jam Farm Irrigation Structures

June 2, 2016 | Author: Arif Mohammed | Category: N/A
Share Embed Donate


Short Description

farms irrigation system...

Description

FARM IRRIGATION STRUCTURES A. R. Robinson

Handbook No. 2

lo , Prepared In ioopea oii "ith ti. 'nined Statcs A.vcl\ International D)Celopmnn. (onlrac All) l)SAN-( (X)Ws All Il the ' reported opinions, oniclti+ons or raretonIr ndaior di hose author I(cnlri (or)kiild not tho .e l thi tizldly aIgcII. or he United States go%,rnmeIt. Mention o publication issolel\ to pio idt: lwiiilii endorseentrn

h

AlI)

lo tlOiL

rt+erull poLdi It do

mer olher prodtIt, 1o

thils 1t1III

lot ion;ttlL rIl.ittIoCII

L'

WATER MANAGEMENT SYNTHESIS PROJECT

Agricultural & Irrigation E-ingineering Utah State University Logan, Utah

University Services Center Colorado State University Fort Collins, Colorado

March 1983

TABLE OF CONTENTS Page TA BLE OF CO NTE NTS ...........................................

LIST IN (I O F fIG U RES ........................................... ILIST IN (I 0)1. I'A P,LE S ............................................

H

v

FO R L WO RI) ...

vii

I. I N T RO DI A( I ( )N

.. ............................................... ..

I

............................................

1. C I IA N Nt I.S A Nt) '-IRtU

3

TIJ RES ..................................

1. l)cli ,c ; ( hdnm .l mid I) i' ' .................................... a. (Channcl [)e-ign ..................... ... .................................... b. Iarth I)itchc., ........ ...........

c. I ned )i h . .. .. . . ........ l) (rm rctc I rning ........................................... 2)

:,.phalti

( o(t creuc

.

............

3

3

7

12

12

................................

.. . ......................................... 3, N1asi n r%, k ihbcr Sheeting ........................... 4) \-pVp lIt, l'lall ............ ............................ 5) ( h ij Se a t ... ........................ i ld ............. 6) 1 arth cri t

15

15

15

.

........ ................. ......... 2. Control S'rtrtucc, a. [)l,,i~ l Stuc :tic.................................................. h . )ro p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . ............................. c. C hec . . ... ......... d . I IrrInr

III.

t,, ( )utlCt.

....

.....

........

...

.........................

17

17

17

19

2 9

37

45

3. W ater M casuring Structures ...................................... a . W eirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . h . F lum es . ... . ... . . ... . . .. . . ... . .. . ... . .. . ... .. . ..... .. .. . .. .. c. Orifice ,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

62

6 2

6 3

6 8

4. ,Miscellaneous Stru tures, .........................................

68

a. Culverl,,, Biridges, I mines, Crossings, Siphons ...................

68

b. )rainage Structures .......................................... c. A utom ated Structu res , ......................................... d. Other Structure .........................................

69

71

71

LOW tPKESSUIR[ PIPE S YSTEM S .................................

73

I. Pip e )esig n ... .. .. . . ... .. . . .. . . .. . .. . .. . .. ... ... ... .. .. .. . .. .. a. U nderground ................................................ b . Su rface ... .. ... .. . ... . .. . . .. . .. . . . .. .. .. . .. .. .. .... . .. .. . . .. ........................... c. Pipeline C apacity .................

7 3

73

7 3

73

2 . Stru ctu res ... . ... . .. . . . . . .. . . . .. .. .. . .. .. ... ... . .. .. .. .. .. . . . a . in let Structu res .............................................. b. Pressure and Flow Control Stands .............................. c. D ischarge Control Structures ................................... d. M iscellaneous Structures ......................................

7 7

77

78

83

84

IV. CONSTRUCTION AND INSTALLATION ..........................

1. D itch

C onstruction .............................................

2. Ditch Structures ....................

3. Pipe System s ...................................................

V. OPERATION AND MAINTENANCE ...............................

87

87

88 88 91

1. Op era tio n . . ... ... . .. .. .. ... . . .. . . .. . ... . . .. .. . ... .... ... .. ... .

91 2. Maintenance ................................................ 91

VI. BIBLIOGRAPHY..............................................93

VII. DEFINITION OF TERMS........................................ 95

1. Channels and Structures

.. .....................................

2. Hyd ra ulics ...........................

..........................

APPENDIX I - Concrete for Small Jobs APPENDIX 2 - Standard Drawings of SCS Structures APPENDIX 3 - ASAE Standard S 261.5 Design and Installation of Non-Reinforced Concrete Irrigation Pipe Systems APPENDIX 4 - ASAE Standard S376 Design, Installation and Performance of Underground Thermoplastic Irrigation Pipelines

95

96

LISTING OF FIGURES

Page

Figure I 2 3 4 5 6 7 8 9 1) 11 12 13 14 15 16 17 18 19 20 2

. .. .. . .. ..................... Surface irrigation canal sy ,tcm ..... Manning eLJuitin1 ',Olition for determining canal dcsign ................. ................ ........ Animal pous,,ered V\-dcher ............... Tra'tor pmc ,ercd V-ditch,r ......................................... Sugce te. irte cd', e tIor llechtijit al reconstruction of earthen channels ........... ................ -anal .......

,m all c Ic, T ype, o I . ... . .. .. ..... C o icletc licd atn al' .. .. . . . .............

3

6

..

.. ... ... .. . ... . . ...... . l'rccaot concictu :hanm nel ,,cctik , ...... . . . . . . . . . . .. . . . . . . . .. . . . . . .. . \ " i n wri iti( I -,\ , t ill .......... .......... ditches l'. lwt,.',tn t'.o ht . l)ii,,n to ...... . .... l th"t o ili 1)ii ioni ,)\ i, lI ......... . lakita in iidaii aid l r i,,ed Seminodui l I,, .............. ............... id Indil } tt it l t .ed ui, I)ivior-tu itm ....................................... [renh type pro trtitoiil di'. ,%djU\tahie p ; ttt tl block di, i,,or .................................. ....... .......... . .................. Tswo-vay concrete hl() k di,. i,o ................................ . .. Three-way divisor. .... Concrete trapezo' idal two-.as dikisol . ................................ ................. Portab le gate,, tr- di,.i'or ,tftjctures ................. ............... structures piefabricated d, ,t ud usine u cmre, snt Di,,ision Drop struct t.-, ,,' tot tgrade control ................................

Exat ples oI ,m all drop )trucmu ,, .......

10

I)

I

13

14

16

18

1.

19

21

21

22

22

24

25

25

26

27

28

29

30

31

32

33

34

35

36

37

37 38

............................. ............................... D rop stricture conibiicd ,Aith turnout , .. Concretc tr apeitmdd d,p lructire ................................ ....... .............................. (oncrete "top-e ck ......... Concrcte hlock dro i and check ,,tructure ............................... lDtop-ch,.xck ,t e treC ti,11e xIiic:d Lw ncrcte sect ions ................... lDrop .,:ructure \%ith i-ra, el-i()ck ',tilling basin ........................... ......................................... Tvpical pipe di op 'etructire Sloping rock drop stmucLtiL tc . ... .................................... l)itch check iM ined ditch s'ith ,,iphon tubes ............................ Sm all concrete ditch check ........................................... ............. W ooden ditch -heck, \kith different openings ............. W ood 'imt c \%all check w ith turnout .................................. Concrete block check ,ith apron for erosion control .................... ................................... C oncretc blo.ck check ,(ructure .... Portable can. as check vith dischar e sleeve ............................ Flexible, portable ditch ch Ck .........................................

39 40 41 42

Portable m etal check .. . ........................................... Two types of portable checks ....... ................................. Gated p ipe o utlet ................................................... Commonly used turnouts for farm irrigation ditches .....................

46

46

47

48

43 44

49

50

45

C oncrete pipe turnout ............................................... W ooden turnout for basin and border irrigation ........................ Two designs of wooden turnouts .....................................

46

Turnout-check structure using extruded concrete sections .................

51

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

ii'

38

38

39

40

41

42

43

44

45

50

47 48

57

Neyrpic gates and modular turnouts..................................52 Trapezoidal panel outlets .. .......................................... Concrete orifice pan l outlets........................................ Brick masonry installation for panel outlets ............................ Precast concrete slab installation for panel outlet ........................ Head loss through circular concrete turnouts ........................... Spiles used for furrow or corrugation irrigation ......................... Siphon tubes for furrow irrigation ................................... L.arge siphon with priming pum p for turnout ........................... licharge of siphon tubes ............................................ (.oncrete lined ditch v ith bank cuts for irrigating .......................

58

Rectanguhir

49 50 51 52 53 54 55 56

59 60

eir ...... .... ..................................... Ninety-degre V -notch 'cir ........................................... FParshall measuring flumne6

61

Cutthroat

ea uring

..... [ 1 .............................. .........

u e ........

..................................

TIrapezoidal measuri ng flum e ......................................... 63 64

Broad crested v,eir (fb-c-w) measuring flume ............................ Flume for ,carrying irrigation water across a depression ..................

65

Inverted ,i ,hon made from concrete pipe .............................. End details for siphon crossirg........................................ 1Intstaid for indergroad pipeline .................................. piLal concrete pump stand ... ..................................... ombinat ion gate and oerflo itaind.................................79

66 67 68 69 70 71 72

Float valve stand.............. .......................... .. ....... Typical alfalfa pmal hydrant........................................81 Orchard valve hydrant.... ... .....................................

73

Giated surface pipe and tubing attached to .ortable hydrants...............

74 75

Open pot hydrant with orchard valve .................................. Air vnt for underground pipelines .. ...............................

iv

54 55 56 57 58 59 59 60 61 64

65 65

6 66

67 67 68 69

70 77 78 80 82

82 82

85

LISTING OF TABLES Page

Table I

Values of Manning roughness coefficient n for earthen and lined canals ....

5

2

Suggested maximum flow velocities and side slopes for lined and unlined

ch annels ............ .......... ...................................

8

3

Earth irrigation ditch sizes for different slopes, roughness and discharges...

9

4

D ischarge capacity of spiles ..........................................

62

5

Head loss in concrete pipe with concentric gasket joints ..................

75

6

Resistance coefficient A for fittings and valves ..........................

76

PREFACE

The purpose of this handbook is to pro­ vide information on small structures used in irrigated agriculture, primarily for selecting those structures needed to im­ prove on-farm water management. Com­ plete information on design, construction and operation of the multitude of struc­ tures that are available is impossible to assemble in one publication. [his hand­ book is intended to emphasize the impor­ tance of adequate control and distribution of irrigation water, enumerate some of the successful structures that are avail­

able, give a selected amount of design in­ formation, show a limited number of ex­ amples of design procedures, and give references where more information can be

obtained. With the exception of low pressure underground pipeline systems, only surface systems are discussed. Sprinkler and other methods of irrigation are not covered in this handbook. Information on small canals and struc­ tures is given for flows of less tha; 0. 14 cubic meters per second (5 cubic feet per second). Generally the flows will be in the 0.03 to 0.06 m3 /s (1-2 cfs) range. Struc­ tures that can be constructed from local materials and with local labor are em­ phasized. Precast structures and struc­ tures constructed from precast brick block and sections are also presented. In addition to the extensive bibliogra­ phy listed for small canals and structures, there is a section presenting standard defi­ nitions of terms used in the handbook. Appendices given include: 1)preparation of concrete for small jobs; 2) standard designs of farm irrigation structures (in­ cluding metric conversion factors); 3) standards for pipe irrigation systems; and 4) standards for plastic pipe irrigation systems.

FARM IRRIGATION STRUCTURES A. R. Rkobin,,n

I. INTRODUCTION Surface methods of irrigation are still used on most of the 234 million hectares (1972 data) of irrigatcd,cultivated lands in the world with tihe remaining lands being irrigated by sprinkler and tricklc system s (3). It has been projccted that tile irrigated area will increase to about 273 million ha by 1990. An estimated 86 million ha of' tile world's irrigated lands have sv\,terns that now need improvement of both the main and on-farm systems for di:ributing and applying irrigation water. -Fhe United

States of America presently (1980) has about 21 million ha of irrigated,cultivated lands, of which 70 percent is surface ir-

rigation. The sprinkle and trickle methods of irrigation use pumps almost entirely. Pumps require a large energy input, and initially, tile systems require a large capital outlay. There is limited use of gravity pressure sprinkle and trickle systems. In the near future, the obvious world shortage of cheap fossil fuel energ, will probably mean a return to gravity

pressure irrigation systems. The rapidly expanding world population will den'-Id an increasing food supply which will also require an increase in production from irrigated agriculture, mostly From surfacer

cerns as well as reliable water delivery aind

a regulated filo\% rate. Improvcd watcr

control structures, propcrlV used, can materially impro.c tihe use and control of irrigation \water. li Is possible for n surface irrigation. ,,toil, to havc ,atcr percent application Cefticiencics of 7)to 810) and higher. The priuary purpose ot this handbook is to present in! rnalion oil siall irriea­ tion channel, anld ,irlcturcs thai can be used to inpro(\ C 01- -LfiFi.a ICr in aIaCepresurc pipe ,,stems arC also Iment. I.' considered. Ilie applicat i ( i1li inforIllation w.ill result iII mtuch less , asIe of, ir­ rigation watcr 'mil thte icsultaiit inccasec

in water tor existim crops ald tl ir­ rigating -iddiiioial areas. lmpro\ cnient of water management on individual farms will result in higher crop yields also.

There has bcen a lack of attention to the design and (peration of the irrigation systems at the farin level because govern­ meit custody usually ends v\ithlthe sccon­ dary canal ,sstens, and farmers, either by organizationotO individually, operate the balance of the systems. [here also has been tile ass tlinpti Oll that lar i irrigation should be I )\% cost and si rtic

gravity systems.

therefore, tialit v ha' been a sco1ndary consideratiOt .

Water application efficiencies for stir­ face irrigation systems a.otind the world typically have been quite low, 40-50 percent (11). Water conveyance efficiencies can be quite low also, possibly in the 40-50 percent range, due to canal and ditch seepage, leakage, and sp'llage. Overall irrigation efficiencies !hen might range as low as 28-35 percent indicating that 65-72 percent of the water is lost to the individual farm use. Overall, the efficiencies can be materially increased with canal and ditch mainter-ance and lining, use and improvement of control structures, and improved on-farm water management. Good farm irrigation watei management includes all of these con-

It is imf1po-tant that the ,ystcns and structires, be adapted for tlsC inI different coIntries v,ith consideration for availability and existen,c of materials, skills, labor, financing and customs. Generally, the procedures and structural designs in this handbook are described simply. The structures are usually easy to operate, arc reliable and give good, positive control. Some will require more maintenance than others. Structures and linings that require specialized and expen­ sive equipment for installation are not emphasized. Small, low cost structures that can be constructed entirely with local materials and labor are presented.

3

II. CHANNELS AND STRUCTURES 1. Delivery Channels and )itches

Q = C AR2's' /n

The channels discussed here are tertiary and quaternary canals, i.e., the canals commonly called farm and field laterals. They supply water to farm or field outlets and turnouts. The larger canals (tertiary) are called farm laterals (USA), tne.skA (Egypt) and minors (Pakistan and India), while the smaller ones (quaternary) are called field laterals and head-ditches (USA) and marwas (*gvpt ), ( Tigur ). The channels may bC 11ni ned carth or lini­ ed with concrete, masonry or asphalt,

where Q = discharge, (L ' /T). A

cross sectional area of ditch, (L2).

R

hydraulic radius--area divided by the wetted perimeter, (L).

longitudinal slope, (L/L).

a. ('hannel Ile.ign.

n

roughness coefficient (L') (same value for both metric and English units).

=Manning

In orcler to determine the channel size required, the maxim uim discharge, together with the desired shape of the section and

(1)

an estimate of the channel

roughness, must he known. The Manning ot cornmonly used relaequation is the nm tiorslhip for determining channel discharge and will be used in this handbook.

C

1.0 when using metric

units, 1.49 for English units.

., \ TertiaryQuternary Canal FField

Form

Tertiary Farm Quaternary Field Figure 1. Surface irrigation canal system.

The Manning roughness coefficient, n, for canals varies from 0.010 for smooth concrete to over 0.10 for channels with weeds and brush. Table I lists values of' n for earthen and lined channels that can be used for design. The value for n should be chosen only after a careful study of the

field situation.

The design problem is usually to determine the width and depth required for a

given flow with a measured slope in a given material or with a selected lining of a predetermined shape. In other situations an estimate of the discharge is required while knowing tic ditch size and slope, with an estimate of the roughness (Mann­ ing n from Table I ). Figure 2 gives a solti­

tion for Equation I that can be used to make estimates of the ditch shape and flow. The following are two examples us­ ing Figure 2.

Example 1 Earth canal in clay loam after

e.vathering, clean; n

0).022 (Table 1).

Assume. Bottom width, B - 0.45 m (1.5 ft)

Longitudinal slope, s = 0.001

Side slope, z 1.5 (1.5 horizontal to I vertical) Discharge, Q 0. 10 m's (3.5 cfs) Problem. Determine the depth of flow. Solution."Solve for the i',, in Figure 2.

Ef = (Qn/ s)/ i '

[(0.10)(0.022)/(0.032)l/(0.12) From Figure 2 for z = 1.5, E,,, 0.57, then D/B Since B = 0.45 m, then D = 0.27 m (0.89 ft).

0.57 0.60.

Example 2 Brick with vertical wall, mortar trowel finished surface, n - 0.013 ('[able I). Assume: Bottom vidth, 13 0.45 m (t.5 ft)

Depth of' sction, 0.45 m (1.5 ft)

Freeboard, 0.15 m (0.5 ft)

Depth of f1obs, 1) 0.30 m ( .0 ft)

Longitudinal slopc, s 0.001

Side slope, 1 0 Problem: Determine the discharge. Solution: From Figure 2, for )/B - 0.67 and z E,, (Qn.,sj; "' or

0 then E,,

Q,) L V,,,s B3 1,n

(0.28)(0.032)(0.12)/0.013 Q - 0.083 m's (2.93 cfs)

=

0.28

5

Table 1. Values of Manning roughness coefficient, n, for earthen and lined channels (30). Roughness coefficient n

Type of' Channel and Description A. Excavated earthen channels a. Straight and un1iform 1.(lean. rCceitly Completed 2. (Ican, after veatherine ctimi, clean ,in it 3. (Gra,.cl, tin 4. With short ,_as-, fey weeds and w ecd, 5. With long Lt[I.t b. Winding and ,Iugish 1. No vegetati onr 2. (irass, sonic weed, 3. )ense weccds Or aquatic plants in (feep chanelics 4. Farth hottorn and rubble sides ilad weedv banks 0 5. Ston hottm 6. Cobble hotil Iand clean sides c. Channels not maintaied, weeds and brush utlt.It 1l)erse ,,ed,.high as flo, depth 2. ('lean bottom, brush on sides 3. Same, highest state of flow 4. Detise brush, high Iage 13. Lined or builtl-up channels a. Cement 1. Neat, ,mootli surface 2. Mortar b. Concrete 1. lrowel 1fi110h 2. Float finish 3. l:inisltCd, .ith gravel on bottom 4. Urifinished c. Brick 1.Glazed 2. In cernei mortar d. Masonry 1. Cemented rubble 2. Dry rubble

Ninimum

Normal

Maximumf

0.016 0.018

0.018 0.022

0.020 0.025

0.022

0.025

0.030

0.022 0.030

0.027 0.040

0.033 0.0-45

0.023 0.025

0.025 0.030

0.030 0.033

0.030 0.028 0.025 0.030

0.03 0.030 0.035 0.040

0.040 0.035 0.040 0.050

0.050 0.040 0.045 0.080

0.080 0.050 0.070 0.100

0.120 0.080 0.110 0.140

0.010 0.011

0.011 0.013

0.013 0.015

0.011 0.013

0.013 0.015

0.015 0.016

0.015 0.014

0.017 0.017

0.020 0.020

0.011 0.012

0.013 0.015

0.015 0.018

0.017 0.023

0.025 0.032

0.030 0.035

Ee = On/Is B84 0.2

0.4

0.6

0.8 1.0

(English

Unit)

2

4

6

8

10

040

I

1.6

1.4B 1.2 -

Q_ CC

CI

S 0OC,,' 2

1.0 -

.

0O-,14

00004 0 000

o020 0,24

_ ' 001C

0C,32­

0002

OC-5

" 2028

e ,

0,228

0 00 0890

0010 00 2 0

00189 O 04

- .'

C0 , 25 0 ".

0 00 2 2 0013 1377 0 0248 0 C -:I, 40

0 50

0

C

80 000 0 66 C0 ,7 0.8 0 -2"'"' 00 08 890

0.2

0.4

0.6 Em

0.8 1.0 =

Qn/f

-

2 B8/3

(Metric

8/

"

-0 0 -. 0 55 1 5 0 90 0 755 1 1 0000 1 00 I6 26 20

508-9

0.6

0.4 0.1

,

20 6

6

9

4 Units)

Figure 2. Manning equation solution for determining canal design (30).

-

3 50

6

8

10

Note that the amount of flow is inversely proportional to the roughness, n; i.e., an increase in roughness decreases the

It is customary to use a gradient of 0.001 in many areas. The slope of the ditch should be such that tle bed does not

discharge in direct proportion; with shape, slope and depth remaining the

erode arid tile water flows at a self­ cleaning velocitv; i.e., there is no deposi­

same. If the discharge remains constant

tion. A heavy clay soil will allow fairly

and the roughness increases (such as from

high velociilc:, with out eroding, (Table 2). At times it ikneces altrnaticly%\iti tie secltin, are i)tld the finisited scCtioin, used IhIi fltr llit ill-, Itilt I'

-..

f

_-

401

'7..U

i rd-"

44

F-

f

9. A,

G 1)1

'

F

, ",., ..... E: .,n. v. 1'-1" p E'

K;

tei

,.fL 0"e, 'NS I

.

6.

I

rIPE

.'I _.

f.

I_

I'igure 9. A fat i

irrig~ationi .ssteni.

ROI

19

ed and the middle divisor is movable for

a. Divi'ion Structures. Divisors (diversion structures) are used to sepirate a flow into two or more parts, , These striciCtiressiml)ly divide the flow, in a ditch intw the dcsircd meICasurcd or pm()poi tioinal pa ts. ldJc lly, ,,tcr lc,l and flow iMthe i1i-015,, ti tillr ctitroll, cd and ii iasUtlcJ. li e CJili i,is OfI tIle oclp liii. are 11t icctirie i ihc_ -ictur.C a c prlopoltli is a , ilIC dC.iI di, l in ofl di-char-. h_,cu ,, I the Illo,ituation. Ihc ol 'piiii_,.Ilai K' r lor- iiKid unabletlc pCili. in t)ehe iccd I(1 IleC\ibifitv. I IO\\ C'C, , t) Iac i '.C" w,ttla dilsl , tlhe tilt Cd;"ii) d vl+n Io Ii fltv, eoiiditoit lh'- " t c 1111ifiLt and stidaid. I Itc1 Itt ,,iiHal do r 1 (1o tiscd 1t diid tlie til., hCtv c.tenI liicic,. Ftiume II ;,) a1(nm lkii /uumr /iI ,O

h-re teillilc

. M \m.trC+.ll

, tilc I]\-

adjusting the flow between the middle chan:c!,. The divisor shown in Figure 10 does lint al avs , accluratelv divide the flow due to) the larc pier aid the lov, velocity fHim, [)i,,irs that .,cc accurate pro­ porti)li, d c tile hk)v, at a cmliirol sec­ ti)n ,j i iee

tipCicriticai fhlo , (sec

riwatioii

-

nee>tdll ccd Itoco ,erve head

and i ini i/C k)"', .m tie di, isor in Fig'urc I I is l'nt-talkv nW lctI icildllC d.

4 4.,

dcfini­

tu tils) cm'ii 1ich asthas s,l i't lin 1 1. I,, can I): acUraly,, di,,ided v,ithout ,,uper,_ritic l t s iif:i1 tlicre is a lir -trailhi approach Ups rn ; 2) there is no b,.ackvatercffc,_t in the d ,lwnstreaml Channels, and 3) tilt' sctutinls, have uniori 11icuhn i.1 r -,(3). lledi,,i-,or show n in Piuioic 11, tllhoilh cffcctic Vs a di. cid I, ha, ticl distillct dlis-atantae ol a la.ree hyt1rulic hitad losMost small ir­ tion

i

Figure 10. IDi~isor I(o distribtite (lie t'IoNN beINeen tIvo ditches (4).

20

....

Figuire 11. D~ivisioni box b'r FUoN% to t'our (titct- (.S(*

In some area,, the amount of' vate-r delivered to a t mniav v.ary, hut al! deliveries ,..thin the ,ystcil are to remain

proportional It) lie Yro s ao unIL ItlIIl delivered. Ih. 11, rc a tsr , llcl%LtO Cq-iitale Cti'ribuiiion xxIthoutt proI.l i ta control dei.c at cach ridixiCual ttrllotlu f'or pelriocic retkilii (29). Illaicat where dcli,, tric, are ha-d oi Crop acr-caie or on land irritlcC, .CLtbic0 dlitrbutiol of axaillabl xatcr to uers , h s beil attempted. -or 1i,,talce, in India, Pakistan a Il lIvp t, eIsuire i e r is

Photo).

macle at the hliad oI the terhiarv canal anid euitultittle Cistrihutioni1 serves a,a si , for dellivery. This method c(ltlic, that the tertiary catnal be dsigit, lhil itt lex elcis '< riiall\ Ohe sa lc Ir"cach

Iturnot (,hic IoM11noo

it tl v ti,_ lx Moi tlc control). lhi xater c-a,:l h clillicult to til itaill, particiila Mlvlt tii ,

Air Relief Valve

Steel Pipe Field Surfoce....

Morta r.",,,-Precast

Concrete Reducer

Concrete Pipe-, Mortar Fiilet

A

D,Min.

'2"(5cm )

Figure 75. Air vent for underground pipelines. The vent pipe is sometimes allowed to project into the riser to form an air pocket and surge chamber in the top of the riser (4, 32).

87

IV. CONSTRUCTION AND INSTALLATION

Thr-.e is an apparent lack of concern and understanding of tile construction and operation requirements of small gravity irrigation systems and watcr control structures. This partly results from past emphasis on I ie design of large struclures and from governmental responsibility for irrigation sensters ecding at the point where the use ()I small structures starts. ThC small sIructtirCs and systems require an emiphasis1 on econour y ri Itati on w.hile is uring struction and in all reliable, simple operation for the farmnerThere is ome operator of (tie stte. ruct ures small Stt ru,u,;r,' betweeri the similarity linings and the larger and ditch and canals in soie construction phases like foundations, concrete inix, hack fill­ ing, erosion prevention, etc. Two types of constructi0in for irrigation structuires predominate in developing countries. The most common type is brick-masonry, which may be covered with concrete mortar. (oncree footings and slabs are used Under the brick construction. Prec:ist concrete blocks, sec­ tions and complete structures are next in comnmon use. File sections may be flat, part circular, or parabolic for forming masonry lining or strticturcs. Metal structires havc only limited uses and wood, hardly at all, becatise of shortage, susceptibility to tire, and need for using [he wood for other tises. Other than canal lining, poured-in-place concrete has only control limited use in siall irrigation st ructures. The need for forms, and on-

1. Ditch Construction Small earth irrigation ditches can be formed by hand or machine in either cut or fill sections. Tile fill sections should be well conpacted in layers 10 to 15 cm (4-6 in.) deep. If the ditch section is higher than the field, an earth pad should be constructed and the ditch formed as shown in Figure 5. The side slupes of an earth ditch should not be steeper than 1:1 with

Aw

A discussion of lined dIitch construction has been given in Secti n 11, 1c. For the small ditches, masonry lining using brick, concrete lIniirg and precast concrete lining are the most conmon. Other types of lin­ ing such as asphaltic and plastic are in developing co!intries almost never useduseful as liners below but Would be precast linings. Fhe ditch section:; need to be overex­ cavated to accommodate the thickness of the lining material. [he soil should be compacted using a hand tzmper if a roller or other mechanical method is not available. Prior to placing the lining, the soil should be sprinkled with water if it has dried. The concrete and mortar used for ditch linings should 'ollow the specifications given in Appencix I . It ;:hould be thoroughly mixed, preferably by machine and kept free of soil and debris. The local concr2'e and/or brick mason should be relied upon to lay the brick or place the concrete in an acceptable marnner. For tile small concrete ditches, it is not necessary reintforcing steel. The thick riCss of to :,c the ;irng should range between 5 and 10 cn (2-4 in.) depending on tie ditch size and flow velocity (13). There shotild be contraction joints cut traniscrselv in the wet concrete to about one-third its depth, about 3 ni (10 ft) apart If tle slope of the ditch lining i,over 0.02 (2 percent), col­ lars extending 30 cm (I ft) beiow, and laterally from the sides of the lining are requirc,, at each joint. The joint shotild be over the collar. After a period of time the joint should be filled with expansive material like bitumen. Construction joints abutting structures should contain a suitable expansion joint material, such as bitumen oi rubber.

site rnixing and poturing of concrete makes these strticttires costly and labor intensive,

.a.

recommended side sicpes given in Table 2. Permanent ditch bank, or berms should be at least 30 to 76 cm (12-30 in.) wide at the top as given in Table 3. The banks must be high enough to give a freeboard over tle maxinium water level of 15 cm (6 in.).

t.W

88

Precast concrete liners should be placed on the earth sections that have been coinpacted and shaped to the outside shape of the liner. It is important that the liner is in complete contact vith the soil or the plastic sheet underlying the Fiinr. le joints of' the prccast ,Cction ri ust be perfectly aligned lh,: n mortared.:,. Misalignment sill rlduc e fl ov ',-i,- Ity of the ditch and also promnote cracking at the join(. be covered Brick lined cha nnls should with a 1 cm (0.4 in.) laver of concrete mortar, particularl\ %-henthe brik is not of good quality. I is very important that the soil be well colpact'd, mnoistenled, and Shaped for p lacing thC brick initg. 2. I)itch Struclure__

Fake care to prepare the ouddtoll Ior structure., that are to be po~ird from c,,!i. crete or built fr'om bric,..A c' ncretc pad, slab or footing W0 cm (4 in.) thick shotlid be sufficient. This is placed oi the excavated soil that ha,, been leeled and compacted (also wetted). It is important that the soil be wetted before pouring the concrete since a dry soil will remove water from the fresh concrete, reducing its final strength. If forms are required, they must be tied or braced so that they cannot move. Bi ick structures must be made using the best local construction practices with the water side covered with a thin layer of mortar, Gate slots should be made with metal angles or channels and fastened to the structure rather than forming the slots in the concrete or mortar. The new concrete should be allowed to cure for at least 5 days by covering it with cloth, canvas, burlap or sand, which should remain wet for the day period. In some areas, concrete curing compounds are available. Directions fir their use are printed on the con.ainers.

After the cow rete or brick mortar has had time to properly cure, the structures

should be carefully back filled. This phase is very important since the most corn mon structural failure is impi oper or insuffi­ ci ent backfi! ii-,. Backfill soil should be rmi:,t and coinpacted in 10-15 cm (4-6 in.) la ers. When com plete, the back ill I should extend :tboc e hc sidt(,alls of tile s'ructure. 3. Pipe Systems The c ,,truI en, inst a Ilat ion and tesling of lov, pr,,ure pipe systems should gicraliy 1f0llo\s the spCcifications given b.% the .\lmrican SociCtv of Agriciltual I mince>tr nunreilitrccd concrete irie atlwll pipe ,stcmic, (2) (Ap­ pendix 3), anJ !t1! uLdergr:rr hii it­ rigation pipeli:(, (i) i.Appen.i,. 4). these -. d i -, relatlc it ,., practices for coni­ Struc'icf :d;io 1nitzllalicrf. -or specifica­ t101s and il'-,uctiolis on] itnakine concrete and mortar or the pipeline ,n ictures, refer to Appcndix I Pipe trenchct ,hnuld be excavated deeply enough ',o that 0.75 to 1.20 m (30-48 in.)of c4ocr is placed over plastic pipe and a minim urn of 0.6 Ii (24 in, cover o, er concrete pipe (3). The ppe should be uniforinly supported over its entire length oi firm, stable material in the trench. When trenches are excavated in soils containing rock or it, soils subject to appreciable swclling or shrinkage, the trenches Should be overexcavated and back filled with stable materials to provide a firm, unifoim base. Trench widths just adequate to allow room for pipe insialla­ tion provide maximum support for the finished pipeline. Before backfiling, fill plastic pipe with water and check for leaks. Keep the pipe full of water during backfilling to prevent collapse of the pipe. The trench is partial­ ly backfilled and water is added until the fill is thoroughly saturated. Allow to dry and then complete the backfilling.

89 For concrete pipe with mortar joints, partially backfill the trench while the mor­ tar is still plastic. Complete backfilling after the mortar joint-, have set for at least 30 hours. The pipeline should not be filled with w before backfillin.. is con­ ber pkted. Pipelines ,hould bc tested for leaks by observing the trench after two weeks of conli nuotio, %ater in the lines. Coniiect concre t pipelines to structures ;1sing mortar. StruL'Ctrc are coristrulcted in a manner similar to those preiously decCri bcd for conc:etc 1itches. I"or pump stands, lte line frol the p)uLm1p mLut have a flexible j.nt so that vibrations are not iransmilled to the stands.

91

V. OPERATION AND MAINTENANCE 1. Operation.

2. Maintenance.

The operation of farm irrigation systems varies widely and is somewhat dependent on the operation and water delivery schedule of the secondary delivery canals (distributary canals, Figure 1). Usually the farmers, either by organization or individtally, operate tile balance of the system (tertiary and quater­ nary canals, Figure I). The \ ater deli\ cry methods or schedule,, for the secondary canals can be broadly classilied as demand, rotation or continuous flow systems (3). Anoher method classi ties the system water dclivrv as either rigid (predetermined) or flexible (nodified) schedule. In developing countries, wkater delivery t'rom the government operated system usually follows a rigid schedule and gives a varied amount on a fixed frequency. The rigid schedule and varied amount often supply excess water during periods of low crop demand, resulting in water waste and drainage problems. Conversely, during periods of greater crop water demand, not enough water is available resulting in farmer conflicts. The above factors indicate that the flows in a particular system vary widely and this is usually the case.

Good maintenance of irrigation systems and struct tires is necessary for et­ ficient deli,.ery and use of 'v ater. The on-far i Irrigation ,all maintenance ()I sI canals arnd sirucarcs should he tile responihility (f the uculti,,ator and is a continuing task.

The proper operation of an irrigation system depends on an organizational structure that ,,ill insure equitable delivery to the water users. To have equitable delivery, there mtIst be water measurement, good conveyance systems and positive control, which Will restult from properly "'.,igned on-farm irriga­ tion systems. A farmer-run organization is necessary to obtain correct water delivery based on the right and land holding of each individual. One individual employed or designated by the farmer organization should be responsible for equitable wkater delivery and also for recommending maintenance of the system.

A

. .r.



"

I. Seep arca, in ditchcs or around sirucrtlrcs dhould be immCdiatCly repaired. atid \celatioli 2. Renio\c ,cdinleutl fro)m diche, ,,sitactuares, anild repair fcatuoc, Ihri la\ c bcen dairraged or deterioratcd. 3. Design sirtLIIt,, III unlined ditches so they, % ill not iiiicrerc ,iih ditch cleanin ,,liCr) mcchanical equip­ met is, usId. 4. l.)itclhcs need to be cleaned at least once a o,ear (more often where weed grov, h is eor,, rapid), and 5. the ditch should bc reshaped at tic same rime. Clean, r,_slaped canals have a lower roughnes , ,.alurC ([able I) and ,.,ill therefore alloy, the v,atcr to flow laster with less ponding than poorly maintained canals. Clean channels can conser,.e head in areas v,here gravity irrigation systems operate ,.,ith limited ;aailable head. Since the discharec is iu,.rse l, pro ortioral to the roughnCs , coefficient (Lquationi I), a channel nay carry as inuch as four tines the iloy'.%hcn clean as wkhcn coniaining dense weeds (Table I). Lov,, short uro%ing grass on the ditch banks is recommended for stabilization, but shoIld not interfere with the flow capacity of the ditch. Weeds along the ditch banks should be eliminated. Rodents and btrrrowing animal are a ma­ jor cause of ditch and structure fdilures and should be controlled. If rodents are known to be a majo. problem in an area, rodent activity around an irrigation struc­ ture can be reduced by mixing coarse sand and gravel with the backfill material when the structure is installed.

92

Ditch erosion, bank scouring, weak or low spots in the ditch bank, strUCtUre cracking and deterioration, and crosior around or belo\, structures are ail laitena,c itenms that iIst be corrected. It scouring, or r(osiol is occurring, change' and'or additions to the ditch structulre, slould he ritadc. Additional grade control or ec rg., disipatin, siructires In.ay be llecCssa rs. ]ln at ent.- s, crc it is available, placing :rushcd iock or coarse on the ditch bank and bed or;i,.ci dOW)SCall ii frl) I ',r.Lucitr llV aSsist in ricirUiI. scoul arid e:r1sioii. lIhoken coticlCtc o! hriuk Is useful fur tlis, pultPose. (rcks in conicrctC, ltiioin\ arid brick structtires s,.lio ld he repair'Cp l h rite mi llortar or h\ oilicr man,. Nlii.t cracks. are caused b, tCiitpcraitirC and 1ioisItire changes. ttove ever, . hen cra.kg i- cansed by foundation settlement and/or backfill iiornmenit and pressure, the

structure may need to he removed and rebuilt. lhe structures should be installed so that water does not pond in the ditches when the irrigation flow is off. Ponding enhanices seepage, bank failure, mosquito bredin, and contrihutes to stlucture failure. Ito,, v,,er,in stnic arca> ponding is desired ior domcstic. pulrpos such as li,.,t"ock \atermnL'.

Metal structures and rIetal part>, of other structures ,hould be protC.tCu by' painting and or- rustproofiinc.', Metal in contact vih tile soil iiav lnced special treatment. Nictal part> ,,h t,id be kept to a tiirnutit, but it used, mu he tirmly at­ tached arnd prtccted 'tainst ,. andalisn or remov1)al lor other tisC. A good maintelanice progra in ctt piro­ long the life of canals and stLuCtureS several time, r. A\ routine, thorough program should he maii,tained.

93

VI. BIBLIOGRAPHY I. American Society of Agricultural Frigineers. 1981-82. Agricultural [-ngrs. Yearbook. ASAE S 376. I)es n, /istallution nd I'er/armance ol L nderground Thermopl.Stic Irrigation i'iphlnis. St. Joseph, \Iich. 2.

American Society of Agricultural tngineer,,. 1981-82. Agricultural lFngr,. Yearbook, ASAFL S 261.5. lh'strn unl hnstalllation ol \'wnretwn/rced ( oncrete lrriioeatn Pipe S.',/ems. St. .oseph, Mich.

3. American Society o .,\grctilt ural FIngineer,. 1980. lesi'n and Operation f1.burm Ir­ rigution .ish'ms. .\lntwraph No. 3. ASA-. St. Joseph, Mich. 4.

American Socit, o)I .\gonomy.1967. Irratun of'.-.riculturul Lands, Chapter 42: "Water (ontrol aMid MicLsurcnirc nt on thc iai." ASA Monograph No. 11. Madison, Wi .

5. Hoolier, K. I. 1974. i;ur/acc Irraution. I.A( Agricultural Development Paper No. 95. luod and Agiiculilmal (}rganiation of tihe United Nations. Rome, Italy. 6.

Bo-,, Mi. ( . 1976. 1)i% harw .eau'mt'nnt .Str'ttir's. I'ubl. No. 20. International In­ stitute 1or 1 and ecltaitin ard Iniprs,,encit. Vageningen, Netherlands.

7.

(1cm ens11,, .\ .1. aid .1. A. RCphidglc. 198G. (on tmirti, .'1i11pl,' iasrminrl I'lun; ./()r Irrt'twiw ( nulu/ I atirier', Iulletin No. 2268. . l)epatrticn it AgricuIlture, Science andilduciit(iu

Adiiiii',tIration. PhoCnix, Aril.

.Slrjijtur's. hul. 4 9 6 -s. Colorado State University, \perinent Station. Iort ollin,, ('olo.

8. (ode, W. I'.1957. / arim Irrillioi Agricihural 9.

IlA)

World Bank ( opciralie Programi. 1981. Smufl Irrigation Struclures. Rev. 1.

Rome, lItal.

10.

I'rainji,

K, K.

19".. Swlta'-otl-lhc-.rt, lrrii.,atmon, I)ruim'ue and

I). International

oo0(1 Control (No. od

'otnini,,ion on Irrigatitri and Drainage. New )elhi, India.

I. K. aMrid \W. OiViria. 1980). 1)esi i.'nuid Iurro w Irrittltont .Sivsm tr' .r Imiprov­ c'd .Seimlal l'ertlihnmuc. .Amer. Soc. of Agr. ligrs., Paper No. 80-2517. )ecember.

1I .

(Mjares,

12.

Otilden, R. ( ). arid ( 1. ( ). \Vood, atd. 1952. /1 iw-CoNt Irriialtin .Structures. Portland Cerir.i) i .\,',0Ciation . ( hlcitl,

Ill.

13.

Hansen. V. F., (). \\ . I,i'in and (). -. Stringiam. 1979. lrri, atmon Principles and 1'rar'tices, I-uirth Idiion. John \Vilev and Sos. Ness York, N.Y.

14.

Hterpich, R. I. aiid II. I . NIlge,. 1959. Irnition f' ut'r Control Structures. [.and Reclaatioin " {otnihimtton w

No. 82. [)epartMent of Agricultural Lingineeririg, Agricultural xlpeilineti Statili. Manhattan, Ks.

15. Holy, Milos. 1979. Irriation Structrc. Puib. No. 135. Central Board of Irrigation arid Pover. Ness I)ellhi, India. 16.

Htlrnplercss, A. S. and ,\. R. Robinon. 1971. held Evaluation of rI -)rop(hec'k Structures olor Iarm IrriQation.Svstem.s. A RS 42-140. USDA Agricultural Rsearch Service and Idaho Agriculural t-xperirnent Station. Kimberly, Id.

17.

International Corniti.sion on Irrigation and Drainage. 1967. .MultlingualTechnical Dictionuary on Irrigationand I)raimae. IC ID Central Office. NeA )elhi, India.

18.

International Commission on Irrigation and Drainage. 1969. Transactions, Vol. IV. Mexico City, Mexico.

94

19.

Johnston, C. N. 1945. Farm Irrigaton Structure%. hCir:ular 362. 1'.,,, rit vO it

Calilornia, (i'ltecg of. AgricthturC. i\gricultural ['peiincn.I Sk.ii L.Her kele',Ca.

20.

Koi,,k . P. K . 197() I)"tI~i C'rit'ria ( 'wtts/r Ucim l (lidit' and Wateria/ 'l dtar;tm /It

Irrig ltioiti P w'/nc. VS ).'\ (" P'ASA. !SAIl) \l,o India NC.% IClhii, I Rdi;;

21.

Kraat,, I). 13.an i I. K. N ialiajat. 1975. 'smll! l/ldta/o h ( j rar,IIr(\ I \( and Drainace Paper en iert iiti,ilals such asnd. raw. and CltlhCd ,Iti,. I)iiii tliixvig. the cciiiciii and a inriti a paste that Coatt, tle si-tlaciu t ei piece i1aeltegtl,. I -iall withiu Iti to llilc hours itcl ixilie. d clutlial] ,eatiiin starlts betcel the celiiet iiid the watelr..V, tli.; clititical cdttiiclpr11Cc t L Ceh iteC it IVSl

iidleisC Ltdurally :Ilt the Ci)illctc Is ,aid It)-i. I_i al,.. the . Wtc lpa'itc W.ihl haideii iucII like ilid biuid the :ieucee:ites ticether it) loirIll the siliil iias th ai , ci, uicrte, Altlioleh~ read, mixed c'{Icietc is wldcl, uscd lor lar'eu coilstrilctiiii fls,.itI 11' 't lw:ivs piractical to use read, mixed colcietc iI i llll jobs. IIl i'llt e cises. tlli l iiuI l id Ciuncretc %()LIluire irt be Iles lhti I ciu.vd.. which i, less thall illst re:ind tilix liiducer, will Nuppl, .. \uid iu some airas there i,i,ready mix plant. It 'louare faced with )lie (t these cir:littstalices. inikilie yiolr oln Concrete Inay be the in ily practical sotiitiimi. Thu is hard work but it has the advattage oif low ciist. atid the amiiuuit uul cmcretttmixed catll le adjusted tii suit utilolvil work pace. (uality cncrete costs ii nore itomake thatu pool c~tucrete, hut is far more econuimical ili the liig run because if

Q

Pirtlaiid cement is not a brmd oflcemnent but a type. Most portland cement is ,gic ili color. lowever, white portland cement is uaulltli'act ured fron special raw materials that piiduce a pLre white color. It cal be used instead of the iirnal grey pirtlaid cement, but it is higher in price, w.hich Ini Lst tict its use to decorative york and other stiecial jiiis. 'il can Iv piirtland centc' illbags t yoUr local biildiin materials dealer. In tile United States, a bag weighs )4 I. and hoiilds I cu.lt.: In Canida, a bag weighs 80 lb. and hiilds abiut . u.l. ('enteilt ill bags shLiild lie stied ill a dry lication, pref'Ca l tililrised wiiiidetn pl'ltitins. Simiietittes wlei bags lia l e n :stiir'd ti-I hitie time. the cclici illthe liiver p:irt io a pile devehi1 is Wlrehouiie pack. tlim is, the cenietit alil+ii to be hardeicd aroMnd the edges (if the bags. You call us]ally ttCirlect tllsN b%rnhliiie tile ba, ii tile iiior. To :ivid v-aiehii-e lac,.', bags, shoild not ie ,tacked more t11,uh1 ,c cn high. ('eieuit suitatll I'iuS Ili Concret., should be ftre-flow­ itig. 'he prcsence ofIlullps that calltiube,tlilveri/ed read­ il,bt%%C,c tinli thiitnub fnd liliecl iiudiCates that the cetuieIit has :ibts-niled iuistIre. Such cement shild iever be used ftiIploirt:int woirk. but wheiu the lumps have been screuied iit thi iugh an irdiarv liuiuse screci, it ca be used fir ccltainl ttiiiiIu iobs sucl, as setting fIuce posts. Water Iur rtiakilu Concrete cail be almost aniyV Iatutal watc that is dritkabe and has III protounced taste or iidiit. Althiugl, stoe waters that are not suitable for drink-

Portlanld Cenut t A ssociatin 1 971

ing will mIAkc ',;aio actorv coiciclt, Use 1li\ \ lll ' tito diiik,

to be on tle sale side.

Air is;lstAii ilillimitalt ingr'dent 'iOnii;iking lod conlcrete. III lli.h Li'T I1930 s,it, %:Isdiscoveied tliat ai l ilie I'tOl ll) OflIlliC I 0'+.C: l[+'lC b "ub b le eCe l1]% cdlsI 1CtNd 1 lh liu l,h ll tile CO tlCrC l C ll )]+ i ii,.It d I,,d i lllt\ ]ll td lIft tlllI chil ­

I tcahwiduc 1t ,MIt-ia nd dc-icCil Slt ,lcl ioll. Colicicte cIt.IjiiiifIi ic.'ha ll h .,,is c it'd 'ill-ciiil~ilcd CtollC eIct. IKildCncd COliCtIt' CtIIu\ Jtiitdj I l I,-n wu, c i. When this ldl'I Clt'/c's. It l . c'\Oii Coiil'i, lie sSille th.t call rupitmt. (scald) (lie cmiiC C&i!II1ICC. Ile ti kll i tbbics , OClt 'ts ies~ W i s 0l Ii c \.Otf,' tIM tic '..x\pilitlinL w tel. IIIusrhilCVII plCi ii,, C Ali llnd ;)Iid 'ilt111 dlIItiJlc (1) tile CiIrcte',

Air c tliljlllll '!i l 1,1l1 1 l i nt,11,! t c0 Il'tWIc' 1

'X[scWd I0 ( lc il it' > ,,i tjid ihid, tid,.]

t 0()lld t i :1 tic-

iccrs Ill ctld ciii ;itc:.. 11d Ill t l i cilniic!-, ,1ii ih:iIIl

]i.

/ 'c 't'fii c,.VCit' I t I CC',' i .111d 1h illla c ,,.l ,c.1.it ,imiliid

he used lot ill c\tt lciiCii ,I cIt '. k. L..lt l 11C ,ii.hI ' , ,

llated

sidcwiks. p Air il

lite liilx

tiit

. mid

C ittSild its

Iibbi sil-I'm.CS.MIll s IlNWc, C

IIlld I tllI ible, n o t[s o t l orll ak y . \ ilh

. sl\e h-k e p icc e s , P l

t10m1 1II., o11 tilt' III:IXIIII+llli S'/ used tor life job. The ci1lllitil0 [luXinI mllMi/CS lik ' . I . ofr II: fit. Gener­ lk , tileIn i, t'oiCMio0 CAi lilli\ Is ohllilled by nlsifig tile

icps,.

l;ilitlidlit ,i1,)lis ailr

inof ie ii.t'.ct1r ,,,akmg'corewt'r(' .svicc if t' oI II , sii sItall

pdrih.'cks.

(Guvel of ci'2', cd Sloie ate tile most commllionlv used

co r gi.!lt' e.. ThC\ ',1it Id ctniISiS (4 particles that are

,l'i heddC iil lit

elt's

lot

riiikimlg cit'cieie

d \ccslvc' diit. cli\. sill. Ct,., 01

ild '

,

w M iltrea liilt!' Ic lCCHi Wll' pel leinentI irtlI S[III , ftl

oLIS h

n ­ oly rlr-

Clete V,10h 1,>i,SIitn'ltiM LIddtill~i ilit,,.

mix plants shotk thti i0 hiic III lil ,'Alld W\ nItl pi)w ­ ably sell\Vou ;i ;:;iili lill:ltil . Ile i illio ntl lo be ttddtd t' the lix dcependk tii lt' b l d -, ;hl-t'iliiiili i/tlt{. lii iniforitition a ll to' ,'btuilied Ut in i btnl ini lll;iteliils

It VtillStispect 1h1.lthe siiid Ci,[lil.ili.; t iliich ex­ trcnuI lv linc iiItiCrl . sliCh 1>clV i1dsilt. Check its suita­ bilit[ I'll tnslic i l l klmi cillcrcte h\ tie si)-c lled silt test I1: i . I).Fill alltldliily kLiIrt C lilinH i 0 itmilk

to bethle

stppi lC)rlilt'CaCd lx )odtlic't. Tli c I., ;liolhei lietlh d +.i lll ifb~

t -enilliwled Cl)i­ Clete. "T) iV Vi'l 1 . IMiNc 4 tLk il_ id ITICA:tiSlim 11

Fi

.lir-ei rdi railln ti LIhNJ'-'C , 111,11i, cCIl il 11111llllll P

*.Silt test eiigmade ina quart canningjar.

tui(i1/ ibie t_'[Iol Ii l !lket

Ill p,wr lanid

CeM l~llsthat Ctolllu ll ;ill Iile lgrm illldi -e ll lll , .l 1t.... Thce. , Celliei s alt ' idt'.:1ificd t t il

are .ivaiLilc 1'r(m portlInd ceenlts. "id

.

[ blic is "'il-'ltiauliil.!". :n

the sa;lte smipplicrs that slil!cIuar,

Aggicg',ipp t l ". . It' theicI ,,I ; :t~rc-d Illix ' l~t~ ht~cl l \~ll lr~g .it k'. i l luith',i++ pl,'tu Iv r,. ,i li, i 1 1111ll. 11! v, iil ii11.c l , , i ;t th, IL"2ti 111111, i : c7,uIill\ l-+;1tiim td w ithi \Aaiiti id tc mltlllili lill ai.cctlilkilaI HAli (Ilit I \ l',lltCC t!I IM, M-h, It()ill liluh,'t Iel r.,

d irt. It 1, 2, '(""l

"

IT

i 6 11 I-

p fl

,1(t.1I;IIt.'

ICJ~l ll

Ili

1i'.' t. .\I A l d i~ i, ict+ lli h,!ll,_hc . A_'l Ill

If(

(d

H ll i Mli nid

."l i

lu'

11"

i

d

"~lt.i

Ill

el

i k l; ml Ic,

l ;l l ct

+ ''' l % l llt'"plI)t

neueded. l'h ic il ll ilIXiil , . ()~i

t l1,_ll . ' It II .,

it_ m\ ", ou l tU , t rdy­ k '

tt. .*

inl ilalillL (ttiilintitit,,

.toi-,

Al i ,

11). (d 'S'~ \,.i

:mllc h ll t:

o L o ~cl

.X

0 )

lt:

c (d

t1d

._cilltip d mvii 1ui t he' to, kllt \\ itul

Wvilliic.cd

(i IClfll -{T~ l'i

IC I Al1)/lM

+

I 1

'

PROPORTIONING THE IINGREDIENTS Ihi cmtict.iete.,

rttulds cvm'r

wa.ter folrml ;1 t);iSt thfti stirpieco ()I' a ,repate. \Vithini a te,w hours, the

thie cen'lililt andic

y-, tIIif p ro cc .I , AI(A1, I, th l)it w illI II l Ii,h i, C It ,.."Atli ;iit_ the ill tlll,tl A1" ,olicicte \ mll I i ci+ctw ill l,..'ltiiie_. U l i t let+ h i')

1, v..i;l.I ,lI mpic I m111n ui t. ,w Iid I (A,,'ll:, I,)r iII squt .-_ o>r (0 lie

Wi+ dth (11.) / Lengt,.,h (ft.) X "liickiict,, (Iin.) I

.....

.. .... .. ( ubic fee,+'t

3

Table 1. Proportions by Weight to Make 1 Cu.Ft. of Concrete Air entrariei

Concrete without air

concrete

Coarse

Coarse

Stze

coarse aggregate, In.

Cement. b.

Sand, lb

aqgregate, I,

Water, lb.

Cement, l).

Sand, lb.

aggregate, lb."

Water, lb.

1 1".

29 27 25 24 23

53 46 42 39 38

46 55 65 70 75

10 10 10 9 9

29 27 25 24 23

59 53 47 45 43

46 55 65 70 75

11 11 10 10 9

stone IS

If crushet

t

it!(

Se

.qt~reqat.

oinase

by 3 1l1 and ircreise sanrd by 3 Iti.

Table 2. Proportions by Volume I size coarse aggregate, in.

Cement

Sand

1 1 1 1

1 1

or example.

Concrete without air

Air-etraited concrete

M

:1 4-in.-thick

Coarse aggregate

I Water

1

Ceniet

Sand

"

.C'. ,(I ,kd

2 2'f1

2

2

1

2'/

2/

2, 2,

2% 3

1 1

2, 2V

2 3

'

Iatio slalb. 12 ft. wide and 15 I't. IXig

cte tclerillilucd bS tlc above,_ I dtit ti1() It'cl

,t"

h16 ,,sc.,

5' it) 1O IeC t.'lI I'm~"Iut.h COJOJIll2tUlCICIC .

lii sch Ctitigclcls II the cae iw th c .ll, , lei.IeIIII t(of ofeCimiltnut ttA] quiird . uldbc 20 1 )1.10 1 20) 22ci.11. *lhe qlI Ahtu c ", --I :eia.l it b11 cL l bh calcla td bsJ 111111111) cIIi Ic n lb.C, ubic ccl t Ic( C c. ie 122 II tll .eVItIlttltbs tile (dcit 1iMt ateria lticded IM I cIult. ulver l ill [L ei . til t OIiuwi c111 itpl. c 3 i Itmtilled Cm ,'.-ltiu Iod thie 1 XIII~ h ll I I"L ()t ll v'ilahle :u100 t, toi he .i ill., tle utLui1ititiC', it Itaelial tlceded wuould be a.", tllhw".: 22 < 25 S5l1h. ifI ceitcil C

22

2

1/ .

Y2

605 Ih.. wC h , = 6(.4 r 7 bgs. A (' tdia at to buy 94J v o12 ill need ----7.5 ir 8 bt'i.s il vmit buv 'our

aii a . 11'iiii-ciaiiiitiw ce ntisint[v:ilkble. C~eet ill ,m will ials, liced tI, iblu : all : -ciitmilil t! jgeCit. Apgrcg;aits ate ,tdd, h\w tle tnl (2,100 lb.) m hy tile cubic y:rd (27 cult 1. (Ouantlutu, ni arI2.Ielcs Call b Colld itut i u'lll, InIc.i c Vtls. iil Vi'Ce er . b. slit3-, M viu J 1 (1Il

iVIhttiewih of' sanld i I O 11. per Cubic. liiio~ 1wt () b. p,,I clhic lt)-I 1il the We1t. (t coarse aogoe­

1,010 2-,ic...)ACi,,d ly. I. (01tlb. ,itSald ct)lill, ) I1 .3 I .. ' 1 q 04It2 Ct.yd.. and 1.73 lb. od vlavcl Coin­ -7

, 7 1 .7 cr 1.vd .5I . 27 MEASURING THE INGREDIENTS

'ij () 4 lb. (ofu, d ' 1$ I .3 lb. it ii~is'~ll~tr

4 r

.-.

SincC it is ,ce.'tll

ter, t, musL

uiiuussihc it) iecovel all(d the tate-

rial.a 10 pc-rccihl allitv, cc -htdd bc miajde it c)Vel liu)IIi-l Wiisv.ti _. Ii isI, , lc elI L ive ,u. 111t2itt left t.er tlhatll It till h I I- it10, b t4 l fl[ )I iiatcil lc1 tile crud elh (it the job. 'lit. Llil litllL, irucrceused lii.

A

1 1

1

2

spul~nt. uil 5 I ec..st II pccei

22

W3ter

2' 2,

iicY I 2 X 15 X 4 .w il( teq llig , .,tl -r hi h, Il0 . h i, d ,Si . thick wtm ld requiire: wall 3 It. X 31 ;< 10 x 3-----. . 2) cult. Tht.l lllutut0v,c, Illl1d dIttCVCil e

Coarse aggregate

i I

"l

1l

I

t.. h,.iefnie

bet_'

551) ' ii. O ll, Shttj 5 I- ill Vt. if ct,., t'il -24+ (,101 1) 24 1.1 t lb. id ,.tid 1. 7 1lh.of Ll'i,vcl 1.430 1-(0.1I / 1.4301) Since a I[.S. bau- tt cemc

il

)4 lh..,Siu will iced

be nicaiured tCCUriitely to enslie produc-

tim

t unititini b itchc,, (I tu ilitv cincrele. Ivredietts ltnu betl',ut ' to IA Vlgt ()l v'itlittC. II, ," easuicii,. eit K ss vci, ht Is tc lltlc tided because it is IitLrc 'IIA1C tlld hence.,: lllu 'cs etrC ulilt'rliil( I't1i4 hatch It() Itch...\l-u. i is ci,, it Ii lnAkc adpi't ints ill mix sntl. t' uu:usnu;ic PtutT tlti\ I tl sule Is .2ccIiu,utC etucl

I,.

,cheitn h;Itlt­ lhue riitterulils-. llIa se a telle ilift l i .

vuuh'l

b"s i

\S,'lclilu

[ clt muc uteitt .,htlh! be, I' \ c ihct Ilt.e'- t,, ttecallutui calvtlut/,tl st l pills tir h: ,c|c \ ih l c C ll I 'Ih l I, "z l ,u l c cuittnICI on1 it. ,,\lte[ wvi

lir- cici 1.'tcdic l t'ce. tnalk

hi, ICjIMii LI A\~i, Jlti I i ie01'Ci

~

luL

)ill

I

.

IIi

I C. l t -,~pm i iI

l.i

Iii IL~lu i \l~i

I'

" I '~ith

h3 ei(li

~

l

M''1

I]

Li

11%11 Ill

tiiijd

21101t:

X tilt

1.t1ud L-i1) 1

irc IJI INL illt

l

iui'li

1 l hjld i llt'';

IL' h r all

4 l ll.uiunl jp hAI :11 .1uuu ducrle..ndepne

-1)Irn.

uillliCI

whe

I r IIitid , 111

~It Iqie1r

P'I0I)\

t

u

ihitiuti

L'

ti. '11! I

HII

C "ui I

lhtitl Mid

Ii l xiltu"

u ihi

lI IL

ie

It

I

hII~

t

ll

it'li

11uMlit.h

ltleudl lllvi

~

C I

I

i

t

uti

iIN

rtt[

'1

, (

,11 I."

41

1!d, d'

A

'iIII1)1 dI

ItLI lW2 IIIt

tileCttiijlCon­ Lhuihlci

it,

i c IN r ih

i,11CI' i LIL'11 tJ

LLI

co ill! to

isIir(iited it''All heli~ilt

tlLJVL

5 ':!It) 'hrlii. t i~ ,1.ll :ei all l% local 'l'e h" Ilairn.s ulituru Nri cu

h

A

hn

.l 1Ld

II

. (11cte

111Citt CliiLI

ti l d ,t Itlit ItII,\

-p ~ elck: Illi1'.ilw -T

!,'oiL

Il

\ Iillt > )W

iti%

Ihe

N Iit l

w 111 ilii

%(th to

P J11 il

l1t1\i111

ahi e,Iloti W

iiIll

Il~u d lit w',

l\ \'thhttrC, IIrIIIg AirL1IIC:i

\(ii

m

Ie\c

i

-'cl.It

MIXING TH-E INGR:EDIEN\TS

>M '.

tWi

.and.titii

tl!

L lC

L.'ltjiii\

ui~

il .IiLl I

vt

iL'

ii

>lu

iI IL

Illlt

ii~ clii

l

lc\:II*

1,1C

)I1(1

itjLc i

il

for

Witii

2-

m -ti

,Il

1.1 it&\

icil %%eticid.A.c ollii

tIL,,

10 N

citl

1

hI

Ii i

i

IM

Ii kItirt'I tj 1-1~

1,

%~iilIKI! HO

!,ick tii iiiii

lm

w h

ic

IIIIp

I

IC

Cl-Cl

lk

li t 'it 11 mi h (I)C) 11

lI-,1)1 1 1cII1 1C ,

,

IC

I

II\

ci IIIc,

1

"

111

11 1

..- ,"

" q

.. i~~

I



-

' ,

III I~tll,.",

LIE-

­

~ ~t

li~~L 11 iI

~~o.

....

"

""

+

lxl~~~~~~~~lt.+~~~~~% Is. i r,;l..\-ih . ;n hI\' l

,igr'.art

t

i,,'i

Ib ,.

+ lg t It,'¢

l.li h

il

il

l-'J;lt ,llt

.:

I +l;.u, l

t ir m iiit'.ll.tw,-' l

iJ ITMIuI

I*

t:I IlCi..l 1+I +'I t '..t 1[ l:(

llc lli

th,, ,wmi

,.'Um.u .;n

I

ICh

JCjt I I I I+)l L"

I

i

1,CIkItllt.\ . I 11, .':lt .] fill,. 11_'11M I,1' LIk

", 111, Ill xl I I !

,

%\ )II"h'

I/'Jll

l

li

l,,. .\ t ( r l / A.,ct,;

t l;lt

l

cur

1. 1

~I

i II

t i

I

,.\iI! I II ll:

I ' l ll I,]Iit

I)i Ct'N'l,'

~ll

I I 11il

I

1,1, 11 1h1 1 1 t it I tlI1

IaucI . I I

IIt C 111 LIC II

N,,,t1LI Itwd.,

kl I IIt II'

h. is lilIv

(

It

J

.11

ll

I\

1 C

i

I,II I cIll Ih 11 1,1 itI I%

t

",illirI

hul

.\. i

ldi,t­

I.I I I

rdti­

-c

u

i l~l. I ._l "d l ll I Ihill~t'lltNC J', 'h't 1.I+ X t \vill '". It ', ,1 , h ,+II Al k~ll t 14 '. f) . 1 1,ll l' 1 W l_'~ ul Ill t' l thAll 11!.'.Itt kl ,l t Nlll.. il IIt +:', 11 1 (th ICl llll 1t."+2 If 111i 11 J:i1 'l ,;~llt t ,+ ,,,d , ttu ,.d l, tl II . .%% t ,++1'll } Ii, )I III,,Il+ iml IL,. %;: tI. 2.' SIll C , 'I-}ttl : IltILI HIN the .' Cl :-, se ll MIL l Itc,,II

I.

1 \',vtl if i IIl w-i +, w ~l t

h

c 1111\.

-111C ocl

l ,

,h

I

( ',:I 'l) , \ 1 11 tI-, .et i,.i n ,'

I~t.1*111~l :

hh_ +l h.t ,_ ,,lc lict,. ' til

c 1 l%% 1,+ illuII. l 6, r~ild r)1,l~ i ) i tk cdllw ; I,I ll(r,. lln Illiv...t. it +I(I '-I tt111-, 11 .] I llA(o t Id i. d( l i~ C +lb i t\ ,ll'' m.lk hL - ll\ ',ire 1-,tril ',1 I O CCH,.+Ir ", ( d ,. heiJ I tnt,.'i~l hild b,_ thp t.c'll~~,&)I Iv ' ll~ lq'A t t' t u'! t l.h t he \ii.ll ll(tt t+' lt 'tpvu,+.'tw lh,.Il ti .', - )+l~lt 11m ' d id pa) t.' Itll~t'; tplCs I M Ix ll, ;tIIt'Ji ll, h'C S.., 11iCil,,l ld C II~ t IJ ,c h d'lI imh :, r hezc j n w l \u+C

M*

Fig. 7. Tiff, mi\ is I,,, l+t lhe i.a it contains too( little sand arid co.'rm l'or the, amo un~t" .'.ement pate. Suc.h a mix wou'>tld not he eco' nomic.al o)r du aral \%ttl , ld hav'.e a stronag tendency to crack.

ag.gregai

slal nd.

l l ita .'N mgg Ix . i- e dtJIII,+.' imllj . ,il,,h 1 51

I, ,-7

! " oHHI l s

vi't'ide+

.ill.

n

lJ1 1

l

11

, ll- le t rr

Ni o

1 1+1112 020

1 21 Ill.02o ; 1 1.1

,

IAN I. 1-1,.ANCES.\iA, I ll,

--

TABL

,1

I2 .. 'Ik

2Iif) ,

1

I

*'

1.1

I

-

2I ) -11 I4 2

II .

,1 , ,1.1

" 21 21 1 :

79'0 12}

,'.'

t 1 of.

1' 121 10 101 ,

12

1 18 20

I;o+,

1 .1 ,0 1, 1 is,

2 . 18: 3t

I

I( .2l

I

1.2111

4P

27

2

I

.lAJA)

-11 T

sti

I

,2I

l

)IO N. l

1

11 11 ,

I'I,

1H2 iIt 9

I,.

l m 5,ll

t

in~~~~11

1

.

I IN, M1 l

-

l. K

N IIM- Io.1 I+I 'll W

hel

I

Aitohtlllfl

,tt

I.l

Ith

Y1

Il35, t Ii li

-OD bavdI, Il-il inolil,16I II,-E I "TA%

(UTSI

110f,11

ll".".,I

tt

Ir.l

l.U d

A

, hv

12'1

i 1-it

1,+.IHrlit[,1

lli,

......

X1

,.11,

1, 17

ll ,1

if

I'E2 1)T'1OLERANCEFOIt PVC AN81 ABI)E DI..MFFI Lit A.ND TOILERItANCESO+) . .... ...

I-'(,r iav rail

M s

.

.

F~or inaimllulrl & rin iOtlit-Of-r-Intl )

01)

50 ittwad DHl 93.5 SIlM 81 .SDl G4

.

.

umlnll

-SDR 17

S I .1 .slilt

..

SDIC 13.,5

31-,5

S1( i 21 .S lD t 21

SDt 51 Nominal in. In 31 1

Pipe size mm

5 6

II'S If'. ]P iI's

11 . 11)

18 60 7:3 89 102 11.1 105 1.11 118

If's I'.s W 2J 71

Lot _1 1. h )111 3 1 4.000

156 8 10 12 14 15 16

1 18 20 21 21 24 27

498

it%.

21 27 13

i.12 113 2 2 /1 3 31 4

Average OD

219 207 271 259 3241 311 363 389 406 .166 475 518 560 G10

1. 5 1 .315 1"I6 I

If' ] S HI(I I'Il

ill.

rim 2 1.3.1 ;7 33. .1 ,

V_'.10) .

1

(,If

1111Om ,

3.1 ,2

0 1 (}2 S811008 1t(1 .1) 1

.( 1:1t)

I1

1

] 11'51

I((.1 I,1 11,1 I'll, Ifs

I't IP i P, IP I

I'll, I'I Ill' I' Il' Pill II'S

630

I'll'

710

Pill

2

I6.1 6 11 i 1 il 10 1 I 1 I 2.750 12,2-10 I .I 2i 15.3010 16.000 18.3i60 18.7I11 70.-1 o0 22.0417 2.1 (00 2.1.8032! 27.952

,. 12l 119 ( 1"0.11, 26 '1-

7

01.0o1.1 01.11(I.1 1. .

.j 5 10SI

110 .90I 7 1 3i 21f .6211 1 1.l1) .11; ,1 .17, 00 518 If; 5620.001 6 09 G1 (30 0)0 7 11.60

(i } , 1,007 1 (]off1K 0(,009 OJl4 11 () 1 .01111 1 II l 12 1)11l (I r2, 1.()15 1 0 015 111 0 02 1

1023 ".12.1 0.127 0.128 1) ()1o 0.033 0.03(1 0.037 0.017

ill.

MIT, (I 10 t)o W1(). I) 01 . II 113 e.1o I. 15 0.18. 1) 20 1120 0 2"3 0.23 ( 221 16

t 2( .,I o,38 0 38 I.J 10.38 0..16 0.53 0.58 0.6 1 (.69 0.71 0.71; 0.8.1 (.91 0.91 1.19

i1 u 1 (I I )8 111)121 o.015 i).t)1O 0.10JO 0.030 (1.():t1 0,50 O 01 0.(1,1) t1 .(1, 0.1050 1) 0,01175 107, 0).1}75 0,175 10.075 0(.075 0.075 0.075 03.0175 0.100 11.111of 0 11o 0.100 0.125 0..125 0.125

una (1 21m1O I 0. . (I 211 ().:11. 03.7(1 0.7(6 (1.71 0.7(6 1.27 1.27 1.27 1-7 1.7117 1,27 1 Xi1

1.71

I .0(I 1 .i0 1.9.0 1,90() 1 .901 1. 90 1.90 2.,1

2.50

2.5(0 2.50 2.50 2.5(0 2.50

ala. 008 1( 0.01i0 0.012 0.012 0.to12 5 1; (..1 o.015 0.0115 O)151 o(). 15 ((03) (}t.035 ().1.30 )0 11,5 ! U.0 () 050 0.150 0.060 01160 0.07(0 0.0175

mm 0.20 0.25 0.25 0.30 0.30

0.30 0.38 0.38

0.38 0.28 1.3b 7 ; ) 1 (189 0.76

1..1

1.07

1.27

1.27 1.52

1.52

1.78 1.90

AGRICULTURAL ENGINEERS YEARBOOK-1982

TAIII. II-INSIIV.

I1IAXFTEIt

AN|D '10.IA\NCE'

TABLF" 12-l1.,'RST

FOR1t 11PHI Nominal pipe size IU1.

,',] r in0'e

I)

mil

tt'1

1(1.

17tmi

O 2 " 0.S24

1.s 20 9.1

Ill.

21

1'.'

1

27

I'S

1.0.4'.)

26,64

3'.

35

IIPS

1.380

35.05

-0.01 0.021( -0.0101 -0.0231

,

41

IPS

1.610

-0.H9

2

52

IPS

2.067

52.50

0Si .2

+0.01 l

0.5. 0.25 0.51

'1 64 81

1-10

965

5 head

127

87,

3.068

77.93

-0.015 --. 0, U

4

102

IPS

4.026

102.26

102

PIP

4.000

101.6

+0.01 5 --0.0:15 -0.0:o

0.38 0.89 0.51

154

IPS

6.065

154.05K

152

PiP

6.000

152.4

- 0.0:!0 +I 01 -- 0.0 5 (125

0.51 0.51 0.89 2 .. ;r

203 25.-1

PIP Pil PIP PIP

8.000 10 000 12 000 1 o13(

20.3.2 2f54.0

-0.125 -0.(740 :0.( .10 0.. ..;0 -O.GIO)

0.6. 1.02 1.02 1.02 1.02

-) )025

t

'to

plastic Ii;,'

IWith ,t t'[hW f:),r st,..

Impact reslstance. I ne pipe shZl b0: tested in i.LIcr;lan ce wtth ASI M S,a:dard D2444. 'I.-st tr hipact Rcsistance ('t Tolernioplastic Pipe ind Fittings hs M"Cat, (' .1 [Up I Falliig W :Wght), using a 89 N (20 lb). i "pe !1 ttup ulh a flat plait a! 23 .-. 2 -C f-3.4 - 3.J F) and shall inct..t the test lee.ls iwkrinm Tab!e 13 ot this Standard. The itpa i 7c%! shall 1, tade adc , , prfduc.tionipipe at the titte if manitiaclure.

PE pipe requlrements

uter laser shall be at least 0.51 mm (0.020 in.)

thick.

5.6.2 Bond. For pipe produced by simultaneous multiple extrusion, the b-nd 1 et.,en the layers -,hall be slrong and uniform. It shall not be po ,ii'1.- r,, separate any t,.so layers with a pr,,e or a

50 it

1.

.

f'

1W ,t

h.ad N.

,

tIl 1i t

93 4 N- 3

i

Stilt At1 llb b NM

SDRI( 64 Iti iM Sm

lsi

MPa

6400

.4.1

5400

3.1.5

ASTMI Standard D1248 Spe.o:icatios Or pillyethylvn_' Plastic Moldin and EltrusiorNI.,teriads. d1271 mnci ini ac..ordance ('tertl %%illSection -. 0, ,t ASTM Standard D2239, Spfccf1, ot'. Plv­ ,r ethylee Plastic Pipe. 5.6.5 Burst pressure. Jhl : M iM urn b,rst pressure tlr I': plastic pipe sh,:I h determined in :c,,rdance .kilh Section 7.I1 and Table 4 )1 A%,'I. St, i d;, 1I)221'4. Specificatio)s iir t tlr e tte

5.6.1 Thickness of outer la~er. For p.pe produced by simultanehus multiple extrusion, ,hat ;s, pipe containing tao or rtire concen,-

1 "-IIPACT It

7.1 -1 I.

.- d to, (h rve the test

point i -., knife blade s) that the layers separate cleanly at any point. 5.6.3 Carbor, black. Th. pipe extrusion compound shall conlain at lea.st 2 percent ..: rhfn hlack %hen tested in accordance .ith Sec. tin .i ASIM t.ii;dard 12239. Specification, ir olcth.let,' PE) Plastic Pipe. :,r Pipe prdiced by ,itillitalVeLus Multiple Cx­ trusin, this re.quir-eneiI shall apply to the outer laver.

5.6.4 Dens)t. The p,,sch'hlene base resin (uncll,)ref P1E1 in th , pipe c,'tpou d shah blase a den l "itin the range iron 0.926 t(, 0.940 Ag nlI't or pipe niade, iro, Grad(. '23 and 0.941 o 0.9n5 Mg to' tor pipe made rv-in Grade P33 and Grade F34 of

5.5.4

TA1Ii.-

ll'ted ill

,)

PVC 1120, PVC 122 0,

PVC 2120 PVC 2116, PVC 2 112,

PVC 2110

5.5.3 Extrusion qLUaIl . Ihe pip. , ,' not flake 'r disintegrate when tested in ian,.e whccr 711AST[M Stardard 1.121 .2. Test tor Quality ci ExtruJed PVC P'ipe h* Acett,. IimniCrsi,3i.

N.Mmrn.J

pipe sze

l

1381)

1 105

k60

5T , 1)241 St ici III for ST. ( ''.II .,nd l,,C) Chti'rin­ 1 (VI. [nihari ated 'olv(\'', I C>1erl) (CPVC) Plastic IPi (S'Dt-P I. fi,,r SDR rated PVC

0.'76

-

tric layers, the

211(i 2112

2110

PVC' P\C

kl

0.38 0.6-1 0 :18

IPS

5.6

1)V

200 1610 125

+0.015

78

381 0

1790 1380 1105

93.5

3

34.8

ftP.,

2;) 200 1(3)

0.38

62.71

381

psi

0.51

2.469

305

I 11 1220 2 120

-10.0 1 )

IPS

0 12 15

PVC( PV( PVC

0.51

63

8

Minimum burst l)r,ssur

DI

0.25 0.38 0.2-5

212

6

SI)Mt

( 25

0.020

113

PI.ASI'IC I'tI'E"

11

"0 310) -0 010 O.017 -. 3W13

1 1.

I{ESSTTItF

ItI-."(4UIti;I.M-N'TS I-OR PVC

Plastic Pipe.

RNIFIMENTS kdl( PVC St1lt 51 t'lIb Nm

-DI 41 tt bf Nm

ANtD ABS PIPE" Still 125 it'1W, N,,

NoiIt 26

It IW Nn

-13,1 1 N Ii

it ;ib

SI 1 7It iI , Nl,

11 11 .

42

1',

;8 1

2. a 3', 1

73 102 114

5 r

105 141 I'

8

0

11, If'"

503

Ps

I35

, 1ii

PS 30

41o

30

PI1 1IS

I'll,

30

.40

33)

40

30

40

30

.10

30

40

30

40

80

60

80

14

1l 3 I 135,

Pill

1 li

35 tS'3

111o lO'

tllO1) o 1i') 17,0

24 7

I's Ii'S

166.477 3.1 53,O .it0.,;:vl 7131

f, I P 1' ill[' tl.')i' IP PI[' i

v1-',lt'.

60

80

70

73~ ...

,o,,

70

t5

110

80

ItO

90

120

90

120

95

)M

137 l3y

1O) li

135 151

110 11')

ItM I5(i

fll0 170 1131 1503

120 120

165 1(,7,

111 itO

1 1.1)

113 7,1 1 l10 111 1S0

120 120

11, " 16"

Ili)

13,1

IlO

1233

100

.1t

\.7;:

7. ,,'i?. ,i t

1121

17.3 '-.. I,,

135

11()

175

I 110 123

153

i1 ,10 113 In 12113,5

hiri3a, t

1 ,0 1 I"SO 233',

I,3 "I 0 3 , 1 '1" I0 l7,13 2(1)' 11).13 l,0)21 , 33 2)II, '*'.1 ",

t..

,,')

7531

() 33

7

r7( 0

5 13

75 7., 1( 0

5 ,

,A 61 7 75 100

l, I )(1 13'.

,27 50

50 -,o

38 no

5, 70

70 7

')

7i

1 ;5 3 35 1 63 3131 75 13(1) '5 13 , 100

itr. 13) 103,

1((3, 135

95

10

6

134)

0 1') 0

-

133 75 7,

1(5 135 i 100 100 117

7 131 110

3's t 1l0

*0

21

70

70

pIll

IS 21

50 40

IPS 1t'

59 3-"

1

70

15 1 lO)

.9

38 5o

" ,,

lj

63 5P

I2

5

710

50

; '63

219

StI( 13 75 ft31, N,M

.

9 1101

135

11 123)

i1 I

1 it) l 1 , I 2 I ,

1'if)t l 10 1 123 11,5

11) 1231

150 165

1100

1:37,

t30

171,

1.13,

17,

13(

175

130

'75

110

t 7t

I 10i

11'

1 11)

1"0

12,

1sS

15

2L:.

15

207

1,50

20)5

1.50

2"7

" 1211

1.,

:7,0

2(17,

13

20o5 f)15

l7.3,

2137

3''.,)

,

7. 1

' i" )3333

'3'

3

3, ..

n

of3 .1

Tui.

d

lll,'

55,1g.I.,ifl

9

8h . 2

0r ICUtRA.

I! tL1.

E.

E3 tt

Yt

4

1982--AGRICULTURAL ENGINEERS YEARBOOK

1;9

499

EnIronmental sire, p~e the pip,! ,kl-n t D'2,1,). ASI IMSaiard 5.6..

cracking. Ihicrtsh.ll lt. i liss ilo . rit iasiu S ,i: 1) of fic t~tiis fr I5

.! Ill

Plpe.

5.7

AS

pipe

leqlremcnt,

5.7.1 Burt prisur. i s it numtir " C ju l Ihl ,liet). dter, ned In1al+cordallc,LV. xlh Stct.l,,l

h anldI Afle .1of A'sI NI S, Iitii ., tr \i"1' ipe. ard [)"22 2, it cd 5.7.2 Impct reIsta Tcc. I 1:L';upc h.i:Al!l c :cId Il .Pc tm.acc ,t I hcr,itt \S IM S thtiai!.rd 1)2444. Ic,i tir Impti ,uit, !t Iu IIF.lll I , N c',srl 'i i d F ItMIl nlti)I ,LicPi' 11'at 21 ' 2 C 1-3 4 't i t. h a 1 u',SIu a "-N 201b)t )LcHIIt latle 13 ofl 'iiw 3.t, F iCnd sh.6l mcel :iu ., (n",l,s , n Ih ,1,' 1 rodL.' , I pipc at Iii'c Ii 11ilt h lu - c nii Standard. I ie ot tt iC. thie itle 5.8

Joints 5.8.1 General. Alljiwit'. shall 'c 111tItuLc Ici to ,ithstand tile tiitout itina i utm 'C rkinmg rcures tr tlih pip lthne design Ieakage, att isthu' i uLrnil ,i'h tiictfi i hi,'h.ul,.lteduce its

S1C I ION ,-.\ARKIN(; 6.1 General. Il' pptie shall be iarked at iterat of iot more 11,1t IkhuriC markig ,hall not be required until it becoe, !I I ; I.( ]hi StIdd -d. ~~~~~~1, lA

.l

Ili this N+ec'tionct l tom ar', Llil

i

s

l'+,l i s

Marking shallInclude tile hshr-,ing: 6.1.I le riitial pipc sue, e.g. 4 in. 114 012' ,-Pp DwtgsIilhl plcbeUS 1,o l lk, pipe.r ()I ,iiii ,,Stt I shen appliable (11S, I) 6.12 gc..rd~inc

natmtiot r sizing ',sten ,, n :, uic d ,ig, 6.1.3 1"h--AS I M ;tand.irti other than Pit' : Q.ASINl .tandard )22-11.

cltp of (LstIc pip- rm tccrial Ii acordance A'ithtIL 0.1.4 lhe 1120 lei, t it i c',lu '.'.c. P% 0.1.5 Prtssure rilting reratti4 t all lieOhLv I 1.,, pres pie. I ti ir,_",A 6,1.. 615 iCCpst ald

'r

Iii Leelofhead: e.;. 22 pi ( 152 kPat) 50 ft(IS.2

nCi)

licad. 6.1.5.2 SI)R pipe. Ilh, presstre class rating itt psi tor, ater it 71 - :F(123 C; c.. 2(U psi I IV'i kPa) ' "1.,4 (23), , the

r,11t' as . cuh tcdi ini paragraph 2.; e.g, %tand rd kfilUl';i 1it1 capacits hLh, deicti rc ,;i.creits,,c tpt that uiscr,ttt'itt s for 73.4 (23) S R 21. ,I 1) *q (Ci SlIM 21. or twh. u.k. 201 P, jutfilli P15 pipe al t. p:rI:Itud' Mfirutacturer's rcritti en tittts lltj
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF