Inverse Trignometry DPP
Short Description
carrer point...
Description
CAREER POINT
Fresher Course for IIT JEE (Main & Advanced)–2017 Course : Fresher(XL) Batch
DAILY PRACTICE PROBLEM SHEET Subject : Mathematics
DPPS 1
Topic : Inverse Trigonometric Function Q.1
Q.2
Q.3
Q.4
Q.5
3π x –1 1 The number of real values of x satisfying tan–1 is : + tan 3 = 2 4 1− x x (A) 0 (B) 1 (C) 2 (D) infinitely many
If the equation sin–1(4x – x2 – 5) + cos–1(4x – x2 – 5) + λx = 0 has a real solution. Then the value of [λ] is: (where [⋅] denotes greatest integer function) (A) –2 (B) –1 (C) 0 (D) Infinitely many
1 1 1 tan–1 + tan–1 + tan–1 + ……. ∞ = 3 7 13 π π π (B) (C) (A) 4 2 3
13π –1 –1 tan–1 – tan + cot (9) + cosec 8 7π (A) π (B) 8 If
∑ tan r =1
(A) – Q.7
1 3
–1
Q.9
41 is equal to 4 5π (C) 8
4r + 4 π + cot–1 m, then m is : 3 =– 2 4 4 r + 4 r + 3 r + 3 1 (B) (C) 3 3
(D)
3π 4
(D) – 3
The value of Lim (sin–1 [sin x] + cos–1 [cosx] – 2tan–1 [tan x]) is equal to [Note : [k] denotes largest integer x →0
function less than or equal to k.] π (A) π (B) 2 Q.8
π 6
π θ3 θ5 θ 7 θ2 θ4 If tan–1 − α + θ − then maximum value of α + − + .....∞ + cot–1 α − 1 + − + .....∞ = 3! 5! 7 ! 2! 4! 2 equals to 1 1 1 (B) 1 (C) (D) (A) – 2 2 2
∞
Q.6
(D)
(C)
3π 2
(D) non-existent
Number of values of x satisfying the equation cos–13x + sin–12x = π is (A) 0 (B) 1 (C) 2 (D) 3 2 2x –1 x − 1 , then the value of (f(10) – g(100)) is equal to Let f(x) = sin–1 and g(x) = cos 2 2 1+ x x +1 (A) π – 2(tan–1(10) + tan–1(100)) (B) 0 (C) 2(tan–1(100) – tan–1(10)) (D) 2(tan–1(10) – tan–1(100))
CAREER POINT, CP Tower, IPIA, Road No.1, Kota (Raj.), Ph: 0744 -5151200
www.careerpoint.ac.in
Page # 1
Q.10
Q.11
x2 − c π π . Then the possible values of 'c' for which g is Let g : R → , is defined by g(x) = sin–1 2 6 2 1+ x surjective function, is 1 1 1 1 (B) − 1, − (D) − , 1 (A) (C) − 2 2 2 2 1 1 > sec–1 Statement-1 : cosec–1 + 2 2
1 1 + 2 2
Statement-2 : cosec–1 x > sec–1 x if 1 ≤ x < 2 (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True. Passage # 1 (Q.12 & 13)
Q.12 Q.13
Q.14
Consider a real-valued function f(x) =
sin −1 x + 2 + 1 − sin −1 x
The domain of definition of f(x) is (A) [–1, 1] (B) [sin 1, 1]
(C) [–1, sin 1]
(D) [–1, 0]
The range of f(x) is (A) [0, 3 ]
(C) [1,
(D) [ 3 , 6 ]
(B) [1,
3]
6]
Match the following Column – I with Column - II (A) (B) (C)
(D)
Column – I If the equation x2 + 4 + 3 sin(ax + b) – 2x = 0 has atleast one real solution, where a, b ∈ [0, 2π], then sin(a + b) can be equal to sin–1 x ≤ cos–1 x, then x can be equal to The number of the ordered pairs (x, y) satisfying |y| = cos x and y = sin–1(sin x), where –2π ≤ x ≤ 3π, is equal to nπ 2 and If n ∈ N and the set of equations cos–1 x + (sin–1 y)2 = 4 π2 (sin–1 y) 2 − x = is consistent, then n can be equal to 16
Q.15
π 1 π 1 1 −1 1 −1 1 Find the value of tan + cos + tan − cos . 2 n =1 4 2 n n 4 2
Q.16
If x = α satisfies the equation
Column – II
(P)
–1
(Q)
0
(R)
1
(S)
4
(T)
5
100
∑
sin −1 x 2 + cos −1 x = – 3, then find the value of (α2 + 2α + 3). −1 2 −1 cos x + sin x ANSWERS :
1. (A) 2. (B) 3. (A) 8. (A) 9. (C) 10. (C) 14. A → P; B → P,Q; C → T; D → R
4. (D) 11. (A) 15. 5050
CAREER POINT, CP Tower, IPIA, Road No.1, Kota (Raj.), Ph: 0744 -5151200
5. (C) 12. (C) 16. 2
6. (A) 13. (D)
www.careerpoint.ac.in
7. (B)
Page # 2
View more...
Comments