  3  x  4  10 9! 5!

equals :

n 1

(A) 7.

8.

208.34

(B)

212.12

(C)

212.16

(D)

213.16

An infinite G.P. has first term x and sum 5, then x belongs to : (A) 0 x5 (B) 0  x  10 (C)

5  x  5

(D)

10  x  10

For two unequal numbers, AM = 4 and GM = 2. Then HM is : (A) 1 (B) 2 (C)

3

(D)

4

9.

After inserting n AM’s between 2 and 38, the sum of the resulting progression is 200. The value of n is : (A) 10 (B) 9 (C) 8 (D) None of these

10.

Sum of integers from 1 to 100 which are divisible by 2 or 5 is : (A) 3000 (B) 3010 (C)

VMC/Sequence & Series

43

3150

(D)

3050

HWT/Mathematics

Vidyamandir Classes

DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : SQS [9]

ROLL NO.

START TIME :

STUDENT’S SIGNATURE :

END TIME :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

Number of common terms of two sequences 17 , 21, 25, . . . .417 and 16, 21, 26, . . . .466 are : (A) (C)

2.

If

4.

5.

19 22

3 9

(B) (D)

a

(A)

2 3

2r  1

(C)

22 3

2 3  

(A) (C)

2

2

55 110

2

 16 (B) (D)

2

  2

(D)

i

j

1 is : n  n  1  2n  1 6

(B)

n  n  1 2

 n  n  1  n  n  1  n  2  (D)   6 2   If a, b, c are positive then minimum value of (C)

2

9.

alog b  log c  blog c  log a  clog a  log b is : (A) 3 (B) 1 (C) 6 (D) 16



 25 is :

n

10.

–55 –110

 r 1

a, b, c are three positive numbers and abc2 has the 1 greatest value . Then : 64 1 1 1 1 (A) a b  ,c  (B) a b  ,c  2 4 4 2 1 a  b c  (C) (D) None of these 3

VMC/Sequence & Series

(C)

  2   100

2

2

 x

(B)

(A)

3

 x  1  x  4  x  9  x

 

i 1 j 1 k 1

8

Coefficient of x in

  , then the common difference of the A.P.

(A)

n

8.

2

(D)

  and

is :

2 5 2 11     . . . . is : 3 6 3 24

(B)

2r

r 1

6 81

2 12 If first two terms of a H.P. are and respectively, 5 13 then the largest term is : (A) 6 (B) 12 (C) 5 (D) 17/3

Sum to infinity of the series

a

100

42

4

2

6.

(B) (D)

Let an be nth term of an A.P. and

r 1

 3  d    3  2d   . . .  8 , then the value of d 3

is : (A) (C) 3.

20 21

100

7.

44

r 2  r 1 is equal to :  r  1!

(A)

n  n  1!

(B)

1  n  1 n  1!

(C)

n 1  n  1!

(D)

None of these

HWT/Mathematics

Vidyamandir Classes

DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : SQS [10]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

2.

Fifth term of a G.P. is 2, then the product of its 9 terms is : (A) 256 (B) 512 (C)

(A) 3.

7.

9.

6 2



(C)

20 5n  3

(D)

20 5n  2

(D)

None of these

(D)

8

2  6  18  54  . . . . . is :

(B)

121 2





3 1



(C)



243





3 1



2

(B)

4

(C)

6

1 5

2 5

(B)

(C)

3 5

(D)

4 5

If H.M. and G.M. of two positive numbers are in the ratio 12 : 13, then the numbers are in the ratio : (A) 1:2 (B) 2:3 (C) 3:5 (D) 4:9 Sum to n terms of the series 1  1  2   1  2  3 . . . . . n terms is :

1 n  n  1 n  2  2

(B)

1 n  n  1 n  2  3

(C)

1 n  n  1 2n  1 (D) 4

If n!, 3(n!) and (n + 1)! are in G.P., then n!, 5(n!) and (n + 1)! are in : (A) A.P. (B) G.P. (C) H.P. Sum to infinity of the series 1  (A)

10.

204

Sum of an infinite G.P. is 20 and sum of their squares is 100. The common ratio of the G.P. is :

(A) 8.



121

20 5n  4

(B)



(A) 6.

(D)

Harmonic mean of the roots of the equation 5  2 x 2  4  2 x  8  2 2  0 is : (A)

5.

15 5n  3

Sum to 10 terms of the series (A)

4.

1024

1 17 11 20 nth term of sequence 2 , , , . . . . . is : 2 13 9 23

16 35

(A)

H.P.

VMC/Sequence & Series

(D)

None of these

(D)

17 6

(D)

None of these

4 7 10    . . . . . is : 5 52 53

(B)

If a, b, c . . . . . . are in G.P. and

1 n  n  1 n  2  6

1 ax

(B)

11 8 1 y

(C)

35 16

1

 b  c z  . . . . , then x, y, z are in : G.P.

(C)

45

A.P.

HWT/Mathematics

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF