Iso 286-1 (Limites y Ajustes)
Short Description
Download Iso 286-1 (Limites y Ajustes)...
Description
INTERNATIONAL
STANDARD
IS0 286-l First edition 1988-09-15
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ORGANISATION INTERNATIONALE DE NORMALISATION MEXJJYHAPOAHAR OPTAHM3A~Mfl f-t0 CTAHflAPTM3A~MM
IS0 system
of limits
Part I : Bases of tolerances,
and fits deviations
Syst&me IS0 de tokkances et d’ajustements Partie 7: Base des tokances,
harts
and fits
-
et ajustements
Reference number IS0 286-l : 1988 (E) © ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
Foreword IS0 (the International Organization for Standardization) is a worldwide federation of national standards bodies (is0 member bodies). The work of preparing International Standards is normally carried out through IS0 technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the IS0 Council. They are approved in accordance with IS0 procedures requiring at least 75 % approval by the member bodies voting. This part of IS0 286 has been prepared by ISO/TC 3, Limits and fits, and, together with IS0 286-2, completes the revision of ISO/R 286, /SO system of limits and fits. ISO/R 286 was first published in 1962 and subsequently confirmed in November 1964; it was based on ISA Bulletin 25 first published in 1940. The major changes incorporated
in this part of IS0 286 are as follows:
a) The presentation of the information has been modified so that IS0 286 can be used directly in both the design office and the workshop. This has been achieved by separating the material dealing with the bases of the system, and the calculated values of standard tolerances and fundamental deviations, from the tables giving specific limits of the most commonly used tolerances and deviations. b) The new symbols js and JS replace the former symbols js and Js (i.e. s and S are no longer placed as subscripts) to facilitate the use of the symbols on equipment with limited character sets, e.g. computer graphics. The letters “s” and “S” stand for “symmetrical deviation”. c) Standard tolerances and fundamental deviations have been included for basic sizes from 500 to 3 150 mm as standard requirements (these were previously included on an experimental basis only). d)
Two additional standard tolerance grades, IT17 and IT18, have been included.
e) Standard tolerance grades IT01 and IT0 have been deleted from the main body of this part of IS0 286, although information on these grades is given in annex A for users who may have a requirement for such grades. f)
Inch values have been deleted. aligned
9) The principles, terminology and symbols bY contemporary
required
technology.
Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies its latest edition, unless otherwise stated.
0
International
Organization
for Standardization,
1988
0
Printed in Switzerland
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
ii
ISO286-1:1988
EI
Contents Introduction.
.......................................................
1
Scope .............................................................
1
Field of application
1
..................................................
References .........................................................
1
Terms and definitions ................................................
2
Symbols, designation and interpretation of tolerances, deviations .......................................................... andfits..
6
.............................................
9
6
Graphical representation
7
Reference temperature ...............................................
10
8
Standard tolerances for basic sizes up to 3 150 mm. ......................
10
9
Fundamental deviations for basic sizes up to 3 150 mm ...................
10
Bibliography ........................................................
16
IO
Annexes A
Bases of the IS0 system of limits and fits ...............................
17
B
Examples of the use of IS0 286-l .......................................
23
C
Equivalentterms
....................................................
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
24
. .. III
This page intentionally
left blank
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
INTERNATIONAL
IS0 system
of limits
Part 1: Bases of tolerances, 0
IS02864
STANDARD
and fits deviations
Introduction
: 1988 (E)
and fits 2
Field of application
The need for limits and fits for machined workpieces was brought about mainly by the inherent inaccuracy of manufacturing methods, coupled with the fact that “exactness” of size was found to be unnecessary for most workpieces. In order that function could be satisfied, it was found sufficient to manufacture a given workpiece so that its size lay within two permissible limits, i.e. a tolerance, this being the variation in size acceptable in manufacture.
The IS0 system of limits and fits provides a system tolerances and deviations suitable for plain workpieces.’
Similarly, where a specific fit condition is required between mating workpieces, it is necessary to ascribe an allowance, either positive or negative, to the basic size to achieve the required clearance or interference, i.e. a “deviation”.
In particular, the general term “hole” or “shaft” can be taken as referring to the space contained by (or containing) the two parallel faces (or tangent planes) of any workpiece, such as the width of a slot or the thickness of a -key.
With developments in industry and international trade, it became necessary to develop formal systems of limits and fits, firstly at the industrial level, then at the national level and later at the international level.
The system also provides for fits between mating cylindrical features or fits between workpieces having features with parallel faces, such as the fit between a key and keyway, etc.
This International Standard therefore gives the internationally accepted system of limits and fits. Annexes A and B give the basic formulae and rules necessary for establishing the system, and examples in the use of the standard are to be regarded as an integral part of the standard.
For simplicity and also because of the importance of cylindrical workpieces of circular section, only these are referred to explicitly. It should be clearly understood, however, that the tolerances and deviations given in this International Standard equally apply to workpieces of other than circular section.
NOTE - It should be noted that the system is not intended to provide fits for workpieces with features having other than simple geometric forms. For the purposes of this part of IS0 286, a simple geometric form consists of a cylindrical surface area or two parallel planes.
3 Annex C gives a list of equivalent terms used in IS0 286 and other International Standards on tolerances.
References
NOTE - See also clause 10.
IS0 1, Standard reference measurements.
1 Scope This part of IS0 286 gives the bases of the IS0 system of limits and fits together with the calculated values of the standard tolerances and fundamental deviations. These values shall be taken as authoritative for the application of the system (see also clause A. 1). This part of IS0 286 also gives terms and definitions together with associated symbols.
of
temperature
for industrial
length
IS0 286-2, IS0 system of limits and fits - Part 2: Tables of standard tolerance grades and limit deviations for holes and shafts. IS01 R 1938, IS0 system of limits and fits - Inspection of plain workpieces. 1) IS0 8015, Technical principle.
drawings
-
Fundamental
tolerancing
1) At present under revision.
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
1
Is0 286-1 : 1988 E)
4
Terms and definitions
4.5
For the purposes of this International Standard, the following terms and definitions apply. It should be noted, however, that some of the terms are defined in a more restricted sense than in common usage.
zero line: In a graphical representation of limits and fits, the straight line, representing the basic size, to which the deviations and tolerances are referred (see figure 7).
According to conventio n, the zero line is drawn horizontally, with positive deviations shown above and negative deviations below (see figure 2).
4.1
shaft: A term used, according to convention, to describe an external feature of a workpiece, including features which are not cylindrical (see also clause 2).
4.1.1 basic shaft: Shaft chosen as a basis for a shaft-basis system of fits (see also 4.11.1). Zero line (4.5)
For the purposes of the IS0 system of limits and fits, a shaft the upper deviation of which is zero. ti zf
4.2
hole : A term used, according to convention, to describe an internal feature of a workpiece, including features which are not cylindrical (see also clause 2).
.-w cn .a0 8 M :
4.2.1 basic hole: Hole chosen as a basis for a hole-basis system of fits (see also 4.11.2).
Es
For the purposes of the IS0 system of limits and fits, a hole the lower deviation of which is zero.
4.3
size : A number expressing, in a particular numerical value of a linear dimension.
unit, the
4.3.1 basic size; nominal size: The size from which the limits of size are derived by the application of the upper and lower deviations (see figure 1). NOTE - The basic size can be a e.g. 32; 15; 8,75; 0,5; etc.
4.3.2 actual measurement.
size:
or a
The size of a feature,
number,
obtained
by
4.3.2.1 actual local size: Any individual distance at any cross-section of a feature, i.e. any size measured between any two opposite points. 4.3.3 limits of size: The two extreme permissible sizes of a feature, between which the actual size should lie, the limits of size being included. 4.3.3.1 maximum limit of size: size of a feature (see figure 1).
The greatest permissible
limit system: deviations.
Basic size, and maxim urn and minimum limits of size
4.6
deviation: The algebraic difference between a size (actual size, limit of size, etc.) and the corresponding basic size.
NOTE - Symbols for shaft deviations are lower case letters (es, ei) and symbols for hole deviations are upper case letters (Es, EI) (see figure 2).
4.6.1
limit deviations
: Upper deviation and lower deviation.
4.6.1.1 upper deviation (ES, es) : The algebraic difference between the maximum limit of size and the corresponding basic size (see figure 2). 4.6.1.2 lower deviation (EL ei) : The algebraic difference between the minimum limit of size and the corresponding basic size (see figure 2). 4.6.2 fundamental deviation: For the purposes of the IS0 system of limits and fits, that deviation which defines the position of the tolerance zone in relation to the zero line (see figure 2). NOTE - This may be either the upper or lower deviation, but, according to convention, the fundamental deviation is the one nearest the zero line.
4.3.3.2 minimum limit of size : The smallest permissible size of a feature (see figure 1).
4.4
Figure 1 -
A system of standardized tolerances and
4.7
size tolerance: The difference between the maximum limit of size and the minimum limit of size, i.e. the difference between the upper deviation and the lower deviation. NOTE - The tolerance is an absolute value without sign.
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
2
IS0 286-l I 1988 E)
-
Lower deviation (EI, ei 1 (4.6.1.2)
+
r
Tolerance zone (4.7.3)
Clearance (4.8)
tolerance (4.7)
5 P 0
l -
I
0 z .-
2 n
-
Zero line (4.5) A
(ES, es) (4.6.1.1) ,~ w
T
-Fti s .-8cn .-0 Ei m
Figure 2 - Conventional tolerance
representation zone
4.7.1 standard tolerance (IT) : For the purposes of the IS0 system of limits and fits, any tolerance belonging to this system. NOTE - The letters of the symbol Tolerance” grade.
Figure 3 - Clearance
of a
IT stand for “International
4.7.2 standard tolerance grades: For the purposes of the IS0 system of limits and fits, a group of tolerances (e.g. IJ7), considered as corresponding to the same level of accuracy for all basic sizes. 4.7.3 tolerance zone : In a graphical representation of tolerances, the zone, contained between two lines representing the maximum and minimum limits of size, defined by the magnitude of the tolerance and its position relative to the zero line (see figure 2).
4.8.1 minimum clearance: In a clearance fit, the positive difference between the minimum limit of size of the hole and the maximum limit of size of the shaft (see figure 4). 4.8.2 maximum clearance: In a clearance or transition fit, the positive difference between the maximum limit of size of the hole and the minimum limit of size of the shaft (see figures 4 and 5).
4.9
interference : The negative difference between the sizes of the hole and the shaft, before assembly, when the diameter of the shaft is larger than the diameter of the hole (see figure 6).
4.9.1 minimum interference: In an interference fit, the negative difference, before assembly, between the maximum limit of size of the hole and the minimum limit of size of the shaft (see figure 7).
4.7.4 tolerance class: The term used for a combination of fundamental deviation and a tolerance grade, e.g. h9, D13, etc. 4.7.5 standard tolerance factor (i, I): For the purposes of the IS0 system of limits and fits, a factor which is a function of the basic size, and which is used as a basis for the determination of the standard tolerances of the system. NOTES 1 The standard tolerance factor i is applied to basic sizes less than or equal to 500 mm. 2 The standard tolerance factor I is applied to basic sizes greater than 500 mm.
. AC4 s
1 I
ti ii 5 a z E
ci 06 5
.-i .;
4.8
clearance: The positive difference between the sizes of the hole and the shaft, before assembly, when the diameter of the shaft is smaller than the diameter of the hole (see figure 3).
Figure 4 - Clearance
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
fit
3
IS0 286-1 : 1988 (E)
r
Maximum clearance (4.8.2)
Maximum interference (4.9.2)
1
Maximum interference ‘-1
Figure 5 - Transition
Interference
Figure 7 -
2
fit
Minimum interference
I-
fit
4.10.1 clearance fit: A fit that always provides a clearance between the hole and shaft when assembled, i.e. the minimum size of the hole is either greater than or, in the extreme case, equal to the maximum size of the shaft (see figure 8).
Interference (4.9) Hole
Hole
Shaft Shaft
Figure 8 - Schematic
Figure 6 -
Interference
representation
of clearance
fits
4.10.2 interference fit: A fit which everywhere provides an interference between the hole and shaft when assembled, i.e. the maximum size of the hole is either smaller than or, in the extreme case, equal to the minimum size of the shaft (see figure 9). Shaft
4.9.2 maximum interference: In an interference or transition fit, the negative difference, before assembly, between the minimum limit of size of the hole and the maximum limit of size of the shaft (see figures 5 and 7).
Shaft
4.10
fit: The relationship resulting from the difference, before assembly, between the sizes of the two features (the hole and the shaft) which are to be assembled. NOTE - The two mating parts of a fit have a common basic size.
Figure 9 - Schematic
.
Hole
representation
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
4
Zero line
t Hole
of interference
fits
IS0 286-l : 1988 (El
4.11.2 hole-basis. system of fits : A system of fits in which the required clearances or interferences are. obtained by associating shafts of various tolerance classes with holes of a single tolerance class.
4.103 transition fit: A fit which may provide either a clearance or an interference between the hole and shaft when assembled, depending on the actual sizes of the hole and shaft, i.e. the tolerance zones of the hole and the shaft overlap completely or in part (see figure IO).
.Hole . .
For the purposes of the IS0 system of limits and fits, a system of fits in which the minimum limit of size of the hole is identical to the basic size, i.e. the lower deviation is zero (see figure 12).
Shaft
Zero line
Figure 10 - Schematic
representation
of transition
,
fits
4.10.4 variation of a fit: The arithmetic sum of the tolerances of the two features comprising the fit. NOTE - The variation of a fit is an absolute value without sign.
4.11 fit system : A system of fits comprising holes belonging to a limit system.
shafts and
4.11.1 shaft-basis system of fits: A system of fits in which the required clearances or interferences are obtained by associating holes of various tolerance classes with shafts of a single tolerance class. For the purposes of the IS0 system of limits and fits, a system of fits in which the maximum limit of size of the shaft is identical to the basic size, i.e. the upper deviation is zero (see figure I I).
-
Basic size (4.3.1)
NOTES 1 The horizontal continuous ations for holes or shafts.
lines represent the fundamental
devi-
2 The dashed lines represent the other limits and show the possibility of different combinations between holes and shafts, related to their grade of tolerance (e.g. H6/ h6, H6/js5, H6/p4).
Figure 12 -
Hole-basis
system
of fits
4.12
maximum material limit (MML): The designation applied to that of the two limits of size which corresponds to the maximum material size for the feature, i.e.
- the maximum feature (shaft),
Shaft “h”
(upper) limit of size for an external
- the minimum (lower) limit of size for an internal feature (hole). NOTE -
L Basic size (4.3.1)
4.13
least material limit (LMLI : The designation applied to that of the two limits of size which corresponds to the minimum material size for the feature, i.e.
NOTES 1 The horizontal continuous ations for holes or shafts.
Previously called “GO limit”.
lines represent the fundamental
devi-
2 The dashed lines represent the other limits and show the possibility of different combinations between holes and shafts, related to their grade of tolerance (e.g. G71h4, H6/h4, M5/h4).
Figure 11 - Shaft-basis
system
of fits
- the minimum (lower) limit of size for an external feature (shaft), - the maximum (upper) limit of size for an internal feature (hole). NOTE - Previously called “NOT GO limit”.
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
5
IS0 286-1 : 1988 (E)
5 Symbols, designation of tolerances, deviations 5.1
and interpretation and fits
Examples : 32H7 8OjsI5 10096 -0 012 IO0 -0:034
Symbols
5.1 .l
Standard
tolerance
grades
The standard tolerance grades are designated by the letters IT followed by a number, e.g. IJ7. When the tolerance grade is associated with (a) letter(s) representing a fundamental deviation to form a tolerance class, the letters IT are omitted, e.g. h7. NOTE - The IS0 system provides for a total of 20 standard tolerance grades of which grades IT1 to IT18 are in general use and are given in the main body of the standard. Grades IT0 and ITOl, which are not in general use, are given in annex A for information purposes.
- In order to distinguish between holes and ATTENTION shafts when transmitting information on equipment with limited character sets, such as telex, the designation shall be prefixed by the following letters:
-
H or h for holes;
-
S or s for shafts.
Examples : 5OH5 becomes H5OH5 or h5Oh5 5Oh6 becomes S5OH6 or s5Oh6
5.1.2
Deviations
5.1.2.1
This method drawings.
Position of tolerance zone
The position of the tolerance zone with respect to the zero line, which is a function of the basic size, is designated by (an) upper case letter(s) for holes (A . . . ZC) or (a) lower case letter(s) for shafts (a . . . zc) (see figures I3 and 14).
5.2.3
designation
shall
not
be
on
Fit
A fit requirement between mating features shall be designated bY
NOTE - To avoid confusion, the following letters are not used :
a)
the common basic size;
b) the tolerance class symbol for the hole;
I, i; L, I; 0, 0; Q, q; W, w.
c) 5.1.2.2
of
the tolerance class symbol for the shaft.
Upper deviations Examples :
The upper deviations are designated by the letters “ES” holes and the letters “es” for shafts. 5.1.2.3
Lower deviations
The lower deviations are designated by the letters “El” holes and the letters “ei” for shafts.
5.2
for
for
Ii7 52H7lg6 or 52 96 - In order to distinguish between the hole and ATTENTION the shaft when transmitting information on equipment with limited character sets, such as telex, the designation shall be prefixed by the following letters:
Designation
5.2.1
Tolerance
class
A tolerance class shall be designated by the letter(s) representing the fundamental deviation followed by the number representing the standard tolerance grade.
H7 (holes) h7 (shafts) Toleranced
H or h for holes;
-
S or s for shafts;
-
and the basic size repeated.
Examples : 52H7/g6 becomes H52H7/S52G6 This method drawings.
Examples :
5.2.2
-
5.3 5.3.1
size
A toleranced size shall be designated by the basic size followed by the designation of the required tolerance class, or the explicit deviations.
of
designation
Interpretation Tolerance
or h52h7/s52g6 shall
of a toleranced
indication
not
be
used
on
size
in accordance
with
IS0 8015
The tolerances for workpieces manufactured to drawings marked with the notation, Tolerancing IS0 8015, shall be interpreted as indicated in 5.3. I. I and 5.3.1.2.
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
Is0 286-I : 1988 (El
a)
Holes (internal features)
b)
Shafts (external features)
2
.-0 .-z $ u 5 E
E 3 z
NOTES I
According to convention, the fundamental deviation is the one defining the nearest limit to the zero line.
2
For details concerning fundamental deviations for J/j, K/k, M/m and N/n, see figure 14.
Figure 13 - Schematic
representation
of the positions
of fundamental
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
deviations
60286-1:1988
E) I
U
N 0 CL
1
P is
L t 0 I---
t 0 a
..
..
CL) l0 z
LLJ l0 z
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
l-
IS0 286-k
53.1 .I
6
Linear size tolerances
A linear size tolerance controls only the actual local sizes (twopoint measurements) of a feature, but not its form deviations (for example circularity and straightness deviations of a cylindrical feature or flatness deviations of parallel surfaces). There is no control of the geometrical interrelationship of individual features by the size tolerances. (For further information, see ISO/R 1938 and IS0 8015.) 5.3.1.2
Graphical
representation
The major terms and definitions given in clause 4 are illustrated in figure 15. In practice, a schematic diagram such as that shown in figure 16 is used for simplicity. In this diagram, the axis of the workpiece, which is not shown in the figure, according to convention always lies below the diagram. In the example illustrated, the two deviations of the hole are positive and those of the shaft are negative.
Envelope requirement
Single features, whether a cylinder, or established by two parallel planes, having the function of a fit between mating parts, are indicated on the drawing by the symbol @ in addition to the dimension and tolerance. This indicates a mutual dependence of size and form which requires that the envelope of perfect form for the feature at maximum material size shall not be violated. (For further information, see ISO/R 1938 and IS0 8015.)
K zi 8
rr
Upper deviation (4.6.1.1) Lower deviation (4.6.1.2) Hole (4.2)
1
NOTE - Some national standards (which should be referred to on the drawing) specify that the envelope requirement for single features is the norm and therefore this is not indicated separately on the drawing.
53.2 Tolerance IS0 6015
indication
not in accordance
with
The tolerances for workpieces manufactured to drawings which do not have the notation, Tolerancing IS0 6015, shall be interpreted in the following ways within the stipulated length : a)
For holes
The diameter of the largest perfect imaginary cylinder, which can be inscribed within the hole so that it just contacts the highest points of the surface, should not be smaller than the maximum material limit of size. The maximum diameter at any position in the hole shall not exceed the least material limit of size.
Minimum limit of size (4.3.3.2) Maximum limit of size (4.3.3.1)
b)
1988 a(E)
For shafts
Basic size (4.3.1) A
The diameter of the smallest perfect imaginary cylinder, which can be circumscribed about the shaft so that it just contacts the highest points of the surface, should not be larger than the maximum material limit of size. The minimum diameter at any position on the shaft shall be not less than the least material limit of size. The interpretations given in a) and b) mean that if a workpiece is everywhere at its maximum material limit, that workpiece should be perfectly round and straight, i.e. a perfect cylinder. Unless otherwise specified, and subject to the above requirements, departures from a perfect cylinder may reach the full value of the diameter tolerance specified. For further information, see ISO/R 1938. NOTE - In special cases, the maximum form deviations permitted by the interpretations given in a) and b) may be too large to allow satisfactory functioning of the assembled parts: in such cases, separate tolerances should be given for the form, e.g. separate tolerances on circularity and/or straightness (see IS0 1101).
Figure 15 - Graphical
+ 5 ii O.-0 .-% n2 -
Figure 16 - Simplified
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
representation
Hole
Shaft
schematic
diagram
IS0 286-l : 1988 (El
7
Reference
temperature
9.2
Fundamental
deviations
for holes
[except deviation JS (see 9.311 The temperature at which the dimensions of the IS0 system of limits and fits are specified is 20 OC (see IS0 I).
8 Standard 315Omm 8.1
tolerances
for basic sizes up to
The fundamental deviations for holes and their respective sign ( + or - ) are shown in figure 18. Values for the fundamental deviations are given in table 3. The upper deviation (ES) and lower deviation (H) are established from the fundamental deviation and the standard tolerance grade (IT) as shown in figure 18.
Basis of the system Deviations A to H
The bases for calculating the standard tolerances are given in annex A.
8.2
Values of standard
tolerance
Deviations K to ZC (not valid for tolerance grades less than or equal to IT8 of deviation K and tolerance class M8)
grades (IT)
Values of standard tolerance grades IT1 to IT18 inclusive are given in table 1. These values are to be taken as authoritative for the application of the system.
Zero line
NOTE - Values for standard tolerance grades IT0 and IT01 are given in annex A.
9 Fundamental to315Omm
deviations
9.1
deviations
Fundamental
for basic sizes up
ES = negative ( - 1 fundamental deviation
ES = EI + IT
EI = ES - IT
for shafts
[except deviation js (see 9.3)]
Figure 18 -
The fundamental deviations for shafts and their respective sign ( + or - 1 are shown in figure 17. Values for the fundamental deviations are given in table 2. The upper deviation (es) and lower deviation (ei) are established from the fundamental deviation and the standard tolerance grade (IT) as shown in figure 17.
Deviations a to h
EI = positive (+ 1 fundamental deviation
Deviations k to zc
9.3
Fundamental
deviations
for holes
js and JS
(see figure 19) The information given in 9.1 and 9.2 does not apply to fundamental deviations js and JS, which are a symmetrical distribution of the standard tolerance grade about the zero line, i.e. for js: es = ei = -IT 2 and for JS: ES = EI.=
Zero line
Deviations
IT 2
IT
r ES
r2
es
h w
El es = negative ( - 1 fundamental deviation
ei = positive ( + ) funda-
ei = es - IT
es = ei + IT
Figure 17 -
mental deviation
Deviations
for shafts
.
Shaft
Hole
I
L IT 2
Figure 19 -
Deviations
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
js and JS
IS0 286-1 : 1988 (EI
9.4
Fundamental
deviations
j and J
The information given in 9.1 to 9.3 does not apply to fundamental deviations j and J, which are, for the most part, asymmetrical distributions of the standard tolerance grade about the zero line (see IS0 286-2, tables 8 and 24). Table 1 - Numerical
values of standard
tolerance Standard
Basic size mm
IT7
-
tolerance
grades
IT8 1 IT8 1 IT10 ] IT11 1 IT12 1 IT13 1lTl43)1 IT153) 1 IT1631 ITl73)I IT1831
I
up to Above
grades IT for basic sizes up to 3 150 mm ‘)
Tolerances
and including
mm
IJm
33)
0,8
I,2
2
3
4
6
10
14
25
40
60
0,l
0,14
0,25
0,4
0,6
3
6
1
1,5
2,5
4
5
8
12
18
30
48
75
0,12
0,18
0,3
0,48
0,75
1,2
I,8
6
10
1
I,5
2,5
4
6
9
15
22
36
58
90
0,15
0,22
0,36
0,58
0;9
I,5
2,2
10
18
I,2
2
3
5
8
11
18
27
43
70
110
0,18
0,27
0,43
0,7
1,1'
I,8
2,7
18
30
I,5
2,5
4
6
9
13
21
33
52
84
130
0,21
0,33
0,52
0,84
I,3
2,l
3,3
30
50
I,5
2,5
4
7
11
16
25
39
62
100
160
0,25
0,39
0,62
1
1,6
2,5
3,9
50
80
2,,
3
5
8
13
19
30
46
74
120
190
0,3
0,46
0,74
1,2
I,9
3
4,6
80
120
2,5
4
6
10
15
22
35
54
87
140
220
0,35
0,54
0,87
I,4
2,2
3,5
5,4-
120
180
3,5
5
8
12
18
25
40
63
100
160
250
0,4
0,63
1
I,6
2,5
4
613
180
250
4,5
7
10
14
20
29
46
72
115
185
290
0,46
0,72
I,15
1,85
2,9
4,6
7,2
250
315
6
8
12
16
23
32
52
81
130
210
320
0,52
0,81
I,3
2,l
3,2
5,2
8,l
315
400
7
9
13
18
25
36
57
89
140
230
360
0,57
0,89
I,4
2,3
3,6
5,7
8,9
d-00
500
8
10
15
20
27
40
63
97
155
250
400
0,63
0,97
1,55
2,5
4
6,3
9,7 ;
500
6302)
9
11
16
22
32
44
70
110
175'
280
440
0,7
I,1
I,75
2,8
4,4
7
11
630
8002)
10
13
18
25
36
50
80
125
200
320
500
0,8
I,25
2
3,2
5
8
12,5
800
10002)
11
15
21
28
40
56
90
140
230
360
560
0,9
I,4
2,3
3,6
5,6
9
14
1000
12502)
13
18
24
33
47
66
105
165
260
420
660
I,05
I,65
2,6
4,2
6,6
IO,5
16,5
1250
16002)
15
21
29
39
55
78
125
195
310
500
780
I,25
I,95
3,l
5
718
12,5
19,5
1600
20002)
18
25
35
46
65
,92
150
230
370
600
920
I,5
2,3
3,7
6
9,2
15
23
2000
25002)
22
30
41
55
78
110
175
280
440
700
1100
1,75
2,8
4,4
7
11
17,5
28
2500
31502)
26
36
50
68
96
135
210
330
540
860
1350
2,l
3,3
5,4
86
13,5
21
33
1
114
-
1) Values for standard tolerance grades IT01 and IT0 for basic sizes less than or equal to 500 mm are given in annex A, table 5. 2)
Values for standard tolerance grades IT1 to IT5 (incl.) for basic sizes over 500 mm are included for experimental use.
3)
Standard tolerance grades IT14to IT18 (incl.) shall not be used for basic sizeslessthan
or equal to 1 mm.
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
11
IS0 286-l : 1988 E)
Table 2 - Numerical
values of the
Fundamental Basic size
Upper deviation
I
es
mm All standard
al) 1 bl) -
61
- 270 1 -140 - 2801 -150
IO
+-I-+
c
1 -
I .
I I
+-+-I-
3001 -160
95 1
I I
I
I -110
I
40
-
310
-170
-120
40
50
-
320
-180
-130
340
50
65 80
-
cd
70
30
65 I 80 I
1
60 1 -34
I -46 I - 80 I -56 I -
- 2901 -1501-
I I
-190
-140
I-
3601 -200
I -150
I
loo I-
3801 -220
I -170
100 I
120
I-
414
-240
I -180
I I
120
140
I -7i6-l
-260
I
I ~~
I
140 I
160 I-
520 1 -280
160
180
580
-
-200
1 -210
-310
1
180
200 225
I 250 I
250 280
I- 7401-380 I -260 I I- 827 -420 1 -280 1 I-zzl -480 I -300 I
280 I
315
I-105oL5401~3301
-660-340
315
355
-1200
-600
-360
400
-1350
-680
-400
400
450
-1500
-760
-440
450
500
-1650
-840
-480
500
560
560
630
630
710
710
800 900
900 1000 1 120
1000
I
1120 1 250
1250
1400
1400
1600
1600
1800
1800
2000
2000
2240
2240
2500
2500
2800
2800
3 150
I
I
ef
f
e
- 20
-
- 30 -40
-
25
-50
-
32
-
-40
65
-80
-50
-100
-60
-120
-
-145
- 85
72
IT5 and IT6 h 10
-
13
-
16
IT7
IT8
i
6
-18
T
-T-4
t -6
-6 -8
- 25
- 36
-15
-43
-18
-240
355
800
d
grades
- 230
200 I 225
1)
1
2701 -140
tolerance
I
I
-170
-21
-190
-110
-210
-125
-
- 230
-135
-68
-260
-145
-
- 290
-160
-80
- 320
-170
-
86
I
-350
-195
-
98
1 -28
-390
-220
-430
-240
-480
-260
- 520
- 290
62 0
-16
-26
-18
-28
-20
-32
76 -24 -26
-32
c
-34
Fundamental deviations a and b shall not be used for basic sizes less than or equal to 1 mm.
For tolerance classes js7 to jsll, if the IT value number, n, is an odd number, this may be rounded to the even number immediately below, so that the ITn resulting deviations, i.e. + , can be expressed in whole micrometres. 2
2)
12
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
IS0 286-1 : 1988 E)
fundamental
deviations
of shafts Fundamental deviation values in micrometres
deviation
values Lower deviation
IT4 to IT7
Up to IT3 (incl.) and above IT7 k
0
All standard
t m 0 0 0 0
n +
4
+
+4
+
8
+6
+ 10
+7
r
P
+2
+ 12
6
t
S
U
tolerarke V.
grades
18
+ 20
+
26
+
32
+
40
+
60
+ 12
+ 15
+
19
+
23
+ 28
+
35
+
42
+
50
+
80
+ 15
+ 19
+
23
+
28
+34
+
42
+
52
+
67
+
97
+40
+
50
+
64
+
90
+
130 150
+ 18
+ 23
+
28
+
33
+ 39
+ 45
+
60
+
77
+
108
+
+
41
+47
+54
+
63
+
73
+
98
+
136
+
188
+28
+
357
0
+9
+17
+26
+34
+
43
+41
+
53+66+
+43
+
59
+
75
+51
+
71
+
+54
+
79
+
+63
+
92
+
122
+
170
+202
+248 1 +
300
+
+ 65
+
100
+
134
+
190
+228
+280
+
340
+
+ 68
+
108
+
146
+
210
+252
+310
+
380
+
0
0
0 0 0 0
+ 32
+13
+ 23
+ 37
+I5
+ 27
+ 43
-+-I7
+20 +21 +23 +26
+ 31
+ 34 + 37 +40 +44
zc
+
+22
0
zb
14
+I5
+ 20
_
+
+8
+I1
za
Z
Y
X
+I0
0
0
0
ei
+ 50
+ 56 + 62 r +68, -1-78
0
0
+30
+50
+88
0
0
+34
+56
+lcw
0
+40
+ 66
+I20
0
+48
+78
+140-
0
+58
+ 92
+I70
0
+68
+I10
+I95
0
+76
+I35
+240 '
+
41
+
48
+55
+64
+
75
+
88
+
118
+
160
+
218
+
48
+
60
-1-68
+80
+
94
+
112
+
148
+
200
+
274
+
54
+
70
+ 81
+ 97
+
114
+
136
+
180
+
242
+
325
87
+102
+122
+
144
+
172
+
226
+
300
+
405
+
102
+I20
+I46
+
174
+
210
+
274
+
360
+
480
91
+
124
+I46
+I78
+
214
+
258
+
335
+
445
+
585
104
+
144
+I72
+210
+
254
+
310
+
400
+
525
+
690
365
+
470
+
620
+
800
415
+
535
+
700
+
900
465
+
600
+
780
+I 000
+ 77
+
122
+
166
+
236
+284
+350
+
425
+
520
+
670
+
880
+1150
+ 80
+
130
+
180
+
258
+310
+385
+
470
+
575
+
740
+
960
+I 250
+ 84
+
140
+
196
+
284
+340
+425
+
520
+
640
+
820
+I 050
+l 350
+ 94
+
158
+
218
+
315
+385
+475
+
580
+
710
+
920
+l 200
+I 550
+ 98
+
170
+
240
+
350
+425
+525
+
650
‘+
790
+I000
+I300
+I700
+I08
+
190
+
268
+
390
+475
+590
+
730
+
9o(l
+I‘150
+I 500
+I 900
+114
+
208
+
294
+
435
+530
+660
+
820
+I000
+I300
+I650
+2100
+126
+
232
+
330
+
490
+595
+740
+
920
+I100
+1450
+I850
+2400
+I32
+
252
+
360
+
540
+660
+820
+I000
+1250
+1600
+2100
+2600
+I50
+
280
+
400
+
600
+I55
+
310
+
450
+
660
+I75
+
340
+
500
+
740
+I85
+
380
+
560
+
840
+210
+
430
+
620
+
940
+220
+
470
+
680
+l 050
+250
+
520
+
780
+I 150
+260
+
580
+
840
+I300
+300
+
640
+
960
+I450
+330
+
720
+I050
+370
+
820
+1200
+I850
+400
+
920
+I350
+2000
+440
+I000
+I500
+2300
+460
+I100
+I650
+2500
+550
+I250
+I900
+2900
+580
+I400
+2100
+3200
+I600
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
13
Is0 286-l : 1988 E)
.
Table 3 - Numerical
values of the
Fundamental Basic size
Lower deviation
mm All standard
1 Upto Icluding(
3
~1)
c
ICDI
D
I
E
IEFI
F
IFGIG
/HI
IT7
IT8
up to IT8 (incl.)
J
JS2)
Above IT8
ulFio
Above IT8
(incl. 1
M3)4)
KS)
+
270
+140
+ 60
+34
+ 20
+ 14
+lO
+
6
+4
+ 2
0
+2+4+6
6
+
270
+140
+ 70
+46
+ 30
+ 20
+'4
+ '0
+6
+ 4
0
+ 5
+ 6
+lO
-'+A
l-4+41
-4
+
280
+'w
+ 80
+56
+ 40
+ 25
+18
+ '3
+8
+ 5
0
+ 5 + 8
+12
-‘+A
-6+A
-6
290
+150
+95
+50
+32
+ 16
+60
+ 6
+lO
+15
-‘+A
-7+-A
-7
+
300
+160
+llO
+65
+40
+20
+7
+ 8
+12
+20
-2+A
-8+A
-8
+80
+50
+lO
+14
+24
-2+A
-9+A
-9
+13
+18
+28
-2+A
-11 +A
-11
+22
+34
-3+A
-13+A
-13
6
10 14
14
18
18
24
24
30
.+
30
40
+
310
+170
+120
40
50
+
320
+180
+130
50
65
+
340
+190
+140
65
80
+
360
+200
+150
80
100
+
380
+220
+170
100
120
+
410
+240
+180
120
140
+
460
+260
+200
140
160
+
520
+280
+210
160
180
+
580
+310
+230
180
200
+
660
+340
+240
200
225
+
740
+380
+260
225
250
+
820
+420
+280
250
280
+
920
+480
+300
280
315
+1050
+540
+330
315 355
355 400
+1200 +1350
+600 +680
+360 +400
400
450
+1500
+760
+440
450
500
+1650
+84O
+480
500
560 630
710
800
800
900
900
1000
1250
1400
1400
1600
1600
1800
1800
2000
2000
2240
2240
2500
2500
2800
2800
13150
I
--
0 -
-
I + 25I I’ gl”l
0
0
I
I
I-21 I
+120
+ 72
+36
+12
0
+16
+145
+85
+43
+14
0
I I I +18 1 +26 1 +41 I-3+4
+170
+lOO
+50
+15
0
+22
+30
-1-47 -4+A
-17+A
-17
+190
+llO
_-
-
--
I 1
I l-15+41
I
-15
I”‘1 oI
+25
+36
+55
-4+A
-rn+A
-20
1 +210 1 +125 1
1 + 62 /
1+181
+29
+39
+60
-4+A
-21 +A
-21
/+23OI+l35I
' . M'
'-nA'A'
+33
+43
+66
-5+A
-23+A
0 1
I’“1 I’“1 “I I +. -A I 1 ,,ILl I /D I II’“1 “I
+260
+145
+290
+160
+80
+24
0
+320
+170
+86
+26
0
I
+220
+430
+240
+120
+32
0
+480
+260
+130
+34
0
a-
a
+520
I
+290
I +-l-lo I l+mlol
A m-
I +1+3 I
I 1
-23
0
-26
0
-30
I II01
- _-
+390
I 1
I
I I I l+3501+‘g51 I+981 I+28101I I loI I I l--l-l
I
l-2
I’“1
710
f+ii+s-l
1)
I
IT6
grades
3'15)
10
560 630
I
1~1)
tolerance
deviation
EI
0
-48
0
-58
I I loI 0
-68 -76
Fundamental deviations A and B shall not be used for basic sizes less than or equal to 1 mm.
For tolerance classes JS7 to JSll, if the IT value number, n, is an odd number, this may be rounded to the even number immediately below, so that the ITn resulting deviations, i.e. + -, can be expressed in whole micrometres. 2
2)
3) For determining the values K, M and N for standard tolerance grades up to IT8 (incl.) and deviations P to ZC for standard tolerance grades up to IT7 (incl.), take the d values from the columns on the right.
14
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
ISO286-1 :1988 E)
fundamental
deviations
of holes Fundamental deviation values in micrometres
values Upper deviation
ES
u/Go (incl.)
I
N3)5)
Standard
grades above IT7
lulvlx
PtoZC31
VI
6
-
10
-
14
-
18
-20
-8+A
0
-
12
-
15
-
19
-
23
-28
-lO+A
0
-
15
-19
-
23
-
28
-34
-12+A
0
-
18
- 23
-
28
-
33
-28
-
-22 0 -26 -17+A
0
-23+A
0
-27+A
0
-3l+A
0
-34+A
0
-37+A
0
-4O+A
0
1
-34
0
-2O+A
- 32 -
37 '
-43
-50 -56
- 78 -50
-88
-56
-100
-66
-120
- 78
-140
- 92
-170
-110 -135
Standard tolerance grades
I
-
-15+A
t
tolerance
-4
-4
Values for A
I
-195 -240
35.
-
-39
,
Z
1 ZA 26-
32-
-
35-
42-
-
97
-
64
-
90
-
130
50
-47
48
-
55
43.r -
48
-
60
-
68
- 80
-
-
54
-
70
-81
- 97
-
-54 -
64
801
67
60-
41
50-
-
-
40-
52
-
-
IT3 IT4 IT5 IT6 IT7 ITE 600 0 0 0
-
-45
41
1 ZC
42
-40
-
1 ZB
-
77-108-150
-
63
-
73
-
-
75
-
88
-
94
-
112 -
148
-
200
-
274
114 -
136 -
180 -
242
-
325
98
-
118 -
136 -
188
160
218
-
- 4'
-
53
-
66
-
87
-102
-122
-
144 -
172
-
226
-
300
-
405
- 43
-
59
-
75
-
'02
-120
-146
-
174 -
210
-
274
-
360
-
480
-
5'
-
7'
-
9'
-
124
-146
-178
-
214
-
258
-
335
-
445
-
585
-
54
-
79
-
'04
-
144
-172
-210
-
254
-
310
-
400
-
525
-
690 9al
I--631-65
921~ml-170 'o(j - '34
-202
-248
-300-3651-470-620-80(j-
-
-
'90
-228
-280
-
340
-
415l-
535
-
700
-
-68
-
'08
-
210
-252
-310
-
380
-
465l-
600
-
780
-loo0 -1'50
-
'46
-77
-
'22
-
'66
-
236
-284
-350
-
425
-
52Ol-
670
-
880
-80
-
'30
-
'80
-
258
-310
-385
-
470
-
575I-
740
-
960
-84
-
'40
-
1%
-
284
-340
-425
-
520
-
640
-
820
-1050
-1350
-94
-
158
-
218
-
315
-385
-475
-
580
-
710
-
9m
-1 mo
-1 !%o
-98
-
'70
-
240
-
350
-425
-525
-
650
-
790
-‘IO00
-1300
-1700
-150
-280-400-600
-155
-
310
-
450
-
660
-175
-
340
-
500
-
740 940
-1250
1
',5
1
1,5
2
6
1
6 -7 9
8
',5 ',5 2
6
16
2
3
4
6
7
15
23
3
4
6
9
17
26
4
m
-185-380-560-840 -210
-
430
-
620
-
-220
-
470
-
680
-1050
-250
-
520
-
780
-1150
-260
-
580
-
840
-1300
-300-640-960-1450 -370
-
820
-1200
-1850
-400
-
920
-1350
-2000
-440
-1000
-1500
-2300
-460
-1100
-1650
-2500
-550
-1250
-1900
-2900
-580
-1400
-2100
-3200
3) (concl. ) Examples : K7 in the range 18 to 30 mm : A = 8 pm, therefore ES = -2 + 8 = + 6 pm S6 in the range 18 to 30 mm : A = 4 pm, therefore ES = -35 + 4 = - 31 pm 4)
Special cases: for tolerance class M6 in the range from 250 to 315 mm, ES = -9 pm (instead of - 11 pm).
5)
Fundamental deviation N for standard tolerance grades above IT8 shall not be used for basic sizes less than or equal to 1 mm.
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
15
IS0 286-l : 1988 (E)
10
IS0 1947, System of cone tolerances for conical workpieces from C = 1 : 3 to 1 : 500 and lengths from 6 to 630 mm.
Bibliography
The following international Standards on tolerancing and tolerance systems will be useful with regard to the application of this part of IS0 286: IS0 406, Technical drawings ances - lndica tiuns on drawings.
Linear and angular
toler-
IS0 1829, Selection of tolerance zones for general purposes.
IS0 2692, Technical drawings Maximum material principle.
Geometrical
tolerancing
-
IS0 2768-1, General tolerances for dimensions without tolerance indications - fart 1: Tolerances for linear and angular dimensions. 1) IS0 5166, System of cone fits for cones from C = 1 : 3 to 1 : 500, lengths from 6 to 630 mm and diameters up to 500 mm.
1) At present at the stage of draft. (Revision, in part, of IS0 2768 : 1973.)
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
16
-
1
IS0 286-l : 1988 E)
Annex
A
Bases of the IS0 system
of limits
and fits
(This annex forms an integral part of the standard.)
A.1
General
A.2
This annex gives the bases of the IS0 system of limits and fits. The data are given primarily so that values can be calculated for fundamental deviations, which may be required in very special circumstances and which are not given in the tables, and also so that a more complete understanding of the system is provided.
For convenience, the standard tolerances and fundamental deviations are not calculated individually for each separate basic size, but for steps of the basic size as given in table 4. These steps are grouped into main steps and intermediate steps. The intermediate steps are only used in certain cases for calculating standard tolerances and fundamental deviations a to c and r to zc for shafts, and A to C and R to ZC for holes.
It is once more emphasized that the tabulated values in either this part of IS0 286 or IS0 286-2, for standard tolerances and fundamental deviations, are definitive, and shall be used when applying the system.
Table 4 -
Basic size steps
The values of the standard tolerances and fundamental deviations for each basic size step are calculated from the
Basic size steps
Values in millimetres a)
Basic sires up to 500 mm (incl.1
Main steps Above
-
Values in millimetres b)
I
Up to and including
Intermediate Above
I
steps 1)
I
Up to and including
6
6
10
IV
18
40 IO
30
*n
Main steps
I
Up to and including
Above
3 3
Basic sizes above 500 mm up to 3 150 mm (incl.1 Intermediate
steps2) Up to and including
Above
500
630
500 560
560 630
630
800
630 710
710. 800
800 900
900 1000
I im
1000
1 120 1 250
No subdivision
10 14
14 18
800
1000
18 24
24 30
1000
1250
30
50
30 40
40 50
1 250
1600
80
65 80
1400 1600
50
50 65
1250 1400
1600
2000
120
100 120
1800 2000
80
80 100
1600 1800
I
I
~~
120
180
120 140 160
140 160 180
180
250
180 200 225
200 225 250
250
315
250 280
280 315
315
400
315 355
355
400
500
450
2000 2500
I
2500
I
3 150
2000 2240 2500 2800
I
2240 2500
~~
2800 3 150
450 500
1) These are used, in certain cases, for deviations a to c and r to zc or A to C and R to ZC (see tables 2 and 3). 2)
These are used for the deviations r to u and R to U (see tables 2 and 3).
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
17
IS0 286-l : 1988 E)
geometrical mean (D) of the extreme sizes (0, and 02) of that step, as follows: D=
J&XT&
A.3.2 Derivation of standard tolerances basic sizes up to and including 500 mm A.3.2.1
For the first basic size step (less than or equal to 3 mm), the geometrical mean, D, according to convention, is taken between the sizes 1 and 3 mm, therefore D = 1,732 mm.
A.3
Standard
A.3.1
Gerieral
tolerance
tolerance
grades IT01 to IT4
The values of standard tolerances in grades ITOl, IT0 and IT1 are calculated from the formulae given in table 6. It should be noted that no formulae are given for grades IT2, IT3 and IT4. The values for tolerances in these grades have been approximately scaled in geometrical progression between the values for IT1 and lT5.
grades Table 6 - Formulae for standard tolerances in grades ITOI, IT0 and ITI for basic sizes up to and including 500 mm
The IS0 system of limits and fits provides for 20 standard tolerance grades designated ITOI, ITO, ITl, . . . , IT18 in the size range from. 0 up to 500 mm (incl.), and 18 standard toCerance grades .& the‘size range from 500 mm up to 3 150 mm (i&l.), designated tT1 to IT18. As stated in the “Foreword”, the IS0 system is derived from ISA Bulletin 25, which only covered basic sizes up to 500 mm, and was mainly based on practical experience in industry. The systems was not developed from a coherent mathematical base, dnd ti’ence there are .discontinuities in the system and differing formulae for the deviation of IT grades up to 500 mm.
\
Standard
(IT) for
Values in micrometres Formula for calculation where D is the geometric mean of the basic size in millimetres
Standard tolerance grade
0,3 + 0,008D
IT01 ‘1 ITOI)
0,5 + 0,012.D
’
0,8 + 0,OZOD
IT1 1)
See the “Foreword”
and A.3.1.
, :8
The-values’for standard tolerances for basic sizes from 500 mm up to 3 l’@. tim (incl.) were subsequently developed for experimental purposes; and since they have proved acceptable to industry they are now given as a part of the IS0 system. It should be noted that values for standard tolerances in grades IT0 and IT01 are not given in the main body of the standard because they have little use in practice; however, values for these are given in table 5.
A.3.2.2
Numerical values for standard in grades IT01 and IT0
Standard tolerance grades
Basic size mm Ab.ove
tolerances
IT0
IT01 Up to and including
...I.3 6 10 18 30
3 6 10 18 30 50
50 80 120 180 250 315 400
80 120 180 250 315 400 500
Tolerances w Ot3 014 Of4 0,5
Of5
Or6 016 Or8
016 Or6 W3
1 1
1
115 2 3 4 5 6
12 2 2,5 3' 4
12
tolerance
The standard tolerance factor, i, in micrometres, from the following formula: 0,45 m
is calculated
+ 0,OOID
where D is the geometric mean of the basic size step in millimetres (see clause A.2). This formula was empirically derived, being based on various national practices and on the premise that, for the same manufacturing process, the relationship between the magnitude of the manufacturing errors and the basic size approximates a parabolic function. The values of the standard tolerances are calculated in terms of the standard tolerance factor, i, as shown in table 7. It should be noted that from IT6 upwards, the standard tolerances are multiplied by a factor of 10 at each fifth step. This rule applies to all standard tolerances and may be used to extrapolate values for IT grades above IT18. Example : IT20 = IT15 x IO = 64Oi x 10 = 64OOi NOTE - The above rule applies except for IT6 in the basic size range from 3 to 6 mm (incl.).
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
18
grades IT5 to IT18
The values for standard tolerances in grades IT5 to IT18 for basic sizes up to and including 500 mm are determined as a function of the standard tolerance factor, i.
i= Table 5 -
Standard
ISO286-1:1988
Table 7 -
Formulae
for standard
Standard
Basic size mm Above
ITll)
IT211 IT311 IT41)
IT5
up to and including
I1)
tolerances
IT6 Formulae
21
2,71
3,71
51
1Oi
7i 71
.
101
IT7
161
grades
I-j=10 [J-II
for standard 16i
in grades ITl to IT18
tolerance
lT8
(I3
tolerances
lTl2
lT13
lT14
lTl5
ln8
lT17
IT18
\
(Results in micrometres)
25i
40i
64i
1OOi
160i
250i
400i
640i
251
401
641
1OOI
1601
2501
4OOr
6401 looor imr
1OOOi 16OOi 2500i
25mr
See A.3.2.1.
A.3.3 Derivation of standard tolerances (IT) for basic sizes from 500 mm up to and including 3150mm The values for standard tolerances in grades IT1 to IT18 are determined as a function of the standard tolerance factor, I. The standard tolerance factor, I, in micrometres, from the following formula:
is calculated
Table 8 -
Rounding for IT values up to and including standard tolerance grade IT11 Rounding values in micrometres Basic size
Calculated values obtained from the formulae given in A.3.2 and A.3.3
Above
I = 0,004D + 2,l
0
where D is the geometric mean of the basic size step in millimetres (see clause A.2).
60 100 200 500 1000 zoo0 5ooo 10 ooo 20 ooo
The values of the standard tolerances are calculated in terms of the standard tolerance factor, I, as shown in table 7. It should be noted that from IT6 upwards, the standard tolerances are multiplied by a factor of 10 at each fifth step. This rule applies to all standard tolerances and may be used to extrapolate values for IT grades above lT18.
Above 500mm up to 315Omm (incl.)
up to 500mm (incl.)
Up to and including
Rounding
60 100 200 500 1000 zoo0 5ooo loo00 20 000 5oooo
1 1 5 10 -
in multiples
of
1 2 5 10 20 50 100 200 500 1000
Example : NOTES
IT20 = IT15 x 10 = 6401 x 10 = 64001
1 The formulae for standard tolerances in grades IT1 to IT5 are given on a provisional basis only. (These did not appear in ISO/R 286 : 1962.)
1 For the small values in particular, it has sometimes been necessary to depart from these rules, and, in some instances, even from the application of the formulae given in A.3.2 and A.3.3 in order to ensure better scaling. Therefore the values given for the standard tolerances in tables 1 and 5, as appropriate, shall be used in preference to calculated values when applying the IS0 system.
2 Although the formulae for i and I vary, continuity of progression is assured for the transition range.
2 Values for standard tolerances in grades IT1 to IT18 are given in table 1 and for IT0 and IT01 in table 5.
A.3.4 Rounding tolerances
A.4
NOTES
of values for standard
Derivation
of fundamental
Fundamental
deviations
deviations
For each basic size step, the values obtained from the formulae given in A.3.2 and A.3.3, for standard tolerances in grades up to and including IT1 1, are rounded off in accordance with the rules given in table 8.
A.4.1
for shafts
The calculated values of standard tolerances in grades above IT1 1 do not require rounding off because they are derived from values of tolerance grades IT7 to IT1 1, which have already been rounded off.
The fundamental deviation given by the formulae in table 9 is, in principle, that corresponding to the limits closest to the zero line, i.e. the upper deviation for shafts a to h and the lower deviation for shafts k to zc.
The fundamental deviations for shafts are calculated from the formulae given in table 9.
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
IS0 286-l : 1988 E)
Except for shafts j and js, for which, strictly speaking, there is no fundamental deviation, the value of the deviation is independent of the selected grade of tolerance (even if the formula includes a term involving ITn!.
A.4.2
Fundamental
deviations
Hole-basis fit
Shaft-basis fit
(ei) + ITbl)=
for holes
(ES) + ITn ITh-I)
The fundamental deviations for holes are calculated from the formulae given in table 9 and, therefore, the limit corresponding to the fundamental deviation for a hole is exactly symmetrical, in relation to the zero line, to the limit corresponding to the fundamental deviation for a shaft with the same letter. This rule applies to all fundamental following:
deviations except for the
a) deviation N, for standard tolerance grades IT9 to IT16 in basic sizes above 3 mm up to 500 mm (incl.), for which the fundamental deviation is zero ; b)- shaft or ho& basis fits, for basic sizes above 3 up to 500 mm (incl.), im!which a hole of a given standard tolerance grade is associated with a shaft of the next finer grade (e.g. H7/p6 and P7/h6), and which are required to have exactly the same clearance or interferences, see figure 20.
,
In these cases, the fundamental deviation, as calculated, is adjusted ‘by algebraically adding the value of ,4 as follows : Es = ES (as calculated) + d
: where d is the difference ITn - IT(n - 1) between the .I standard tolerance, for the basic size step in the given , grade, and that ih. the next finer grade. v Example :
Figure 20 -
Diagrammatic representation given in A.4.2b)
of the rule
The fundamental deviation given by the formulae in table 9 is, in principle, that corresponding to the limits closest to the zero line, i.e. the lower deviation for holes A to H and the upper deviation for holes K to ZC. Except for holes J and JS, for which, strictly speaking, there is no fundamental deviation, the value of the deviation is independent of the selected grade of tolerance (even if the formula includes a term involving ITn).
For P7 in the basic size range from 18 up to 30 mm: A = IT7 - IT6 = 21 - 13 = 8 pm NOTE - The rule given in b) above is only applicable for basic sizes bier 3 mm for fundamental deviations K, M and N in standard tolera’nce grades up to’and including IT8, and deviations P to ZC in qtandard tolerance grades up to and including IT7.
20
A.4.3 Rounding deviations
of values for fundamental
For each basic size step, the values obtained from the formulae given in table 9 are rounded off in accordance with the rules given in table 10. *
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
60286-l
Formulae
Table 9 Basic size mm
for fundamental
Shafts
1
120
120
500
es
=: 140 + 0,850
II
c I - I es
520 Of2
1
10
0
1
0
131501
0
/ ---
0
131501
3150
10
0 /
)
cd
1
1
d e
1
-
/
es
1
-
1
es
I
-
I
es
ef
/
-
1
es
f
1
-
1
es
0
I 3150 I
g
I
0
1
h
1 No sign I
0
15001
0
1
0
I
5003)
is k
3 150 mm/ 500
500
3 150
0
500
500
3 150
0
3 150
n
7ik-E-I 24 0
1
I
01
3150
+
I
500
I
I-++&
B
1
j
+
ei
1 1 I I 1
EI
+
D
0
3 150
11Dot41 Geometric mean of the values for E, e and F, f
EI
+
E
0
3 150
EI
+
1
EF---
+
1
F
1
+
1
FG
-I
+
I
5,500#41 Geometric mean of the values for F, f and G, g
I
1
EI
ei ei ei ei
- 0,6 G
G
I’
0
I
1 No sign I
H
I
0
1~ ~Yi~
I
I
J
101
I
JS
I
EI l70 c3
+
I
I
-
-
ES
-
M4)
.
Sk--j 3zei--l
EsI EsI - I p4)II N4)
_ /
Geometric mean of the values for P, p and S, s
++kzi+l EsI IT7 + 0,630
1
IT7 + D
I 1
ES
R4)
/ 9) T4)
’
1
1
-
1
ES I
-
I
u4) 1
ES
-
1
v4)
1
1
ES I ES 1 Es 1 -
I x4) 1 1 Y4) 1 1 24) 1
I
ei
IT8 + 3,15D
1
ES
1
-
1
ZA4)
+
I
ei
IT9 + 40
1
ES
i
-
I
ZB4)
+
I
ei
IT10 + 5D
I
ES I
-
I
zc4) 1
+
0
I
500
1
za
I
+
0
I
zb
I
0
I
500 I 500 I
zc
I
5005)
0 500
3 150
0
500
500
3 150
/+-zE&
IT7 + W
+
I
3 150
1 --/,,
IT7 + 2,5D
1
z
0
500
3 150
ei
y
m--1--
I 0
K4)
ei
5001
I
3150
I
EI
I I I
0
3150
No sign
IT7 - IT6
IT7 + 1,6D
1
EI
ES
IT7 + 1,250
0
I
II
0,5 ITn
El
0,024D + 12,6
r
+ + + +
16D@44
Deviation = 0
ei
40 500 10
I
ei
0 40 0
No formula2)
ei
C-
160 500
CD
I 1
2
+
1 160
+
Deviation = 0
ei
u v x
A
EI
2,5D(‘tN
+
1 1 I I
1
+
EI
95 + 0,8D Geometric mean of the values for C, c and D, d
es
P
t
5001
181
“_
+
EI
es
s I + I ei
131501
14
H+ I +I 1
No sign
31 0
I
i
3 150
500
-
posYtLe) 1
Basic size mm
Fundamental deviation
= 1,8D
101 fg / 3150
Sign (negative
EI
b I -
I
Holes
+--I
7i#+--l 0
for shafts and holes
Formulael) where D is the geometric mean of the basic size in millimetres
-
a
deviations
:I988 (E)
24
1
3150 3150
0
1
14
1
500
0
I
500
18
1
500-
1
0 -1 0 I
500
I
0
I
500
0
1
500
1)
Fundamental deviations (i.e. results from formulae) in micrometres.
2)
Values only given in tables 2 and 3.
3)
Formula only applies to grades IT4 to IT7 inclusively; fundamental
4)
Special rule applies [see A.4.2b)l.
5)
Formula only applies to grades up to IT8 inclusively ; fundamental deviation K for all other basic sizes and all other IT grades = 0.
deviation k for all other basic sizes and all other IT grades = 0.
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
21
IS0 286-I :,I988 E)
Table 10 -
Rounding
for fundamental
deviations Rounding values in micrometres Basic size
Calculated values obtained from the formulae given in table 9 w Above
Up to and including
5 45 60 100 200 300 500 560,. 600 800 :l ooo 2 ooo
45 60 100 200 300 500 560 600 800 1000 2000 5ooo
. . .
. . .
20 x 10n 50 x 10n loo x 10n
50 x 10n loo x 10n 200 x 10n
above 500 mm up to 3 150 mm (incl.)
up to 500 mm (incl.1 Fundamental a to g A to G
k to zc K to ZC Rounding
1 2 5 5 10 .lO 10 20 20 20 50
deviations d to u D to U
in multiples
of
1 1 1 2 2 5 5 5 10 20 50 100
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
1 1 2 5 10 10 20 20 20 20 50 100 I
. . . 1 x 10n 2 x 10n 5 x 10n
*
IS0 286-1 : 1988 (E)
Annex Examples
B
of the use of IS0 286-l
(This annex forms an integral part of the standard.)
B.1
.B.3
General
This annex gives examples in the use of the IS0 system of limits and fits, in determining the limits for shafts and holes. The numerical values of the upper and lower deviations for the more generally used basic size steps, fundamental deviations and tolerance grades have been calculated and are tabulated in IS0 286-2.
Examples
8.3.1
Determining
the limits of size for a shaft
0 4og11 Basic size step : 30 to 50 mm (from table 4) Standard tolerance = 160 pm (from table 1) Fundamental deviation = -9 pm (from table 2)
In special cases, not covered by IS0 286-2, the appropriate upper and lower deviations, and hence the limits of size, can be calculated from the data given in tables 1 to 3, and tables 4 to 6 in annex A in this part of IS0 286.
Upper deviation = fundamental
deviation = -9 pm
Lower deviation = fundamentaJ deviation - tolerance = -9 -16Opm= -169pm rI Limits of size:
B.2
Review of special features
A summary of the features and factors which shall be taken into consideration when using this part of IS0 286 to derive upper and lower deviations for special cases is given below: shafts and holes a, A, b, B are provided only for basic sizes greater than 1 mm; shafts j8 are provided only for basic sizes less than or equal to 3 mm; holes K in tolerance grades above IT8 are provided only for basic sizes less than or equal to 3 mm; shafts and holes t, T, v, V and y, Y are only provided for basic sizes greater than 24 mm, 14 mm and 18 mm, respectively (for smaller basic sizes, the deviations are practically the same as those of the adjacent tolerance grades) ; tolerance grades IT14 to IT18 are only provided for basic sizes greater than 1 mm; holes N of tolerance grades above IT8 are only provided for basic sizes greater than 1 mm.
Maximum
= 40 - 0,009 = 39,991 mm
Minimum
= 40 - 0,169 = 39,831 mm
B.3.2 Determining 0 13ON4
the limits of size for a hole
Basic size step : 120 to 180 mm (from table 4) Standard tolerance = 12 vrn (from table 1) Fundamental deviation = -27
+ d pm (from table 3)
Value of d = 4 pm (from table 3) Upper deviation
= fundamental deviation = -27 + 4 = -23 pm
Lower deviation = fundamental deviation - tolerance = -23 - 12 pm = -35 pm Limits of size: Maximum
= 130 - 0,023 = 129,977 mm
Minimum
= 130 - 0,035 = 129,965 mm
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
23
Is0 286-I : 1988 (El
Annex Equivalent
C terms
(This annex does not form an integral part of the standard.)
C.1
General
This annex establishes a list of terms used in IS0 286 (and in other International Standards on tolerances). NOTE - In addition to terms used in the three official IS0 languages (English, French and Russian), the equivalent terms in German, Spanish, Italian, Swedish and Japanese are also given. These have been included at the request of Technical Committee ISO/TC 3 and are published under the responsibility of the member bodies for Germany, F.R. (DIN), Spain (AENOR), Italy (UNI), Sweden (SIS) and Japan (JISC).
C.2
Notes on, presentation
The numerals 01 to 90 give the alphabetical order for the first language (i.e. English) only (for reference). clause, sub-clause, etc. in
The column “Reference clause” refers to the important place) in this part of IS0 286. The words given in “parentheses”
the term is
(or the most
indicate that the part of the term placed between them may be omitted.
Synonyms have been separated by a semi-colon. some of the preceding words.
Square brackets indicate that the word(s) placed between them may replace all or
Short explanations as regards the term have been presented in note form.
C.3
Recommendations
for the user
It is recommended that the users, for convenience, re-arrange accordingly on the left-hand side of the table.
24
vocabulary alphabetically in their own languages and number
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
w
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
serrage eff ectif
caractere d’ajustement
NOTE En descriptions verbales.
actual interference
actual size
approximate size
basic size ; nominal size
character of fit
NOTE In verbal descriptions.
04
05
06
07
08
pa3Mep
nocaAKM
OTKJlOHeHMe
AonycK
&art
tolerance dimensionnelle
exigence de I’enveloppe
element exterieur [femellel d’un ajustement
deviation
dimensional tolerance ; size tolerance
envelope requirement
external [outer] part [component] of fit
12
13
14
15
pa3Mep
Hapymtiafr conpflraewafl Aeran b
K flOKpblTM0
Tpe6OBatiMR
paahnepa
3a4aHHblLil
dimension de consigne
desired size
c 3830-
11
POM
noca4Ka
ajustement avec jeu
clearance fit
10
sasop
jeu
clearance
Hide.
IlPMME~AHME Cnoi3ecHoeonwca-
xapaKTep
pa3Mep
HOMMHaJlbHblfi
Hbll;l
flpM6fll43MTenb-
pa3Mep
fielkTBMTeflbHblfi
HaTfIr
fiel&TBPlTeJlbHblti
OTKflOHeHMe
flefiCTBb4TeflbHOe
09
dimension nominale
dimension approximative
dimension eff ective
&art eff ectif
actual deviation
03
sasop
/JelkTBPlTeJlbHbll;r
jeu eff ectif
TOq(-
actual clearance
02
CTeneHb
Russian
HOCTM
accuracy grade
01
French
degre de precision
English
bference No.
enveloppkrav
condizione del inviluppamento condition del envolvente element0 [piezal exterior de un ajuste
Hiillbedingung
8ul3eres Paf3teil; Aul3enpaf3teil
pezzo esterno di un accoppiamento
dimensionstolerans ; m&tolerans
tolleranza dimensionale
tolerancia dimensional
MalZStoleranz
utvtindig passningsdel
avm8tt ; awikelse scostamento
desviacion (o diferencia 1
ijnskat m&t
Abmaf3
dimensione desiderata
spelpassning
accoppiamento con giuoco
medida teorica
ajuste con juego
Spielpassung
spel
NOT - Med verbal beskrivning.
passningskaraktar
basmatt ; nominellt m&t
ungeftirligt m&t ; cirkam&t
verkligt m&t
verkligt grepp
verkligt avm&t
verkligt spel
noggrannhetsgrad
Swedish
giuoco
NOTA - In descrizioni verbali.
carattere dell’accoppiamento
dimensione nominale
dimensione approssimativa
dimensione eff ettiva
interferenza eff ettiva
scostamento effettivo
giuoco effettivo
grado di precisione
Italian
Sollmaf3
juego
NOTA - En descripciones verbales.
carjrcter de ajuste
medida nominal
medida aproximada
medida efectiva 0 real
aprieto efectivo 0 real
desviacion efectiva 0 real
Spiel
ANMERKUNG In verbalen Beschreibungen.
Passungscharakter
Nennmal3
Ungeftihrmaf3
lstmaf3
lstiibermaf3
lsta bma13
juego efectivo 0 real
grad0 de precision
Genauigkeitsgrad lstspiel
Spanish
German l I
c
-
Japanese
See No. 64
5.3.1.2
4.7
4.6
-
4.10.1
4.8
-
4.3.1
-
4.3.2
-
-
-
-
Reference clause
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
element d’un ajustement
surface d’ajustement
tolerance d’ajustement
fit component
fit surface ; mating surface
fit tolerance ; variation of fit
17
18
19
~
06141~3 RonycK
OTBepCTLte
systeme d’ajustement
&art fondamental
tolerance fondamentale
tolerance g&&ale
alesage
serrage
ajustement avec serrage
element interieur [mtilel d’un ajustement
degre de tolerance internationale [ normalite] (IT . . .)
fit system
fundamental deviation
fundamental [standard] tolerance
general tolerance
hole
interference
interference fit
internal [inner] part [component] of fit
international [standard] tolerance grade (IT . . .)
22
23
24
25
26
27
28
29
30
nocaAKM
bl I;i
c HaTf+
bl fi 1
MewyHa-
(IT . . .)
POAH blX AOnyCKOB
Knacc
[CTaHflapTH
JJeTan b
conpriraervrafr
BHyTPeHHFlR
TOM
nocaCjKa
HaTflr
flonycK
OTKJlO-
CMCTeMbl
CTaHflapTH
AOnyCK
HeHMe
OCHOBHOe
;
cMcreMa nocaCjok
qeme
yCflOBHOe
0603Ha-
symbole de I’ajustement
fit symbol
21
nocaAKti
zone de tolerance d’ajustement AonycKa
nOCa&KM
fit tolerance zone ; variation zone
none
AOflyCK
nOBepXHOCTb
conpwaeMafi
AeTanb
conpfrraeMaR
nocaAka
Russian
20
[part1
ajustement
French
fit
English
16
Reference No.
.
element0 [ pieza] interior de un ajuste grado internacibnal de tolerancia (IT . . .)
internationaler [Standard-]Toleranzgrad (IT . . .)
grado di tolleranza internazionale (IT . . .)
internationell toleransgrad ; standardtoleransgrad (IT . i .)
invsndig passningsdel
greppassning
accoppiamento con interferenza ajuste con aprieto
pezzo interno di accoppiamento
WPP
interferenza
aprieto
h8il for0
agujero
grundtolerans ; grundtoleransvidd generell tolerans
tolleranza fondamentale
tolerancia fundamental
Egesavm&t
tolleranza generale
scostamento fondamentale
desviacion fundamental
passningssystem
tolerancia general
sistema di accoppiamenti
passningssymbol
simbolo di accoppiamento
simbolo de ajuste
sistema de ajuste
passningens toleransomrade
passningens toleransvidd ; passningsvariation
zona di tolleranza di accoppiamento
tolleranza d’accoppiamento
passningsyta
passningsdel
passning I
Swedish
zona de tolerancia de ajuste
Inneres Pat3teil; Innenpal3teil
0 bermat3passung
ubermaC3
Bohrung
Allgemeintoleranz
Grundtoleranz
Grundabmat3
Passungssystem ; ParJsystem
Passungssymbol ; Passungskurzzeichen
PaWoleranzfeld
Pa&oleranz
tolerancia de ajuste
superficie di accoppiamento
superficie de un ajuste
Pa(3fl8che
element0 [pezzo] di un accoppiamento
element0 [ pieza] de un ajuste
accoppiamento
PaMeil
’
Italian
ajuste-
Spanish
Passung
German
-
-
Japanese
5.1.1 and table 1
See No. 26
4.10.2
4.9
4.2
-
4.7.1
4.6.2
5.2.3
-
4.10.4
-
-
4.10
Reference clause
‘gg / E
iill L ..
0
5
Y
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
npefienbHble
systeme d’ajustements IS0 ((a arbre normal ))
dimension au minimum de matiere (LMC)
&arts limites
limites d’ajustement
IS0 “shaftbasis” system of fits
least material limit ( LM L)
limit deviations
limits of fit
limits of size
line of zero deviation; zero line
loosest extreme of fit
lower deviation
mating
33
34
35
36
37
38
39
40
41
42
,,OCHOBHOe
nocafloK
JlMHMfI ;
noca~Kl4
HMJ+tHee
&art inferieur
conpfrraeM bl
dimension d’appariement
surface d’ajustement
jeu maximal
mating size
mating surface; fit surface
maximum clearance
43
44
sasop
HaH60JlbUJMlij
flOBepXHOCTb
conpfrraeMafi
pa3Mep
conpm+teHMe
r;5
OTKJlOHe-
nocaAKa
appariement
Hue
6oAt.M
HaPl6OJ-I b UIafi CBO-
OTKJlOHeHMR
JlMHMFl HyJleBOrO
HyJleBafl
qeHMR
npeAenbHble
3Ha-
MMHMMYMa
,,06blr(HblL;i
OTKflOHeHMR
npeflen
Ban I‘
MC0
CwTeMa
eepcl-we“
OT-
MC0
cwTeMa noCaAoK MC0
ajustement limite le plus large
ligne d’ecart nul ; ligne zero
dimensions limites
MarepMana (L/W
systeme d’ajustements IS0 ((3 alesage normal ))
IS0 “holebasis” system of fits
32
fiOflyCKOB
pFI/J OCHOBH blX
serie de toI& rance internationale IS0
IS0 fundamental [standard] tolerance series
31
Russian
French
English
Reference No.
scostamento inferiore
connessione
dimensione di connessione superficie di accoppiamento
desviacion inferior
acoplamiento ; apareamiento medida de acoplamiento superficie de un ajuste juego maxim0
unteres Abmal3
Paarung
PaarungsmaQ
PallSflache
Hachstspiel ; GroWspiel
giuoco massimo
accoppiamento limite il piti largo [scioltol
ajuste limite con maxim0 juego
Hijchstpassung ; weiteste Grenzpassung
linea dello zero
-
lfnea cero ; lfnea de referencia
Linie des Abmaf3es Null ; Nullinie
maxspel
passningsyta
passningsmatt
tillpassning
undre grtinsavm&t
stijrsta passning
nollinje
gransm&t
dimensioni limiti
medidas limites
GrenzmallSe
Grenzpassungen
min. materialgrtins ; stoppgr&is
grtinspassningar
desviaciones ; diferencias)
GrenzabmallSe
dimensione di minim0 materiale
IS0 passningssystem “axeln has”
accoppiamenti limiti
medida de minim0 material
Minimum-MaterialMa13
sistema di accoppiamenti IS0 “al bero base”
IS0 passningssystem “halet has”
ISO-grundtoleransserie
ajustes limites
sistema de ajustes IS0 “eje tinico” (o “eje base”)
ISO-PaTJsystem , , Einheitswelle”
sistema di accoppiamenti IS0 ’ ‘f oro base”
.I
Swedish
grgnsavm&t ; grfinsawikelse
sistema de ajustes IS0 “agujero tinico” (0 “agujero base”)
ISO-Pat3system ,,Einheitsbohrung”
serie di tolleranze fondamentali IS0
Italian
scostamenti limiti
serie de tolerancias fundamentales IS0
Spanish
ISO-Grundtoleranz-Reihe
German
I
Japanese
4.8.2
-
-
-
4.6.1.2
-
4.5 and figure 13
4.3.3
-
-
4.11.2
Reference clause
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
1)
KanM6p-npo6Ka
jeu minimal
serrage minimal
dimension minimale
&art nega tif
dimension nominale
&arts permissibles
tige [ = arbre]
&art positif
minimum clearance
minimum interference
minimum limit of size
negative deviation
nominal size ; basic size
permissible deviations 1)
plug [ = shaft1
positive deviation
52
53
54
56
56
57
58
59
Equivalent to “limit deviations”.
KnOHeHMR
moyenne des dimensions limites ; dimension moyenne
mean of the limits of size ; mean size
51 3Haqe-
HaTFir
OTKnOHeHMe
nonomMTen
[ = Ban1
AOnYCTMMble
pa3Mep
HOMMHanbHbfi
OTKnOHeHMe
bHoe
OT-
pa3Mep
OTpPlqaTenbHoe
AenbHblti
HaMMeHbWMI;1
HaTfir
HaMMeHbUJMti
sasop
ripe-
; cpefi-
HaMMeHbUlMti
HML;; pa3Mep
pasuepos
HMe npeAenbHblx
cpeAHee
CpeAHPlGl
HMe noca)qKM
serrage moyen
3Haqe-
sasop
mean interference
cpeAHee
cpeAHW
50
jeu moyen
mean clearance
48
MaKCM-
MyMa MaTepMana (MML)
npeflen
ajustement moyen
dimension du maximum de matiere (MML)
maximum material limit (MM-)
47
pa3Mep
tiaid6OnbUIM~ ripe_ I.
#eflbHblL;i
mean fit
dimension maximale
maximum limit of size
46
HaTFIr
HaM6OnbUIMfi
Russian
49
serrage maximal
French
maximum interference
English
45
Reference No.
positives Abmat3
Dorn [ = Wellel
Grenzabweichungen ; zulassige Abweichungen
Nennmaf3
negatives Abmaf3
Mindestmal3 ; Kleinstmaf3
Mindestubermaf3 ; Kleinstu bermaf3
Mindestspiel ; Kleinstspiel minim0
,.
limiti
; dimen-
desviacibn positiva
eje
scostamento positivo
perno [ = albero]
scostamenti ammessi [ammissibili]
dimensione nominale
medida nominal
desviaciones admisibles
scostamento negativo
dimensione minima
interferenza minima
giuoco minim0
sione media
sioni
media delle dimen-
intetferenza media
accoppiamento medio
giuoco medio
dimensione di massimo materiale
dimensione massim,a .
inter-ferentia massima
Italjan
desviacion negativo
medida minima
aprieto minim0
juego
media de medidas limites ; medida media
mittleres Grenzma13; Mittenmaf3
ajuste medio
juego medio
limite de material maxjmo
.-
medida maxima
aprieto maxim0
aprieto medio
L
Spanish
mittleres ii berma13; Mitteniiberma13
mittlere Passung ; Mittenpassung
mittleres Spiel ; Mittenspiel
Maximum-Material-Mat3
Hijchstmal3 ; Grijl3tmal3
Hochstiibermag j GrU3tiibermaf3
German
positivt avmatt
dorn [ = axel]
tillatna awikelser
nominellt m&t ; basm&t
negativt avmstt
undre grfinsm&t
mingrepp
minspel
grsnsm&tens mittvsrde
medelgrepp
medelpassning
medelspel
max. materialmstt ; gsgr&ns
ovre gt%nsm&t
maxgrepp
Swedish
Japanese
Figure 13
-
-
4.3.1
Figure 13
4.3.3.2
4.9.1
4.8.1
-
-
-
-
4.12
4.3.3.1
Reference clause
G
Q iii
I# L_* .. ma
0
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
I)
(960)
dimension sans indication (directe) de tolerances
douille E= al&age]
facteur de tolerance (i, I)
tolerance statistique
palier de dimensions nominales
&arts symetriques
dimension auxiliaire
dimension de reference theoriquement exacte
limite d’ajustement le plus etroit
size without (direct) tolerance indication
sleeve [ = hole1
standard tolerance factor (iI I)
statistical tolerance
step [range] of nominal sizes
symmetrical deviations
temporary size
theoretically exact reference size
tightest extreme of fit
66
67
68
69
70
71
72
In French a “dimension”
is named “tote”
pa3Mep
dimension ; tote 1)
size ; dimension
64
bH bl fi
TeM-
AonycKa
HOMM-
s;rpa3Mep
b-
ble
when it is on a drawing.
Hau6Onee nnorHaft nocwka
pa3Mep
TeopeTwlecKwl
H bl
BcnoMoraTen
OTKJlOHeHMFl
CMMMeTpWlH
POB
Han bH blX pa3Me-
MHTepBaJl
AonycK
CTaTMCTlNeCKMh
(i, I)
eAuH&a
[ = OTBepCTkle]
b40
yKa3aHvlfl
KaJWl[ip-KOJl
AonycKa
Moral
pa3Mep 6e3 [npn-
(%I
65
relative interference (%o)
63
Ban
OTHOCMTeJl
sasop
OTHOCMTeJlbHbl~
arbre
jeu relatif MO)
relative clearance (960)
62
bHaFl
nepa-rypa
HOpMaJl
POB
shaft
temperature de reference
reference temperature
61
HOMM-
Han bH blX pa3Me-
MHTepBaJl
HaTRr
palier de dimensions nominales
range [step] of basic [nominal] sizes
60
Russian
jeu relatif No)
French
English
Reference No.
gruppo di dimensioni nominali
unidad de tolerancia (i, I) tolerancia estadistica grupo de medidas nominales
Toleranzfaktor (i, I); Toleranzeinheit statistische Toleranz Nennmat3bereich
medida absoluta de referencia
I ajuste lfmite con minim0 juego
Mindestpassung ; engste Grenzpassung
medida auxiliar
theoretisc h genaues Bezugsmal3
Hilfsmaf3
desviaciones simetricas
tolleranza statistica
casquillo I= agujerol
Hiilse [ = Bohrungl
symmetrische Abmal3e
dimensione senza indicazione [diretta] di tolleranza
medida sin indicacion directa de tolerancias
Ma8 ohne [direktel Toleranzangabe ; Freimaf3
accoppiamento limite il piti, stretto
dimensione teoricamente esatto di riferimento
dimensione ausiliaria
metrici
scostamenti sim-
unita di tolleranza (i, I)
bossolo [ = forol
dimensione
albero
medida ; dimension
eje
Welle
interferenza relativa (960)
giuoco relativo 060)
temperatura di riferimento
grupo di dimensionali nominali
Italian
Ma13
aprieto relativo (960)
juego relativo 060)
relatives Spiel (960); bezogenes Spiel relatives ii berma13; bezogenes ijbermat3 (960)
temperatura de referencia
grupo de medidas nominales
Nennmaf3bereich
Bezugstemperatur
Spanish
German
I
min. granspassning
teoretiskt exakt referensmstt
hjUpm&t
symmetriska avmatt
steg (omr8den) av nominella m&t
statistisk tolerans
toleransenhet ii, I)
hylsa [ = haI]
icke direkt toleranssatta m&t
m&t ; dimension
axel
relativt grepp (960)
relativt spel (960)
referenstemperatur
basm&tsomraden
Swedish
-
-
-
-
-
-
Japanese
A.2
-
4.7.5
-
-
4.3
4.1
-
-
7
A.2
Reference clause
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited. none Aonycka pa3Mep c
4onyc.k nocaflw
riynesaa nwwrfl
degre de tolerance ; qualite de tolerance (ancien)
tolerance d’ajustement ; variation de I’ajustement
tolerance de forme
tolerance de position
position de la tolerance
serie de tolerances
symbole de to&rances
systeme de tolerances
zone de tolerance
dimension toleran&e
ajustement incertain
&art superieur
tolerance d’ajustement .
ligne zero
tolerance grade; grade of tolerante
tolerance of fit ; variation of fit
tolerance of form
tolerance of position
tolerance position
tolerance series
tolerance symbol
tolerance system
tolerance zone
toleranced size
transition fit
upper deviation
variation of fit; fit tolerance
zero line
77
78
79
80
81
82
83
84
85
86
87
88
89
90
b 4onycKa
C#lOPM bl
0603t-m
Hlfle
sepxriee OTKflOHe-
nepexofiHafr nocaAka
#qo-
AOnyCKOB
~OnycKoM
nyCKOB
CMCTeMa
Yewe
ycnosrioe
PflA JjOnyCKOB
p(OnyCKOB
pacnonomewe
XeHMFl
Aonyck pacnono-
AOnyCK
#onycr< noca&w
creneti
none Aonycka
classe de tolerance; serie de tolerances d’u ne zone
tolerance class
.
76
AonycK
Russian
tolerance
French
tolerance
English
75
efer!nce No.
formtolerans
serie av toleransvidder toleranssymbol
tolleranza di forma tolleranza di posizione posizione di tolleranza serie [gamma] di tolleranza simbolo di tolleranza
tolerancia de forma tolerancia de position posici&n de tolerancia serie de tolerancias
Nullinie
linea cero ; linea de referencia
tolerancia de ajuste
linea dello zero
tolleranza [variazione] di accoppiamento
scostamento superiore
desviacion superior
oberes Abmaf3
Pal3toleranz
accoppiamento incerto
ajuste indeterminado
0 bergangspassung
dimensione con tolleranza
zona de tolerancia
Toleranzfeld medida con tolerancia
zona di tolleranza
sistema de tolerancias
Toleranzsystem
toleriertes Ma13
sistema di tolleranze
simbolo de tolerancias
Toleranzsym bol ; Toleranzkurzzeic hen
Toleranzreihe
Toleranzlage
Lagetoleranz
Formtoleranz
nollinje
passningsvariation ; passnings toleransens vidd
ijvre gransavm&tt
mellanpassning
toleransbestamt mStt
toleransomrSde ; toleranszon
toleranssystem
toleranslage
IBgetolerans
passningens toleransvidd ; passningsvariation
tolleranza di accoppiamento
tolerancia de ajuste ; variation de ajuste
Pal3toleranz
toleransgrad
grado di tolleranza
grado de tolerancia
-
-
-
9
J!iH%
gs!ibs
C‘dt;&&L’o3
-m if&sgg
qqgjrg&
/k\EH
3ss~
-$-~~~~+j
Q$gga,
WSSE
mii!Js ,
l;f:ao$wcl)
/k\Ewi
/k\gjg
Toleranzgrad ; Toleranzqualitat (ehemals)
g-B/k\%
fi=
=j x
JapandO@
toleransvidd ; tolerans tolerans ; toleransklass
I
Swedish
cl&se-di tolleranze I.
tolleranza
Italian
. clase de tolerancia’s ; serie de tolerancias de un camp0
tolerancia, ’ ’ ,:-. .
Spanish
Toleranzklasse ; Toleranzfeldre/he e.
Tderanz
German
’
4.5
4.10.4
4.6.1 .I
4.10.3
-
4.7.3
1 and 2
5.2.2
-
497.3
-
5.3.2
4.10.4
4.7.2
4.7.4
4.7
Reference: clause
This page intentionally leff blank
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
Is0 286-l : 1988 E)
UDC 621.753X2 Descriptors
: dimensional tolerances,
fits, fundamental tolerances,
definitions’
symbols,
designation’
Price based on 30 pages
© ISO 2009 - This is a single-user license for personal use only. All other uses prohibited.
schematic representation’
dimensions.
View more...
Comments