Jee 2014 Booklet1 Hwt Trigo Ratio & Equation

August 28, 2017 | Author: varunkohliin | Category: Trigonometric Functions, Sine, Elementary Geometry, Mathematical Analysis, Triangle Geometry
Share Embed Donate


Short Description

Jee 2014 Booklet1 Hwt Trigo Ratio & Equation...

Description

Vidyamandir Classes DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : TGM [1]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

2.

3.

The value of 1  cos 56  cos 58  cos 66 is equal to : (A)

2 cos 28 cos 29 cos 33

(B)

4 cos 28 cos 29 sin 33

(C)

4 cos 28 cos 29 cos 33

(D)

2 cos 28 cos 29 sin 33

6.

(A)

sin 2

(B)

cos 2

(C)

tan 2

(D)

sec 2

7.

1  sinx  1  sin x 1  sinx  1  sin x

is

equal to :

4.

(A)

sin

x 2

(B)

tan

(C)

sec

x 2

(D)

cos ec

If tan x  (A) (C)

5.

b , then a

ab  ab

2 sin x sin 2 x 2 cos x sin 2 x

x 2

8. x 2

ab is equal to : ab

(B) (D)

9.

(A) (C)

VMC/Trigonometric Ratio & Equation

(C)

1  2 cos A cos B cos C

(D)

1  4 sin A sin B sin C

tan

is

2  2   tan  3 tan tan is equal to : 5 15 5 15

(A)

 3

(B)

(C)

1

(D)

1 3 3

The period of sin 2  is : (A)

2

(B)



(C)

2

(D)

 2

The value of (A)

2 sin x

(C)

cos 2 x 10.

(B) (D)

4 sin A sin B sin C

cos 2 x

sin 2 y 1  cos y sin y is equal to :   1  cos y sin y 1  cos y

0 sin y

3 , then cos 2 A  cos 2 B  cos 2C 2

(B)

2 cos x

The value of the expression

1

A BC 

equal to : (A) 1  4 cos A cos B cos C

1 1  1 1 If cos    x   , then  x 2   is equal to : 2 2 x x2 

If x lies in IInd quadrant, then

If

1  tan 2 15 1  tan 2 15

1

is :

3

(B)

3 2

(D)

If sin      1, sin     

2

1 , 2

then tan   2   tan  2    is equal to : (A) (C)

1 cos y

11

1 Zero

(B) (D)

1 None of these

HWT/Mathematics

Vidyamandir Classes DATE :

  MARKS :   10  

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : TGM [2]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

2.

The value of tan 1 tan 2 tan 3. . . tan 89 is : (A) 1 (B) 0 1 (C) (D)  2 If

sec   tan   1 ,

then

root

of

the

 a  2b  c  x 2   b  2c  a  x   c  2a  b   0 (A) (C) 3.

4.

5.

(B) (D)

7.

equation is :

tan cos

(C)

cos  

1  p2

1 p 1 sec  2

2

under

the

restriction

1

None of these

The

value

 cos A  cos B   sin A  sin B   sin A  sin B    cos A  cos B     

of

n

(where n is an even) is :

9.

(A)

2 tan n

(C)

0

A B 2

A B 2 None of these 2 cot n

(B) (D)

If tan  



1 2



, tan  

x x  x 1

x 2

x  x 1

and tan   x 3  x 2  x 1 , then    is :

,  p  1

The maximum value of

(D)

n

8.

Which of the following relations is possible ? 5 sin  (A) 3

tan  1002

2n

If       2 , then :       tan  tan  tan  tan tan tan (A) 2 2 2 2 2 2       tan tan  tan tan  tan tan  1 (B) 2 2 2 2 2 2       tan  tan  tan   tan tan tan (C) 2 2 2 2 2 2 (D)

   3      sin 4  3     The value of 3  sin 4    2    6   2  sin      sin6  5     is equal to : 2    (A) 0 (B) 1 (C) 3 (D) None of these

(B)

1

(B)

2n 2 1 2n

(C)

If tan x  cot x  2 , then sin 2n x  cos 2n x is equal to : 1  (A) (B) 2n 2 1 (C) (D) None of these 2

(D) 6.

sec sin

1

(A)

10.

(A)



(B)

2

(D)



(D)

None of these

If   2230' , then 1  cos  1  cos 3   1  cos 5 1  cos 7  equals :

 cos 1  cos  2  . . .  cos  n  0  1 ,  2 , . . .,  n 

 cot 1   cot  2  . . .  cot  n   1 , is :

VMC/Trigonometric Ratio & Equation

 2

(A)

and (C)

12

1 8

1 2 2 2

(B) (D)

1 4

2 1 2 1

HWT/Mathematics

Vidyamandir Classes DATE :

  MARKS :   10  

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : TGM [3]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

  If tan   cos  tan  , then cot 2   is equal to : 2

(A) (C) 2.

sin     sin    

cos     cos    

6.

sin    

(B)

sin     cos    

(D)

cos    

7.

tan   tan 2  tan 3 . . .tan  2n  2   tan  2n  1  is :

3.

0 1

(B) (D)

7  5 cot  2

9  4 sec   1 12 (A) 5 33 (C) 100 4.

8.

33  28 12 13

(B) (D)

3 and  lies in the third quadrant, then the 5  value of cos   is :  2 1 1 (A) (B) 5 10 1 5

9.

(B)

tan   tan 

(C)

tan   2 tan 

(D)

2tan   tan 

If cos     sin      cos     sin     , then the (A)

cot 

(B)

cot 

(C)

cot 

(D)

cot        

  1  cos 8 

3   . 1  cos   8

5   .  1  cos   8 

7   .  1  cos  is  8 

10



a 12

10.

 , where a is a

(A)

x2  y 2  a2

(B)

x2  y 2  a2

(C)

x 2  4 y 2  4a 2

(D)

x = 2y

VMC/Trigonometric Ratio & Equation

1 2

(B)

cos

(C)

1 8

(D)

1  2  2 2 

The value of

(C)

1

(D)

13

 8

(A)

(A)

2a ,y 1 2 1 2 constant, is the parametric equation of the curve :

The equation x 

2  tan   tan  

equal to :

is :

If sin  

(C)

5.

1 None of these

If tan  , 2 tan   2 , 3 tan   3 are in GP, then the value of

(A)

value of cot  cot  cot  is :

If 4n   , then the value of

(A) (C)

 and      , then tan equals : 2

If    

1

1  tan 2 15 1  tan 2 15

is :

3

(B)

3 2

(D)

2

If A  B  C  180 , then sin 2 A  sin 2 B  sin 2C  (A)

4 cos Acos B cos C (B)

4 sin A sin B sin C

(C)

2 sin A sin B sin C (D)

8 sin A sin B sin C

HWT/Mathematics

Vidyamandir Classes DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : TGM [4]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 7

1.

The value of



sin

 2n  1 

n 1

(A) (C) 2.

1 32 1 128

14

6.



(B) (D)

Let

cos     

0  ,  

1 64

None of these

The function f given by  x  x   x f  x   sin    2 cos    tan    2   3   3 

7.

3.

3 12

4 10

(B) (D)

8.

8 12

(C)

2

5

(B)

2

5 2

(D)

None of these

5

9.

Let A and B denote the statements A : cos   cos   cos   0 B : sin   sin   sin   0 If cos       cos      cos       (A) (B) (C) (D)

10.

3 , then : 2

A is false and B is true Both A and B are true Both A and B are false A is true and B is false

VMC/Trigonometric Ratio & Equation

 . Then tan 2  4

20/7

(B)

25/16

(C)

56/33

(D)

19/12

  3  The expression 3  sin 4       sin 4  3     2   

(A)

0

(B)

1

(C)

3

(D)

None of these

  If  ,  ,  ,  satisfy the equation tan  x    3 tan 3 x ,  4 then tan   tan   tan   tan  

If the angle  is in the third quadrant and tan   2 , then sin  is equal to : (A)

5.

(B) (D)

5 , where 13

  1  2  sin6       sin6  5     is equal to : 2   

The number of integral values of k for which the equation 7 cos x  5 sin x  2k  1 has a solution is : (A) (C)

4.

6 4

and let sin     

(A)

is periodic with period : (A) (C)

4 5

14

(A)

1

(B)

1 3

(C)

0

(D)

2

If sin x  cosec x  2 , then sin n x  cosec n x is equal to : (A)

2

(B)

2n

(C)

2n  1

(D)

2n  2

In

any

triangle

ABC,

not

 cos Acos ec B cos ec C 

right

angled,

(A)

1

(B)

2

(C)

3

(D)

None of these

HWT/Mathematics

Vidyamandir Classes DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : TGM [5]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

If Pn  cos n   sin n  then Pn  Pn  2  kPn  4 , where

6.

k= (A) (C) 2.

