Itba Kit Wind Energy Basics All in One

August 21, 2017 | Author: RetratosDeMiVida | Category: Atmospheric Circulation, Wind Power, Wound, Wind Turbine, Jet Stream
Share Embed Donate


Short Description

Material de energía eólica...

Description

EUROPEAN INSTITUTE FOR ENERGY RESEARCH

Wind  Energy  Basics EUROPÄISCHES INSTITUT FÜR ENERGIEFORSCHUNG INSTITUT EUROPEEN DE RECHERCHE SUR L’ENERGIE EUROPEAN INSTITUTE FOR ENERGY RESEARCH

Wind  Energy  Basics An  introduction  to  wind  energy Karlshochschule 2014 Norbert  Lewald

Outline

• • • • • • • •

Introduction History Resources Technics Surroundings Repowering Offshore Future 2

Introduction

Enercon E-126 – 7.6 MW – worlds largest wind turbine Tower 135m / Total 198.5m / Blades 56m / Hybrid

3

Introduction

Wind Energy Potential Worldwide 40 times the current power consumption or more than 5 times global use of all energy forms (Lu et al, 2009)

DOE NREL

4

Introduction

Energy Consumption

DOE NREL

5

Introduction Wind Notables

• Cost  competitive  in   areas  with  good  wind   resource  (IEA,  2006) • Most  economically   feasible  and  fastest   growing  ‚new‘  renewable   energy • 5  countries  count  for   roughly  75%  of  of  total   world  usage  – US,   Germany,  China,  Spain,   India • Share  of  wind  as  a  %  of   total  power  in  wind   power  leaders  is  on   average  10-­20%  and   continuing  to  increase 6

Introduction

Wind Energy Today

Global Wind Energy Council

7

Introduction

Wind Energy in Europe

BMU

8

Introduction

CO2 Emmissions

Vermiedene  Treibhausgas-­Emissionen  durch  die  Nutzung   erneuerbarer  Energien  in  Deutschland  2009 72,7  Mio.  t Strom

16,5

29,9

22,4

3,8

1,1

31,3  Mio.  t Wärme

29,9

0,4 5,1  Mio.  t   Kraftstoffe

Gesamt:  rd.  109  Mio.  t  CO2-­Äq., davon  rd.  57  Mio.  t  CO2-­Äq.  durch   EEG-­Strom  vermieden

5,1

0

10

20 Wasser

Wind

30 40 50 THG-­Minderung  [Mio.  t  CO2-­Äq.] Biomasse

Photovoltaik

Geothermie

60 Solarthermie

70

80

Biokraftstoffe

THG:  Treibhausgas;;  Abweichungen  in  den  Summen  durch  Rundungen;;   Quelle:  UBA  nach  Arbeitsgruppe  Erneuerbare  Energien-­Statistik  (AGEE-­Stat);;  Bild:  H.  G.  Oed;;  Stand:  September  2010;;  Angaben  vorläufig

9

Introduction

Job creation - employment

Entwicklung  der  Bruttobeschäftigung  durch  erneuerbare   Energien  2004,  2007,  2008  und  2009  in  Deutschland Windenergie

85.700

63.900

102.100 95.600

128.000 121.400 119.500

Biomasse 56.800 80.600 77.600

Solarenergie

49.200

25.100 7.800 7.900 8.100 9.500

Wasserkraft

Geothermie 1.800

Anstieg:  rd.  112  %

14.500 14.700 10.300    160.500

6.500    Arbeitsplätze öffentl./gemein-­                                                                                                                                                                                           4.900 4.500 nützige  Mittel 3.400 2004

0

20.000

40.000

60.000

277.300 Arbeitsplätze

322.100 Arbeitsplätze

2007

2008

80.000

100.000

     339.500      Arbeitsplätze

2009 120.000

140.000

Angaben  für  2008  und  2009  vorläufige  Schätzungen;;  Abweichungen  in  den  Summen  durch  Rundungen;; Quelle:  BMU-­KI  III  1;;  "Erneuerbar  beschäftigt!  Kurz-­  und  langfristige  Arbeitsplatzwirkungen  des  Ausbaus  der  erneuerbaren  Energien  in  Deutschland";;   Bild:  BMU  /  Christoph  Busse  /  transit;;  Stand:  September  2010;;  

10

Introduction

External Costs – Externalities

11

History

12

History of Wind Power Ancient Times

• • • •

First  murals  of  wind  powered   sailboats  from  1,400  B.C.   (5,000)  in  the  Grave  of  Menna King  Hamurabi of  Babylon   1,750  B.C.  mentioned  wind   power  in  a  law  code Inventor  Heron  of  Alexandria   100  AD  mentioned  a  wind   powered  organ Proofed  use  of  wind  power   from  700  AD – – –



Persian windmill

Persia (flour mills) Tibet (prayer wheels) China (water pumping)

Specific  Characteristic – – –

Vertical axis Drag driven Preferred wind direction Chinese windmill

13

History of Wind Power

The Ages of Windmills – Europe Center and North

• Known  since  the  12th century • Horizontal  Axis • Lift  driven  !!! • Historical   circumstances – Culmination  of   handicraft – Labor  shortage  – Prosperity – Christianization

Bock-windmill 12th-15th cent.

• Fields  of  application – Milling,  Threshing, Pumping,  Sawing, Hammering,  Fulling Holland-windmill 16th cent.

14

History of Wind Power

The Ages of Windmills – Europe Center and North

• • • • • • •

Ø 20 – 25 m Hub : 20 – 30 m Weight : 40 – 50 t 8 kW < P < 12 kW Up to 1 t meal/day Efficiency  80m  with  car  or  lift   • 15-­20%  of  investment  costs – Balance  of  costs  versus  annual  energy  yield 2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

5    Drive  Train  &  Structure

WEC  Tower  (size)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

5    Drive  Train  &  Structure

WEC  Tower  (construction)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

5    Drive  Train  &  Structure

WEC  tower  (types)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

5    Drive  Train  &  Structure

WEC  Foundation  (onshore)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

5    Drive  Train  &  Structure

WEC  foundation  (offshore)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

5    Drive  Train  &  Structure

WEC  foundation  (offshore  – Alpha  Ventus)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

5    Drive  Train  &  Structure

WEC  offshore  – Alpha  Ventus

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

5    Drive  Train  &  Structure

WEC  foundation  (offshore  II  floating)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

WEC  foundation  (offshore  II  floating)

5    Drive  Train  &  Structure

First  floating turbine 2009  Norway (Hywind)

Second  floating turbine 2011  Portugal  (WindFLoat)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

5    Drive  Train  &  Structure

WEC  foundation  (offshore  II  floating)

Blue  H  -­ tension

WindFloat Hywind -­ catenary 60t  additional  ballast

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

5    Drive  Train  &  Structure

WEC  Subsystems  (Nacelle)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

WEC  Produced  Power

electrical  limit

5    Drive  Train  &  Structure

PN ≡ Prated

P(v) structural  limit

vE ≡ ventry

2015

Renewable   Energy             Wind-­ &  Hydropower

vN ≡ vrated

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

vA ≡ vstop

Overview

• Project  Development 6    Proj.  Develop.  – Cost  Structures

– Annual  Energy  Yield – Environmental  Issues

• Cost  Structures

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

• Phases

6    Proj.  Develop.  – Cost  Structures

– Planning – Erection – Operation

• In  Parallel – Technical  aspects – Permits  and  legal   aspects – Economic  aspects

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development Technical  Aspects

6    Proj.  Develop.  – Cost  Structures

• Wind  Siting • Local   Framework – Foundation  /  Soil – Transport  Infrastructure – Electrical  Infrastructure

• Capacity • Energy  Yield

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

6    Proj.  Develop.  – Cost  Structures

Technical  Aspects -­ Draft Planning – Soil – Local Framework

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development Technical  Aspects – Foundation /  Soil – Local Framework



Investigation  on  Soil  for  each  wind  turbine – Subsoil  must  be  able  to  take  the  load  for  each  turbine – Flat  gravity  foundation  or  pile  foundation  (costs)

6    Proj.  Develop.  – Cost  Structures



Investigation  on  transport  roads  and  space  for   construction – – – – – – – –



2015

Buildings Underpasses Overhead  Lines Traffic  Signs Train  Lines  Antennas Curved  alleys Bodies  of  water Climatic  conditions

Location  and  type  (voltage  level)  of  grid  access

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

6    Proj.  Develop.  – Cost  Structures

Energy Yield – Power  Production

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

6    Proj.  Develop.  – Cost  Structures

Energy Yield – Power  Production

electrical  limit

PN ≡ Prated P(v) structural  limit

vE ≡ ventry

2015

Renewable   Energy             Wind-­ &  Hydropower

vN ≡ vrated

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

vA ≡ vstop

Project  Development

6    Proj.  Develop.  – Cost  Structures

Energy Yield – frequency distribution

K "v% f (v) = ⋅ $ ' A # A&

K−1

⋅e

" v %K −$ ' # A&

)%, +m. *s-

Weibull Distribution K  =  shape   parameter A  =  scale  parameter

" %"

%2

π v π " v % −$# 4 '&⋅$# vm '& f (v) = ⋅ $ 2 ' ⋅ e 2 # vm & Weibull Distribution Rayleigh   Distribution

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

)%, +m. *s-

Project  Development Annual  Energy Yield

vA

Ea = ∑ P(v)⋅ f (v)⋅ Δv ⋅ 8760h vE

6    Proj.  Develop.  – Cost  Structures

Ea =

∫ P(v)⋅ f (v)⋅ dv ⋅ 8760h



f(v)  has to be recalculated to the hub  height



8760h  are never reached



Substract at least  48-­72h  for maintanance

Example: 1,5 MW 100m hub height 4,5 Mio. kWh/a

f (v)

P(v)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development Annual  Energy Yield – Capacity Factor – Full Load Hours

• Capacity  Factor  CF

• Full  Load  Hours

6    Proj.  Develop.  – Cost  Structures

Prated – The  fraction  of  the   year  the  turbine   generator  is   3000 1560 operating  at  rated   full load (peak)  power – Capacity  Factor  =   partial load Average  Output  /   Peak  Output  ≈  30%   – Depends  on  the   characteristics  of  the   operating hours per year turbine  and  the  site   characteristics  

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development Annual  Energy Yield –Full Load Hours

6    Proj.  Develop.  – Cost  Structures

Energy Full Load Hours (2007) Nuclear 7.710 Brown  Coal 6.640 Biomass ca.  5.000 a) Wind  offshore   4.450 Black  Coal 3.550 Water(L&S) 3.510 Natural  Gas 3.170 Wind  b) 1.680 Mineral  Oil 1.640 Pump  Storage 970 Photovoltaic 910

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

6    Proj.  Develop.  – Cost  Structures

Technical  Aspects – Wind  Park  Design  – Wind  F armer

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development Permits  and legal  aspects

• Permits – According  to  local/regional/national  construction  law

• Other  legal  aspects – General  environmental  aspects 6    Proj.  Develop.  – Cost  Structures

• Contruction &  o peration  acceptable  in  terms  o f  n ature  conservation

– Ecological  aspects • Additional  contraints to  assess  the  impact  o n  flora  &  fauna

• Typical  Indicators – – – – – 2015

Areas  with  rare  birds  (bats) Specific  aspect  on  animal  and  plant  protection Noise  impact  /  Infrasound  (subsonic  noise) Shadow  casting Heritage  and  landscape  conservation

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

6    Proj.  Develop.  – Cost  Structures

Permits  and legal  aspects – Bird  Areas  -­ Offshore

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

6    Proj.  Develop.  – Cost  Structures

Noise  Impact

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development Noise  Impact  (Wind  Park  Tauern  – Austria)

6    Proj.  Develop.  – Cost  Structures

30  db:  quite room
40  db:   nighttime in  hospital 50  db:  normal  talking
80   db:  car in  the city

Germany: Max.  45  db for housing.

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

6    Proj.  Develop.  – Cost  Structures

Shadow  Casting

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

6    Proj.  Develop.  – Cost  Structures

Shadow  Casting

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

6    Proj.  Develop.  – Cost  Structures

Shadow  Casting  (Wind  Park  Tauern  – Austria)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

6    Proj.  Develop.  – Cost  Structures

Economics  (Example Wind  Park  Tauern  – Austria)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

6    Proj.  Develop.  – Cost  Structures

Economics  Cashflow  (Example Wind  Park  Tauern  – Austria)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

6    Proj.  Develop.  – Cost  Structures

Time  Schedule  (Example Wind  Park  Tauern  – Austria)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

6    Proj.  Develop.  – Cost  Structures

Technology  (Example Wind  Park  Tauern  – Austria)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

Report  Structure – Economics  o f Wind  (Risö)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

Overview on  Cost Structure

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

Cost Structure for Total  Investment  Cost (2MW)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

C€/kWh  (2MW)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

C€/kWh  – Interest  Rate  (2MW)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

C€/kWh  – Interest  Rate  7.5%  d evelopment (2MW)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

Cost Comparison 2010

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

Cost Comparison 2010  – Sensitivity Analysis  CO2  p rice&  fuel cost

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

Estimation of additional  b alancing &  o perating costs

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

Variations in  Total  investment Costs – IEA  – Turbine,  F oundation,  Grid-­ Connection

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

Cost Structure

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

Wind  Turbine  Cost Structure (2007)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

O&M  Costs

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

Cost Structure Offshore  (Denmark)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

Cost c€/kWh  Offshore  (Denmark)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

US  Projection Wind

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

Greenpeace  Study  -­ Subsidies

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

6    Proj.  Develop.  – Cost  Structures

Greenpeace  Study  – Public  Economy  Costs

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Overview

7  Market  and  Grid  Integration

• • • •

2015

Market  Integration Operation  Control Grid  Integration Supergrids

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

„Market“  Integration

7  Market  and  Grid  Integration

Renewable Energy Policies

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

„Market“  Integration

7  Market  and  Grid  Integration

Renewable Energy Policies /  F eed-­In  versus  Quota Share  

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Market  Integration „Martprämie“  – Market  Bonus

7  Market  and  Grid  Integration

• Possibility to sell wind  energy on  the market • Difference between feed-­in  tarification and monthly average stock  exchange price for energy (EPEX/EEX) • Marktprämie = EEG – (MW-Pm) – MW  :  monthly average price (EEX) – Pm :  management bonus (1,0  ct/kWh)

• Trading  at EEX  needs blocks of 1  MWh – Buying the control energy – Producing the control energy 2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Market  Integration

7  Market  and  Grid  Integration

„Martprämie“  – Market  Bonus

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Market  Integration

7  Market  and  Grid  Integration

Supply Demand  Curve

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Market  Integration

7  Market  and  Grid  Integration

Influence on  spot price (Merit Order  Effect)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Market  Integration

7  Market  and  Grid  Integration

Development  u ntil 2015  (DENA)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Market  Integration

7  Market  and  Grid  Integration

Net  additional  cost of wind  energy (DENA)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Market  Integration

7  Market  and  Grid  Integration

Regulatory Market

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration Known Problems

• Control  Energy – Prognosis 7  Market  and  Grid  Integration

• Reserve  Energy  (Capacity  Factor) – Difference  Min  – Max  Power  Output

• Fault  Right  Through – Short  Circuit  Power – Cut-­off  large  production

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

7  Market  and  Grid  Integration

Fluctuation /  Intermediate  p ower  source

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

7  Market  and  Grid  Integration

Variability

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

7  Market  and  Grid  Integration

Missing when needed

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

7  Market  and  Grid  Integration

Positive  Control Energy

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

7  Market  and  Grid  Integration

Negative  Control Energy

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

7  Market  and  Grid  Integration

Difficult to predict

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

7  Market  and  Grid  Integration

Difficult to predict

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

7  Market  and  Grid  Integration

Huge prediction error

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

7  Market  and  Grid  Integration

New  prediction apporach ANN  (Artifical neural networks)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

7  Market  and  Grid  Integration

New  Requirements

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration New  Requirements

• Wind  Park  Cluster

7  Market  and  Grid  Integration

– – – –

Control Energy Constant  Power  Output Power  Limitation Planned Output

• Wind  Park – – – – –

Power  Limitation Short  Circuit  Power Cut-­off  in  case of grid faults but  ... Fault  Right Through  enabling Gradient  Limitation

• Wind  Converter – Safe  Operation – Maximum  Energy Yield 2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration Energy Yield – Power  Production

7  Market  and  Grid  Integration

electrical  limit

PN ≡ Prated P(v) structural  limit

vE ≡ ventry

2015

Renewable   Energy             Wind-­ &  Hydropower

vN ≡ vrated

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

vA ≡ vstop

Grid Integration

7  Market  and  Grid  Integration

Grid Extension  Germany

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

7  Market  and  Grid  Integration

Power  Production Park  (DENA)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Operation  Control

7  Market  and  Grid  Integration

UCTE  etc.

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Operation  Control

7  Market  and  Grid  Integration

Idealized

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Operation  Control Idealized

• Frequency response – full automatic – large  generators (≈  97.5  %  Prated)

7  Market  and  Grid  Integration

• Spinning  reserve

– unused capacity that can be activated – generator is synchronized with the grid – load that can be cut off  quickly

• Non-­spinning reserve – pumped storage

• Replacement reserve – changing the dispatchment scheme 2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Operation  Control

7  Market  and  Grid  Integration

Example Austria

2015

failure

frequency response

spinning &  n on-­spinning

replacement

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Operation  Control

7  Market  and  Grid  Integration

Italian Black-­Out  28.09.2003

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Operation  Control

7  Market  and  Grid  Integration

Italian Black-­Out  28.09.2003  – Frequency Slope

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Operation  Control Droop Control – Frequency Control

7  Market  and  Grid  Integration

frequency versus  r eal  power

voltage versus  r eactive power

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Supergrid

7  Market  and  Grid  Integration

HVDC  ?  New  ?

Source   :  Wikimedia

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Supergrid

7  Market  and  Grid  Integration

HVDC  ?  Why ?

Source  :  p owerelectronics.com

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Supergrid

7  Market  and  Grid  Integration

DESERTEC

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Supergrid

7  Market  and  Grid  Integration

Dii (Desertec Industrial  Initiative)

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Supergrid

7  Market  and  Grid  Integration

Production -­ Demand

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Supergrid

7  Market  and  Grid  Integration

Dii 2050

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Supergrids ?

7  Market  and  Grid  Integration

US  ?

A  7 65  kV  A C  transmission grid designed to carry  4 00  GW  o f wind  p ower  to cities from Midwest at  a  cost of $60  b illion.

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Supergrids ?

7  Market  and  Grid  Integration

Asia ?  GobiTec ...

Source:  Japan  Renewable Energy Foundation,  S eptember  2 011

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Supergrids ?

7  Market  and  Grid  Integration

Asia-­Pacific  Subgrids

Source  :  E SCAP

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Future Why renewables are cheaper on  the long run

Gestehungskosten production cost

7  Market  and  Grid  Integration

conventional Konventionelle production Energieerzeugung

Regenerative renewable Energieerzeugung

production

Zeit time

2015

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Overview

s  Summary  …  Cost  Market

• • • •

WS  2014/15

Energy  Yield Cost  Structure Market Operation  Control

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development

s  Summary  …  Cost  Market

Energy Yield – Power  Production

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development Energy Yield – Power  Production

electrical  limit

s  Summary  …  Cost  Market

PN ≡ Prated P(v) structural  limit

vE ≡ ventry

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

vN ≡ vrated

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

vA ≡ vstop

Project  Development

s  Summary  …  Cost  Market

Energy Yield – frequency distribution

K "v% f (v) = ⋅ $ ' A # A&

K−1

⋅e

" v %K −$ ' # A&

)%, +m. *s-

Weibull Distribution K  =  shape   parameter A  =  scale  parameter

" %"

%2

π v π " v % −$# 4 '&⋅$# vm '& f (v) = ⋅ $ 2 ' ⋅ e 2 # vm & Weibull Distribution Rayleigh   Distribution

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

)%, +m. *s-

Project  Development Annual  Energy Yield

vA

Ea = ∑ P(v)⋅ f (v)⋅ Δv ⋅ 8760h vE

s  Summary  …  Cost  Market

Ea =

∫ P(v)⋅ f (v)⋅ dv ⋅ 8760h



f(v)  has to be recalculated to the hub  height



8760h  are never reached



Substract at least  48-­72h  for maintanance

Example: 1,5 MW 100m hub height 4,5 Mio. kWh/a

f (v)

P(v)

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development Annual  Energy Yield – Capacity Factor – Full Load Hours

• Capacity  Factor  CF

• Full  Load  Hours

s  Summary  …  Cost  Market

Prated – The  fraction  of  the   year  the  turbine   generator  is   3000 1560 operating  at  rated   full load (peak)  power – Capacity  Factor  =   partial load Average  Output  /   Peak  Output  ≈  30%   – Depends  on  the   characteristics  of  the   operating hours per year turbine  and  the  site   characteristics  

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Project  Development Annual  Energy Yield –Full Load Hours

s  Summary  …  Cost  Market

Energy Full Load Hours (2007) Nuclear 7.710 Brown  Coal 6.640 Biomass ca.  5.000 a) Wind  offshore   4.450 Black  Coal 3.550 Water(L&S) 3.510 Natural  Gas 3.170 Wind  b) 1.680 Mineral  Oil 1.640 Pump  Storage 970 Photovoltaic 910

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

s  Summary  …  Cost  Market

Cost Structure for Total  Investment  Cost (2MW)

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

s  Summary  …  Cost  Market

C€/kWh  (2MW)

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

s  Summary  …  Cost  Market

C€/kWh  – Interest  Rate  (2MW)

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

s  Summary  …  Cost  Market

Wind  Turbine  Cost Structure (2007)

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

s  Summary  …  Cost  Market

O&M  Costs

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

s  Summary  …  Cost  Market

Greenpeace  Study  -­ Subsidies

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Economics

s  Summary  …  Cost  Market

Greenpeace  Study  – Public  Economy  Costs

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

„Market“  Integration

s  Summary  …  Cost  Market

Renewable Energy Policies

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Market  Integration

s  Summary  …  Cost  Market

Supply Demand  Curve

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Market  Integration

s  Summary  …  Cost  Market

Influence on  spot price (Merit Order  Effect)

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration Known Problems

• Control  Energy – Prognosis s  Summary  …  Cost  Market

• Reserve  Energy  (Capacity  Factor) – Difference  Min  – Max  Power  Output

• Fault  Right  Through – Short  Circuit  Power – Cut-­off  large  production

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

s  Summary  …  Cost  Market

Variability

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

s  Summary  …  Cost  Market

Missing when needed

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

s  Summary  …  Cost  Market

Positive  Control Energy

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

s  Summary  …  Cost  Market

Negative  Control Energy

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration

s  Summary  …  Cost  Market

New  prediction apporach ANN  (Artifical neural networks)

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Grid Integration New  Requirements

• Wind  Park  Cluster – – – –

Control Energy Constant  Power  Output Power  Limitation Planned Output

s  Summary  …  Cost  Market

• Wind  Park – – – – –

Power  Limitation Short  Circuit  Power Cut-­off  in  case of grid faults but  ... Fault  Right Through  enabling Gradient  Limitation

• Wind  Converter – Safe  Operation – Maximum  Energy Yield WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Operation  Control

s  Summary  …  Cost  Market

UCTE  etc.

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Operation  Control

s  Summary  …  Cost  Market

Idealized

WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

Operation  Control Idealized

• Frequency response – full automatic – large  generators (≈  97.5  %  Prated)

• Spinning  reserve s  Summary  …  Cost  Market

– unused capacity that can be activated – generator is synchronized with the grid – load that can be cut off  quickly

• Non-­spinning reserve – pumped storage

• Replacement reserve – changing the dispatchment scheme WS  2014/15

Renewable   Energy             Wind-­ &  Hydropower

European  Inst.  f or  Energy  Research Dipl.-­Phys.  N.  Lewald

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF