ISMC 2016 Primary 3 Solutions
September 5, 2022 | Author: Anonymous | Category: N/A
Short Description
Download ISMC 2016 Primary 3 Solutions...
Description
V84
7. 766
37 =: (766 ‘ (766 ‘ =:) =:) ü 3 1 37
37 =: 1 grm 37 goe . Ujm+ouacmrs
3.
Ujm ouacmrs no Hbkuao C grm auktnpkms b` 0. Jmohm, tjm ouacmr 5: wbuke wbuke jgvm cmmo no Hbkuao C. Ujmrm`brm, tjm ouacmr 5< wgs no Hbkuao G. G
C
= 77
0 73 7:
H 7 < 78 7>
E 3 : 75 36 30
M 8 > 7= 37 3<
@ 5 76 70 33 3:
oe
re
8.
Mkkmo ns cmtwmmo Enogj goe Hycnk, sb Mkkmo ns 3 goe Hycnk ns 8 . Hycnk ns cmtwmmo Cnkky goe Mkkmo, sb Cnkky aust cm 5tj.
5.
Ujmrm grm < cnres butsnem tjm squgrm goe > cnres butsnem tjm hnrhkm. Mstjmr ommes tb ergw 3 abrm cnres no tjm spghms tjgt grm nosnem tjm hnrhkm cut obt nosnem tjm squgrm.
C
C
=.
386 ‘ 386 ‘ 76< 76< 1 738 Ujmrm grm 738 Ü 3 1 350 ebts gktblmtjmr. 7 br 8 Ü 78 Ujm rmhtgolkm hbuke cm 8> ha cy 7 ha, br 78 ha cy 8 ha. Kmoltj b` squgrm 1 76 ha Kmoltj b` rmhtgolkm jgs tb cm abrm tjgo 76 ha cut kmss tjgo t jgo 36 ha. Jmohm kmoltj b` rmhtgolkm 1 78 ha, obt 8> ha. Ujmo crmgetj b` rmhtgolkm 1 78 ‘ 78 ‘ 76 76 1 8 ha Vmrnamtmr b` rmhtgolkm 1 (78 + 8) Ü 3 1 83 ha
77. 3675 3675 ‘ ‘ 7>>> 7>>> 1 7= ymgrs Gamkng ns 7= ymgrs ymgrs bkemr tjgo Cbccy. Cbccy. Gamkng wnkk wnkk cm twnhm gs bke gs Cbccy Cbccy wjmo jm jm ns 7= ymgrs bke. 3675 + 7= 1 363> Gamkng wnkk wnkk cm twnhm gs bke gs Cbccy Cbccy wjmo Cbccy Cbccy ns 7= ymgrs bke bke no 363>. 73.
78 N` Sus ns snttnol snttnol bo tjm km`t b` Pgk, tjmo tjmo Pgk ns bppbsntm Una, wntj wntj Sus cmtwmmo cmtwmmo tjma. Xga ns bppbsntm Sus goe Una ns bo Xga„s rnljt. rnljt. 75. Dgams wgs gjmge b` Agrnga. Xntn wgs : ‘ 0 ‘ 0 1 3 a cmjnoe Agrnga. Xnohm Gkn wgs < a gjmge b` Agrnga wjnkm Dgams wgs : a gjmge b` Agrnga, Gkn ns 7 a cmjnoe Dgams. Ujmrm`brm, tjm bremr wgs Dgams, Gkn, Agrnga goe Xntn. Xmhboe no tjm rghm wgs Gkn.
7=.
70. 78
78
73
73
77
77
m 76 k p b > m p : ` b < r m c a u O
76 > : < 0 = 5 8 3 7
j s n ` ` b r m c a u O
0 = 5 8 3 7 7
3
8
5
=
Cus Xtbps
Uboy Auruk
Gceuk
Cbys
Auruk jgs 78 ‘ 78 ‘ : : 1 = `nsj Uboy jge 78 ‘ 78 ‘ 5 5 1 > `nsj 7. Xnohm M ns wjntm goe wjntm ebms obt obt tbuhj mntjmr pnoi br lrmmo, tjmo G goe C grm mntjmr pnoi br lrmmo. Sme goe ymkkbw jgs tb cm mntjmr E br @ snohm tjmy eb obt tbuhj mghj btjmr.
M G
Ujmrm`brm, H jgs tb cm ckghi.
H @ C
36. Ubtgk ouacmr tjgt Dbjo, Imo goe Knbomk jgvm 1 (3= + 36 + 87) ü 3 1 8: Ouacmr b` cbbis Knbomk jgs 1 8: ‘ 8: ‘ 3= 3= 1 78 Ouacmr b` cbbis Imo jgs 1 8: ‘ 8: ‘ 36 36 1 7: Ouacmr b` cbbis Dbjo jgs 1 8: ‘ 8: ‘ 87 87 1 < Imo jgs tjm abst ouacmr b` cbbis. Jm jgs 7: cbbis.
37.
33. Grrgolm Gr rgolm tjm lumssms no gshmoenol bremr4
35 3= ¤ 3< ¤ 3> ¤ 87
Ujm ns 3 lumssme grm wrbolhbrrmhtky. cy 39 goe 35 ns wrbol cy 89 goe 87 ns wrbol cy 5.goswmr Ujmrm`brm, wgs Egvne wjb
38.
Sme Cgkks 756 ^mkkbw Cgkks
<
< uonts 1 756 ‘ 756 ‘ < < 1 788 7 uont 1 788 < 1 7> 8 uonts 1 8 Ü 7> 1 =< Ouacmr b` ymkkbw cgkks 1 =< + < 1 05
35. G`tmr4
>
Ggrbo
3
Jgruo 7
3 3
7>
76
7> 7> ‘ ‘ 7 7 1 7: 7: ü 3 1 > G`tmr lnvnol tjm hbnos, hbnos, Ggrbo jgs > h hbnos bnos goe Jg Jgruo ruo jgs > + 7 1 76 hbnos hbnos Cm`brm lnvnol tjm hbnos, Ggrbo jgs > ‘ > ‘ 3 3 1 < hbnos goe Jgruo jgs 76 + 3 1 73 hbnos
3=. Ujm tbp shbrmr `br Agtjmagtnhs ns g lnrk, lnrk, jmohm nt jgs tb cm mntjmr Mvmkyo br Agry. Jbw Jbwmvmr, mvmr, snohm Agry ene obt eb wmkk `br Agtjmagtnhs, tjmo tjm tbp shbrmr `br Agtjmagtnhs ns Mvmkyo. Umrmohm, wjb ns obt lbbe gt Molknsj, ebms obt jgvm g twno, sb jm ns obt tjm Jnstbry tbp shbrmr. Jmohm, Umrmohm ns tjm tbp shbrmr `br Xhnmohm. Agry, wjb ene obt eb wmkk `br Jnstbry, ns tjm tbp shbrmr `br Molknsj. @nogkky, tjm tbp shbrmr `br Jnstbry ns Cbccy.
Agtjmagtnhs Molknsj Jnstbry Xhnmohm
Cbccy x x x
Umrmohm x x x
Mvmkyo x x x
Agry x x x
View more...
Comments