3.

1 2

sin 

2

 sin  cos 

(D)

cos 2 

If tan 2 x  sec x  a  0 has at least one solution, then complete set of values of a is : (A)

  , 1

(B)

 1,  

(C)

9   4 ,  

(D)

1, 

Number

of

solutions

of

the

7.

4.

5.

0 2

(B) (D)

equation

(A)

  , 4 4

(B)

 3 , 8 8

(C)

  , 3 6

(D)

None of these

8.

9.

(C)

x  n   1

(D)

None of these

 6

(B)

 3

(C)

  or 3 6

(D)

 2 or 3 3

The period of function sin  x  4 x  9 x  . . . to n terms 

(A)

4 n  n  1

(B)

(C)

12 n  n  1 2n  1

(D)

(B) n

x  2n 

(A)

p  8 , q  4

(C)

p  4, q 

10.

   4 4

VMC/Trigonometric Ratio & Equation

15

None of these

9 2

9 2

(B)

p  8, q 

(D)

None of these

tan 2   sec    holds for some real  if  belongs to :

(C)

 2

12 n  n  1 n  2

If p  cos 2 x  6 sin x  1  q , then :

(A)

The general solution of the trigonometrical equation sin x  cos x  1 for n  0 ,  1, . . . is given by :

x  2n

 then  = 2

(A)

1 3

In a right angled triangle, the hypotenuse is 2 2 times the length of perpendicular drawn from the opposite vertex on the hypotenuse, then the other two angles are :

(A)

  4  2 3, 0     ,

to

is :

tan x  sec x  2 cos x , lying in the interval 0, 2  is : (A) (C)

1  sin   sin 2   . . .

0 , 

2

(B)

If

  , 1 1,  

(B) (D)

  ,  1  1,  

1  1  1  1  tan  tan  tan  . . .  tan  cot   n 2 2 4 4 8 2 2 2n 1  1  (A) (B) tan cot n n n 2 2 2 2n 1  1  (C) (D) tan cot n 1 n n 1 2 2 2 2n

HWT/Mathematics

Vidyamandir Classes DATE :

  MARKS :   10  

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : TGM [6]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

If  is a root of 25 cos 2   5 cos   12  0 , then sin 2 is equal to : 24 (A) 25 13 (C) 18

2.

   , 2

6

5.

m0

(B) (D)

24 25 13  18



Let  ,  be such that       3 . 6.

21 27 and cos   cos    , 65 65   then the value of cos is : 2 3 3 (A)  (B) 130 130 6 6  (C) (D) 65 65

7.

8.

3 2 a , the triangle is right angled. 4 If tan A 

1  cos B , then tan 2A = tan B sin B

9.

tan 3 x 1 never lies between and 3. tan x 3 Which of the statements given above are correct ? (A) I and II (B) II and III (C) III and I (D) I, II and III

(B)

C1  C3  C5  1

(C)

2C2  4C6  0

(D)

C4  2C6  0

The equation k sin x  cos 2 x  2k  7 possesses a solution, if : (A) k>6 (B) 2k 6

k2

(D)

None of these

If sin   x   a, cos   y   b , then cos  x  y  

    1  b   b 1  a 

(A)

a 1  b2  b 1  a 2

(C)

a

2

2

(B)

ab

(D)

2ab

The equation sin 6 x  cos 6 x   , has a solution if : 1  1  (A) (B)    , 1    , 1 2  4     1, 1

(D)

 1   0,   2

If the value of the determinant

cos   10 sin   10 1   cos   20 sin   20  1 cos   30 sin   30 1  k 1  cos 10 sin 10 , then k =

Consider the following statements :

(A) (C)

I.

If sin A = sin B, then we have sin 2A = sin 2B always.  4 5 1 cos II. The value of cos cos , is . 7 7 7 4 Which of the statements given above is(are) correct ? (A) Only I (B) Only II (C) Both I and II (D) Neither I nor II

VMC/Trigonometric Ratio & Equation

C0  C2  C4  C6  0

(C)

III.

4.

(A)

(C)

Consider the following statements : I. If A  30 and area of the triangle ABC is

II.

 Cm cosm x ,

where C0 , C1 , C2 , . . . . C6 are constant, then :

If sin   sin   

3.

If sin 3 x sin 3x 

10.

16

2 8

(B) 4 (D) None of these A B C In a triangle ABC, tan , tan , tan are in H.P., then 2 2 2 A C cot . cot  2 2 (A) 2 (B) 3 (C) 4 (D) None of these

HWT/Mathematics

Vidyamandir Classes DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : TGM [7]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. However, questions marked with ‘*’ may have More than One correct option. 1.

2.

3.

2

If

6

2

cos x  sin y  b ,

and

*8.

(C)

ab ab

The value of cos

ab

(D)

ab ab

1

3 3 4

(B) (D)

9.

(B)



(C)

1

(D)

None of these

sin

15 4

 5 7 . sin . sin The numerical value of sin is equal 18 18 18 to : (A) 1 (B) 1/8 (C) 1/4 (D) 1/2

10.

1 15 8 2 cos 32 1  cosec 16 4 2

1

(B)

8 sin

1

(D)

8 2

 32

cosec

 32

The most general solutions of

7 4

(A)

n 

(C)

2n 

7 4

1 2

is : 7 4

(B)

n   1

(D)

None of these

n

The smallest positive root of the equation, tan x  x  0 lies in : (A)

   0, 2   

(B)

   2 ,  

(C)

 3   , 2   

(D)

 3   2 , 2   

The maximum value of     1  sin      2 cos     4  4 

1 2

15 7 3 . sin . sin is equal to : 32 16 8

tan   1, cos  

1  2

5 None of these

1 2

(C)

2 4 6  cos  cos is : 7 7 7

(B) (D)

(A)

(A) (B)

3 4

The value of sin 78  sin 66  sin 42  sin 6 is :

then

x y is equal to : 2

a+b

(C)

6.

sin x  cos y  a

(A)

(A)

5.

4

7.

If a cos 3  b cos   16 cos   9 cos  is identity, then : (A) a = 1, b = 24 (B) a = 3, b = 24 (C) a = 4, b = 2 (D) a = 7, b = 18

tan

4.

(A) (C)

The ratio of the greatest value of 2  cos x  sin 2 x is to its least value is : (A) 7/4 (B) 11/4 (C) 13/4 (D) None of these

for real values of  is :

VMC/Trigonometric Ratio & Equation

17

HWT/Mathematics

Vidyamandir Classes DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : TGM [8]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. However, questions marked with ‘*’ may have More than One correct option. 1.

Let a  cos A  cos B  cos  A  B 

7.

A B A B sin cos . Then a  b is equal to : 2 2 2 (A) 1 (B) 0 (C) (D) None of these 1    2 tan  4 is equal to : The value of tan 16 8   cot cot (A) (B) 8 16  cot 4 (C) (D) None of these 16

If xy + yz + zx = 1, then

and b  4 sin

2.

3.

5 cot  Let f    and     . Then the value 1  cot  4 of f   . f    is : (A)

4.

5.

6.

2

8.

(B)

*9.



(B)

1

(C)

 5

(D)

5

VMC/Trigonometric Ratio & Equation

1  x  1  y 2  1  z2 

(C)

1  x  1  y 2  1  z2 

(D)

None of these

2 xyz

2

4 xyz

2

If sin   sin   a and cos   cos   b then   is equal to : 2 

a b

a 2  b2

The set of all x in

  , 

b a

(B)



(D)

None of these

satisfying | 2 sin x| 

3 is

given by :

If cos 2 x  2 cos x  1 then sin 2 x 2  cos 2 x is equal

1

(C)

(C)

If sin   cos ec  2 then the value of sin8   cos ec8 is equal to : (A) 2 (B) 28 4 (C) 2 (D) None of these

to : (A)

1  x  1  y 2  1  z2  2

(A)

1 (C) (D) None of these 2 2 sin  1  sin   cos    then If is equal 1  sin   cos  1  sin  to : 1 (A) (B)   (C) 1  (D) 1 



xyz

(A)

tan

1  2

x y z    1  x2 1  y2 1  z2

10.

(A)

   0, 3   

(C)

       , 3    3 ,      

(D)

     3 , 3  

(B)

    3 , 0  

The number of distinct solutions of sin 5 . cos 3  sin 9 . cos 7 in 0, / 2 is :

(A) (C)

18

4 8

(B) (D)

5 9

HWT/Mathematics

Vidyamandir Classes DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : TGM [9]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains a total of 10 Objective Type Questions.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. However, questions marked with ‘*’ may have More than One correct option. 1.

The number of solution of

6.

sin 2   3 cos   3 in

sin 3 x  sin x cos x  cos 3 x  1 in  2 , 7  are :

  ,  is : (A) (C) 2.

4 0

(B) (D)

(A) (C)

2 1 cos  

The number of solutions of

7.

3 sin   5,

0    5 , is :

(A) (C) 3.

4 5

(B) (D)

0 2

8.

0, 5 

The number of value of x in

4.

5 8

The

most

6 10

general values  3  tan   tan      2 are :  4 

(C) (D) The

general

sec 2 x 

(A) (C)



solutions





of

9.

satisfying

 2n  , n  Z 3

of

the

equation

2 1  tan 2 x are given by :

 (B) 8  n  (D) 8 n 

(B) (D)

9 11

The number of values of x for which sin2x + cos 4x = 2 is: (A) 0 (B) 1 (C) 2 (D) infinite If 2 sin x  1  0 and x  0, 2  then the exhaustive

(A)

 7  0, 6  (B)  

(C)

 11   6 , 2   

 7   11  0, 6    6 , 2     

(D)

If | tan x |  1 and x    ,  

None of these then the exhaustive

solution set for x is :

 n  , n  Z (B) 3  2n  ,n Z 3 n n   1 ,n Z 3

(A)

*5.

(B) (D)

8 10

solution set for x is :

satisfying the

equation 3 cos 2 x  10 cos x  7  0 is : (A) (C)

The number of solutions of

*10.

 4  n  8 n 

VMC/Trigonometric Ratio & Equation

(A)

3       3    ,  4    4 , 4    4 ,        

(B)

    3   4 , 4    4 ,      

(C)

    4 , 4   

(D)

None of these

 7  If sin   a for exactly one value of   0, then 3   the value of a is : 3 (A) (B) 1 2

(C)

19

0

(D)

1

HWT/Mathematics

Vidyamandir Classes DATE :

  MARKS :    10 

IITJEE :

NAME :

TIME : 25 MINUTES

TEST CODE : TGM [10]

ROLL NO.

START TIME :

END TIME :

STUDENT’S SIGNATURE :

TIME TAKEN:

PARENT’S SIGNATURE :

 This test contains 9 Objective Type Questions and 1 Subjective Type Question.  Each question carries 1 mark. There is NO NEGATIVE marking. Choose the correct alternative. Only one choice is correct. 1.

2.

sin x  cos x

(A)

2

(B)

 2

(C)

 2

(D)





(A) (C)

2

2

2

 sec

1 0

2



2

A cosec A  1 is equal to :

(B) (D)

–1 None of these

7.

2 4  z cos , then xy  yz  zx  3 3 –1 (B) 0 1 (D) 2

8.

The values of   0    360  satisfying cosec  2  0 are :

5.

If A  B  C 

1  4 cos A cos B cos C

(B)

4 sin A sin B sin C

(C)

1  4 cos A cos B cos C

(D)

1  4 sin A sin B sin C

Maximum value of a cos   b sin  is : (A) a+b (B) ab

210 , 300

(B)

240 , 300

(C)

(C)

210 , 240

(D)

210 , 330

(D) 9.

(A) (C)

sin

 0 2

  sin 0 2

(B) (D)

VMC/Trigonometric Ratio & Equation

cos

 0 2

   cos   2

a  b

 and   2 r , r  Z 2 None of these   2 r 

The minimum value of 2 sin x  2cos x is : (A) 1 (B) 2 

(C)

 0 

10.

20

a 2  b2

(D)

    The general solution of tan  sin    cot  cos   is : 2  2     2 r  , r  Z (A) 2 (B)   2r , r  Z

(A)

If sin   sin  and cos   cos  , then :

3 , then cos 2 A  cos 2 B  cos 2C  2

(A)

(C)

If x  y cos (A) (C)

4.

1

The expression cosec 2 A cot 2  sec 2 Atan 2 A  cot A  tan A

3.

6.

2

1 2

1

(D)

2

1 2

If cosec x  1  cot x , then x = ________________.

HWT/Mathematics

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF