Introduction to Metallurgy An Interactive Video Teletraining
Course
Developed and Presented by
Terry Khaled National Resource Specialist Metallurgy
Federal Aviation Administration April 30, 1998
Table of Contents
GETTING STARTED How Do I Use This IVT Guide? . ... ... .... .. ... .. ... ... .. ..... .. ....
1
I.
AIRFRAME
ENGINEERING
CURRICULUM What Does the Curriculum Cover? ... ... ... ...*................*... Two-Week Job Function Course .,.,......*........*......... Overviews of Technical Subjects . ... .. ... ... ... ... .... .. .... Core Technical Subjects Courses ,.........................**
II.
IVT COURSE ORIENTATION 6 About This IVT Course ... .. ....*.............*.......................... What Is IVT? . .... ... ... .... ... ... ... .... .. .... ... ... ... ... .. ... ... ... ... .... .. 6 Who Is the Target Audience? .... .. ...._...........--.................. 7 Who Is the Instructor? . .... ... .... ..*................................... 7 8 What Will You Learn? .**.......*..............*..*...................... How Will This Course Help You On the Job? .. ... ... .... .. 8 What Topics Does the Course Cover? .... ... .. ... ... ... .... ... .. 8 What Are Some Good References? .. ... .... .. ... ... ... ... ... .... .. 10
III.
SELF-ASSESSMENT & EXERCISES Pre- & Post-Course Self-Assessment Questions .. .... ... ... 11
APPENDICES A. Metallurgy IVT Presentation Visuals B. Aircraft Alloys B-l. Aluminum Alloys , B-2. Titanium Alloys B-3. Carbon, Low Alloy, and Alloy Steels B-4. Corrosion Resistant (CRES) Steels B-5. Superallbys C. Self-Study Video Course Evaluation Form
Instructional Video Teletraining Course Federal Aviation Administration
April, 1998
Introduction to Metallurgy i
Getting Started
How Do I Use This IVT Guide?
This IVT guide provides you with the position of this course in the Airframe Engineering Curriculum, an orientation to the IVT course, support materials for use during the broadcast, selfassessment and practice exercises, and the course evaluation. Follow these steps to complete your study. 1. Read Section I, Airframe Engineering Curriculum, to familiarize yourself with the the overall scope and format of the curriculum. 2. Review Section II, IVT Course Orientation, before the broadcast, if possible, to get an overview of the purpose of the course, the target audience, the instructor, what you will learn, how this course will help you on the job, the topics covered in the course, and some good references on the topic. 3. Answer the pre-course self-assessment questions in Section III, Self-Assessment . 4. Turn to Appendix A, Metallurgy IVT Presentation Visuals, and refer to it during the broadcast. Appendix A contains the visual support material used by the instructor during the broadcast. You can use these visuals to take notes and follow along with the broadcast presentation. 5. Refer to Appendix B, Aircraft Alloys, for additional information, including designation systems and chemical composition listings. 6. Complete the post-course self-assessment in Section III, Self Assessment. 7. Complete the IVT Course Evaluation Form in Appendix C and send it to your Directorate/Division Training Manager (ATM).
Instructional Video Teletraining Course Federal Aviation Administration
April, 1998
Introduction to Metallurgy I
Airframe Engineering Curriculum
I.
Airframe
What Does the Curriculum Cover?
Engineering Curriculum ,The Airframe Engineering Curriculum fits into the broader AIR Training Program that is summarized in the following figure.
An Overview ASE Job
Airframe Function
o Z-week I o Technical / 0 Follow-an
Course Topics-IVTNideo Co”r~n
/ :
j
1 I
I
ASI JabFunction
ASE Systems Job Function
ME Propulsion Job Function
: )
/
i
DACT.OAT
I
1 Flight Test Job Funcdon
First
Year
with
Aircraft
-.--------
*-
Certi~c~n--~z_---
I
I
Continuing
Development
Within the context of the AIR Training Program, the Airframe Engineering Curriculum is designed to effectively meet the critical safety mission of the FAA by addressing the following Service goals: Standardization l
Promote standardization throughout the organization in task accomplishment and application of airworthiness regulations in order to achieve uniform compliance.
Instructional Video Teletraining Course Federal Aviation Administration
April, 1998
Introduction to Metallurgy 2
Airframe Engineering ,Job Performance
Curriculum
Proficienw
Reduce significantly the time required for newly-hired engineers to attain full job performance proficiency.
l
l
Customer Service
Establish and maintain appropriate, effective, and responsive communication, collaboration, leadership, and teamwork with both internal and external customers.
l
In addition to the Service goals, the Airframe Engineering Curriculum is designed to provide ASEs with job function training in three domains: Tasks and procedures governing the work of engineers in design approval, technical project management, certificate management, and designee management.
l
l
l
FAR airworthiness requirements that are the purview of airframe engineers. Generally they are subparts C and D of FAR Parts 23,25,27, and 29. Technical subjects essential for all new engineers to meet both introductory requirements and, later, minimum technical proficiency level requirements.
The resulting Airframe Engineering Curriculum structure consists of three main types of training opportunities 1. Two-Week Job Function Course 2. Overviews of Technical Subjects 3. Follow-on Core Technical Subjects Courses Two-Week Function Course
Job
The Two-Week Job Function Course uses an instructor-led, classroom-based format with lecture, discussion, and individual and group activities. Supporting materials used in the course include print, overhead transparencies, videotapes, job aids, and documents and sample reports.
Lnstructional Video Teletraining Federal Aviation Administration
Course
Introduction April,
1998
to Metallurgy 3
Airframe Engineering Curriculum The course is divided into the following two major sections: Week I Certification Tasks - includes design approval, technical pr6ject management, certification management, and DER management.
l
Week 2 FAR Requirements and Key FAR Sections - includes training in the subparts of the FAR that apply to airframe engineers (subparts C and D) at two levels: an overview of those subparts across FARs 23,25,27, and 29; and in-depth discussion of significant sections of the FAR that are important to the Service. The importance of these sections may stem from problems in interpretation and application of requirements, technical complexity of a design, “high visibility” projects, or safety considerations that are paramount.
l
Overviews of Technical Subjects
High-level overviews of ten technical subjects are presented by NRSs or other senior engineers. These overviews are available in two modes: l
l
An initial live three to four hour IVT satellite broadcast with accompanying course material is received at each Directorate and other downlink sites. A Video/Self-Study Training Package adapted from the initial IVT presentation and accompanying course material is available through the Directorate Training Manager.
Basic concepts and FAA-specific applications and examples are provided for each of the following ten technical subjects: l
Aircraft Loads
l
Fatigue/Fracture Mechanics/Damage
l
Tolerance
Composite Materials (Design/Certification in Composite Aircraft Structure)
Instructional Video Teletraining Course Federal Aviation Administration
April, 1998
Considerations
Introduction to Metallurgy 4
Airframe Engineering Curriculum Crashworthiness/Occupant
l
Protection
Material Properties/Manufacturing (Introduction to Metallurgy)
l
l
Stress Analysis
l
FluttexYAeroelastic Stability
l
Structural Test Methods
l
Design and Construction
l
Repairs and Modifications
Processes of Metal
Each technical subject overview is designed to not only provide ASEs with the FAA perspective on the topic, but also serve as an indicator of what further training may be needed. Core Technical Subjects Courses
As a follow-on to the Overviews of Technical Subjects, the curriculum will provide more in-depth training on the following three subject areas: l
Basic Loads
l
Stress Analysis and Structural Test Methods,
l
Repairs and Modifications
These core technical subjects are essential to the technical work of the airframe engineer in a regulatory environment regardless of product or technology. Training in each of the core subjects will be designed to bring airframe engineers to a minimum level of technical proficiency and to help promote proficiency in the application of the technical knowledge in an office work environment. Additional technical training for engineers beyond these core subjects will depend largely on AC0 organizational needs stemming from customer requirements, products certified, emerging technology, and the number of staff requiring more specialized training. In short, the more advanced the technical training required, the more individualized it becomes. Instructional Video Teletraining Course Federal Aviation Administration
April, 1998
Introduction to Metallurgy 5
IVT Course Orientation
II.
IVT Course Orientation
About This IVT Course
Introduction
to Metallurgy
is one in a series of ten “Overviews of Technical Topics” in the Airframe Engineering Curriculum designed to prepare you to effectively meet the critical safety mission of the FAA. [For more information oy2the Airframe Curriculum, rejer back to Section I of this guide. J Through a five-hour Interactive Video Teletraining (IVT) format, Terry Khaled, the FAA’s National Resource Specialist for Metallurgy, will provide you with the basic concepts of metallurgy, including information on solidification and solidification structures and fabrication methods and their effects, and, woven throughout the course, key points to look for or be aware of in a certification project, including knowing when to call in a metal specialist.
What Is IVT?
Interactive Video Teletraining, or IVT, is instruction delivered using some form of live, interactive television. For the overview courses, the instructor delivers the course from the television studio at the FAA Academy in Oklahoma City. Through the IVT broadcast facility instructors are able to use a variety of visuals, objects, and media formats to support the instruction. Participants are located at various receive sites around the country and can see the instructor and his/her materials on television sets in their classrooms. The participants can communicate with the instructor either through a microphone and/or the simple-to-use Viewer Response System keypads. During the live presentation, when a participant has a question or the instructor asks for specific participant responses to questions, the participant(s) can signal to the instructor using their keypad. The collective participant responses or the name
Instructional Video Teletraining Course Federal Aviation Administration
April, 1998
Introduction to Metallurgy 6
IVT Course Orientation of a specific participant signalling a question are immediately visible to the instructor on the console at the broadcast site. The instructor can then respond as needed. When the instructor calls on a specific participant to speak from a site, participants at each of the other sites can simultaneously hear the participant who is speaking. Who Is the Target Audience?
This course is designed for: l
l
Who Is the Instructor?
Terry
Khaled
New and experienced FAA airframe engineers who are not proficient or expert in metallurgy but who require enough knowledge of the subject to be able to review data submitted by manufacturers. Inspectors who enforce inspection procedures resulting from the engineering evaluation required to satisfy FAR 25.571.
Dr. Tarek (Terry) Khaled, has more than 25 years of experience in metallurgical engineering, mechanical design, manufacturing, and project management. He has worked at five aircraft manufacturing companies, coming to the FAA from Rockwell International, Space Systems Division. His latest experience in airframe materials was gained through work on the space shuttle, the F- 18, and the F-l 11. Dr. Khaled also has experience with the heat resistant alloys that are used in turbine engines, which was gained by working on fighter engines and aircraft power systems. Terry enjoys reading about military history, hardware, tactics, and strategy. He also loves middle eastern foods.
Instructional Video Teletraining Federal Aviation Administration
Course
Introduction April,
1998
to Metallurgy 7
IVT Course Orientation What Wili You Learn?
How Will This Course Help You On the Job?
After completing this course you will have a basic understanding of the concepts and principles of metallurgy, including: l
The nature of metals.
l
Solidification
l
Deformation and mechanical working.
l
Strengthening mechanisms.
l
Effects of fabrication and finishing operations on properties.
After completing this course, you should be able to: l
l
l
l
l
What Topics Does the Course Cover?
and ingot structures.
Describe how metals and alloys solidify and list the factors that control ingot structure. Understand how mill products are produced from ingots by hot and cold working, and be able to distinguish cold from hot working. Describe how metallic materials are hardened by heat treatment and by other means. Understand how fabrication and finishing operations affect the properties of metals and alloys. Recognize when, for certification purposes, a metallurgist needs to be part of the FAA team.
The following topic outline is intended to give you an overview of the course content. In addition to this outline, Appendix A contains the visual presentation material and supporting text for each figure used by the instructor during the broadcast. I.
Introduction
II.
The nature of metals 1.
Atomic and crystal structures
2.
Polymorphism
Instructional Video Teletraining Course Federal Aviation Administration
April, 1998
Introduction to Metallurgy 8
IVT Course Orientation III.
IV.
Solidification
structures
1.
Pure metals
2.
Alloys
3.
Phase diagrams
4.
Cast/ingot microstructure control
Fabrication methods - overview 1.
Mill products and mechanical working
2.
Deformation
3.
V.
and solidification
a.
Single crystal
b.
Polycrystalline
C.
Effects of temperature
d.
Cold and hot working
e.
Primary and secondary working
metals
Strengthening in metals a.
Dispersion hardening
b.
Strain hardening
C.
Grain size
d.
Solid solution strengthening
e.
Second phase hardening
f.
Hardening heat treatments
Effects of fabrication operations
VI. Effects of finishing operations
instructional Video Teletraining Course Federal Aviation Administration
April, 1998
Introduction to Metallurgy 9
IVT Course Orientation What Are Some Good References?
There are many references related to metallurgy, too numerous to mention here. However, the following references contain many other references on these subjects and will, help to guide you in the right direction. Avner, Sydney, H. Introduction McGraw-Hill, 1964.
to Physical Metallurgy.
Guy, A.G. Physical A4etallurgy for Engineers. AddisonWesley Pub. Co., 1963. Smith, M.C. Principles of Physical Metallurgy. Brothers Pub., 1956.
Harper &
Burton, M. S. Applied Metallurgy for Engineers. McGrawHill, 1956. Keyser, C.A. Materials Science and Engineering, 2nd Ed. Charles E. Merrill Pub. Co., 1974. Flinn, R.A. & Trojan, PK. Engineering Materials and Their Applications. Houghton Mifflin Co., 1975. Doyle, LE. Manufacturing Processes and Materials for Engineers. Prentice-Hall, Inc., 1985. United States Steel. The Making, Shaping, and Treating of Steel, IOth Ed. 1985. The Metals Handbook Series. American Society for Materials (20 volumes).
Instructional Video Teletraining Course Federal Aviation Administration
April, 1998
Introduction to Metallurgy 10
Self-Assessment
IV. Self-Assessment Pre- & PostCourse SelfAssessment Questions
The instructor will ask you at the begining and end of the presentation to respond to the following four questions about metallurgy as it impacts the certification process. Rate your confidence level for each of the following before and after completing the course.
statements
1. Rate your level of understanding about the facotrs that control ingot structure and properties. Very Confident BEFORE AFTER
THE COURSE: THE COURSE:
Moderately Confident
Not Confident
0
0
III
cl
cl
cl
2. Rate your level of understanding of the effects of mechanical working on microstructure and properties. Very Confident BEFORE AFTER
THE COURSE: THE COURSE:
Moderately Confident
Not Confident
Cl
cl
III
q
I7
cl
3, Rate your understanding of how hardening by heat treatment impacts microstructure and properties. Very Confident BEFORE AFTER
THE COURSE: THE COURSE:
InstructionalVideo TeletrainingCourse FederalAviation Administration
Moderately Confident
Not Confident
0
cl
El
0
q
Cl
April, I998
Introductionto Metallurgy 11
Self-Assessment 4. Rate your understanding of how fabrication and finishing operations can affect the microstructure and properties. Moderately Not Very Confident BEFORE AFTER
THE COURSE: THE COURSE:
InstructionalVideo TeletrainingCourse FederalAviation Administration
Confident
Confident
El
0
cl
0
cl
cl
April, 1998
introductionto Metallurgy I2
Appendix A
Appendix A
Introduction to Metallurgy IVT Presentation Visuals
Instructional Video Teletraining Course Federal Aviation Administration
April, 1998
Introduction to Metallurgy A
INTRODUCTION TO METALLURGY
By: Terry Khaled, Ph.D., NRS-Metallurgy
l
l
Certification efforts require knowledge of type design Type design + Form, fit, and function 4 Materials and processes - Material type and condition/heat treatment - Surface finishing (coatings, shot peening) - Inspection and test
I. Materials design
and processes
integral
to type 2
IVT Course Federal Aviation Authority
Introduction April, 1998
to Metallurgy A- I
cc After completing this course, you should be able to: Describe how metals and alloys solidify and list the factors that control ingot structure. l
. Understand how mill products are produced from ingots by hot and cold working, and be able to distinguish cold from hot working. . Describe how metallic materials are hardened by heat treatment and by other means. . Understand how fabrication and finishing operations affect the properties of metals and alloys. . Recognize when, for certification purposes, a metallurgist needs to be part of the FAA team. 3
. Metals
Organic (polymers/plastics,
Non-metals
Materials
r
Ceramic (Al,03, SiO,)
I
-
wood)
c Inorganic
Non-ceramic (C, B, water, graphite, CaO) r Metal-Ceramic Composite
Note:
Elemental Compound
IVT Course Federal Aviation Authority
semiconductors semiconductors
Organic-Ceramic +-I . LOther (Carbon-Carbon) (Si, Ge) fall under metals. fall under inorganic materials.
4
Introduction April, 1998
to Metallurgy A- 2
l
Science,of,converting rocks into metals and alloys such as those used on aircraft, autos, & other prqducts. i Branches - Extractive - Ingot - Powder. - Physical
,
,
6
IVT Course Federal Aviation
introduction Authority
April,
1998
to Metallurgy A- 3
. Extraction
of metals from ores
+ Mining + Ore dressing - Crushing
l
-
Grinding
-
Concentration
Extraction. - Heat
(Fe, Ni)
- Leaching -
(Ti, Co, Cu)
(Al)
Electrochemical
7
. Production
of metal and alloy ingots
+ From extracted
metals,
scrap, or both
- Refining:
Remove
undesirable
- Alloying:
Obtain desired
elements
alloys
8
IVT Course Federal Aviation Authority
Introduction April, 1998
to Metallurgy A- 4
. Use of powder + Near-net
techniques
to produce
shapes
+ Wrought powder metallurgy products (standard shapes for further processing)
9
l
Production or powder l
l
l
of finished products
Mechanical working: forging, drawing
parts from ingots Rolling,
extrudi %I9
Heat treatment Fabrication: Casting, welding, forming, coating, etc.
brazing,
10
1VT Course Federal Aviation Authority
introduction April, 1998
to Metallurgy A- 5
. Focus on three important metallurgy + Solidification l
l
Mechanical Hardening methods
pillars
of
and ingot structures working by heat treatment
and other
11
. The Nature of Metals . Solidification l
Fabrication
l
Mill Products
. Strengthening l
& Solidification
Structures
Methods & Mechanical
Working
in Metals
Effects of Fabrication
. Effects of Finishing
Operations Operations 12
IVT Course Federal Aviation
Introduction Authority
April,
1998
to Metallurgy A- 6
l
Distinctive
luster
l
Malleable,
ductile
l
+ Exceptions:
Na brittle,
Good thermal
& electrical
+ Some non-metals l
Form positive
Hg liquid, etc.
conductivity
also
ions
0 Crystalline l
Inorganic
materials
also 13
Abmic
B
c~stan
smctums
BCC
FCC
@J$gg
Atomic Structure-metallic bond + Positive “ions” surrounded by electron cloud 0 Crystal Structure + 14 basic types (metals or non-metals) + Most engineering metals
l
-Body centered - Face centered -Close-packed
cubic (KC) cubic (FCC) hexagonal (CPH)
+ Other types include (tetragonal, orthorhombic) 14
IVT Course Federal Aviation Authority
Introduction April, I998
to Metallurgy A- 7
. Metal has different l
Depending
crystal structures
on temperature
. Iron (Fe) + BCC at elevated
l
temperatures
l
FCC at intermediate
l
BCC at the lower temperatures
Titanium
temperatures
(Ti)
+ BCC at elevated
temperatures
+ CPH at the lower temperatures 15
. Metals exist in three states + Vapor + Liquid + Solid
. Solidification:
Liquid-
+ Also known - Liquid: - Solid:
solid
as crystallization No crystal
Crystal
structure
structure
16
IVT Course Federal Aviation Authority
Introduction April, 1998
to Metallurgy A- 8
.
Most metal and alloy tonnage as ingots Ingot production
l
involves
produced
melting
and solidification l
Casting is a common production method + Casting production and solidification
near-net shape involves
melting
I. It is important to understand solidification processes for pure metals and alloys 17
Topics
covered:
l
Pure Metals
l
Alloys
l
Phase diagrams
. Cast/ingot
microstructure
control
18
IVT Course Federal Aviation
Introduction Authority
April,
1998
to Metallurgy A- 9
. Slow uniform Crystallization temperature -Arrest line
l
cooling at one
. Crystallization by nucleation and growth
,98,0F
+ Solid crystals resemble trees -Called dendrites
. Dendrites touch-no l
l
eventually more liquid
Each dendrite
called
Fully solidified
o grain
microstructure
+ Single phase .- Only one pure metal l
Polycrystalline structure - More than one grain - Grains separated by grain boundaries
20
IVT Course Federal Aviation
Introduction Authority
April,
1998
to Metallurgy A- 10
. Alloys
made
+ Unintentionally - Undesirable + Intentionally -To obtain
impurities desirable
An alloy consists component
l
l
Component: compound
properties
of more than one
Metal, non-metal,
+ At least one component
or stable
must be metal 21
. Alloy system + All compositions from components l
Alloy system + Binary + Ternary
that can be made
can be
(2 component) (3 component)
+ Quaternary
system system
(4 component)
system
+ Higher systems - No specific names assigned 22
IVT Course Federal Aviation Authority
Introduction April, 1998
to Metallurgy A- I I
. An alloy consists l
of one or more phases
Phase: Uniform, homogeneous can be separated mechanically
. At elevated temperatures + Liquid phase: Amorphous
substance
(no crystal
-
structure)
At lower temperatures + Solid phase(s): Crystalline
l
Number and type of phases present depend + Composition, number of components, temperature
l
on
23
l
Solid solution l Interstitial
0
-Solute atoms (small) between solvent atoms
Solvent atoms
+ Substitutional -Solute solvent l
atoms sites
Interstitial
in
l
!zfP ?%a3
Compound: chemical formula l Metal/Non-metal (e.g., Fe&) 4 Metal/Metal
(e.g.,
l
N&AI)
o
l
0
Solute atoms
be
l fin
Substitutional
24
IVT Course Federal Aviation
Introduction Authority
April,
1998
to Metallurgy A- 12
. Summary + Cdoling l
l
sheets
describing
charakteristics
Phases present
Exist for + Binary and higher alloy systems - Binary n
systems
Basis
m Easier
for higher to work
systems with
I
IVT Course Federal Aviation
25
introduction Authority
April,
1998
I
to Metallurgy A- 13
Binary
Phase Diagmms
constructkm . Pure metal solidification
. From cooling curves . One curve per composition
l
l
Constant temperature + Arrest line
Alloy solidification l
100
l
80 60 40 20 O+%A
ljf!\!!f\\J
im
i COOLING
Temperature range No arrest line
CURVES
A
Time
ki;@&
Composition
B
PHASE DIAGRAM 26
Binary Phase Diagmms cootiinat@s l
Abscissa:
Composition
(weight or atomic %) . Ordinate: Temperature (OF or OC) Liquid + Solid
Composition
A
B 27
IVT Course Federal Aviation
Introduction Authority
April,
1998
to Metallurgy A-14
l
Determine composition of phases at any temperature (T): e.g., 80% A-20% B alloy l
7’
Construct tie line mo at T - m: Composition of solid - o: Composition of liquid
t
E!
. Determine relative amounts of phases at T
l
+ Construct
tie line at T
+ Use lever
rule (next slide)
Predict microstructure
i
i a
j
i
E 8
;*
f
;
A 100 0
9b 00 10 20 Composition
I 74 70 26 30 B 28
m
h /I\
n 10 units
A
* 6 unitsA
Fulcrum
/I \ Wt of solid phase
Wt of liquid phase
Amount
of liquid
: Amount
m ni a-------------------90%A 10 ; 60%A
0
of a
6
Liquid
o Ii uid
(%) = E
x 100
a("h)=~oxlOO
74%ii
Liquid
(%) =Lox100=62.5% ,6 a (%)=,i
x 100 = 37.5% 29
IVT Course Federal Aviation
Introduction Authority
April, 1998
to Metallurgy A-15
2800
systems
2600
+ Unlimited solid solubility - All alloys exist as one solid phase
F d 2400 L
. Example: Cu-Ni system (next slide) l
Slow uniform cooling: 50% Cu, 50% Ni alloy - Solidification by dendrite nucleation & growth
g 2200 b I+ 2000 F 1800 Rm Temp.
ICUI
% Nick&l
Ni
Nuclei (67%Ni, 33% Cu) formed in liquid (about 50% Ni, 50% Cu) Dendrites (60% Ni, 40% Cu) growing to liquid (43% Ni, 57Th Cu)
0'
lime
+ 31
IVT Course Federal Aviation
Introduction Authority
April,
1998
to Metallurgy A-16
l
Fully solidified microstructure in previous example + Single - Cu-Ni l
phase solid
Polycrystalline -More
than
solution
structure one grain
-Grains separated boundaries
by grain
+ Looks same as pu’re metal? . - Not really 32
IVT Course Federal Aviation Authority
Introduction April, 1998 I
to Metallurgy A-17
2700 -
Dendrites form over temperature range
l
+ Composition of solid varies with temperature - Richer in Cu at lower temperatures (Compare cq, a2 and as) loo0
232937 50 77 71 63 50
75 25
100% cu 0% Ni 33
l
Dendrites are not chemically homogeneous + True for all alloy systems + Distinct look under microscope
l
Inhomogeneity eliminated by + Homogenization or mechanical
anneal working
Dark areas:
Ni-rich
34
IVT Course Federal Aviation Authority
Introduction April, 1998
to Metallurgy A-18
Ai%~ySystems CompMmon& Pmpem*es
SdidSo~~ooa
l
Properties
vary with composition
+ True for all alloy systems l
Alloy properties
l
Property + Reached
maxima
differ from pure metals or minima
at different
compositions
35
ectrical resisti
IVT Course Federal Aviation Authority
Introduction April, 1998
to Metallurgy A-19
a Liquid
phase -2
solid phases
(L-
a +p )
+ At constant temperature (t& -Called eutectic temperature (lowest melting temp.) -Arrest line on cooling curve 0 Metals
A and B: Limited
. Changes
mutual
in slope of cooling
+ At beginning
solid solabilities
curve
2%end of transformations
37
90%A+
60%A+4O%B
lo%19
Time
+
0 10
20 30
40
50 6070
% metal
8090100
B -w 38
IVT Course Federal Aviation Authority
Introduction April, 1998
to Metallurgy A-20
. Properties vary with composition + True for all alloy systems -e.g., solid solution
alloys
6 Alloy properties different from pure metals
% component
B
39
Eutctic mixture
Microstructure vs Temperature for Alloys 1,2,3, and 4 [a or p formng
before eutectic referred to as primary
a or Bl 40
IVT Course Federal Aviation
Introduction’to Authority
April,
I998
Metallurgy A-21
Microstructures ,Interfaces Grain boundaries
l
l
Separate grains of same phase
Phase boundaries
l
+ Separate different phases
Cell boundaries
l
l
Separate colonies (cells) -e.g., cells of eutectic mixture
Interfaces Atomic Structure . Interfaces transition I
,
provide
+ From one orientation to other -Grains of same phas e
Grain -
- Grain boundaries
+ From one crystal structure to another -Phase
boundaries
Grain
+ Between colonies of different orientation -Cell
boundaries 42
IVT Course Federal Aviation
Introduction Authority
April,
1998
to Metallurgy A-22
--.
I
-_
0 Potential sites for + Precipitation + Phase transformation l
Impurity
segregation
+ Cracking
43
l
Constructed from cooling curves
. Involves
several
phases + 6, a Ferrite (BCC) + 6: Austenitk (FCC) + Fe&: Cementite - Orthorhombic (right angles, a#b#c)
. Covers steels & cast iron + Steels: C C 2% l Cast Irons: C X2%
IVT Course Federal Aviation Authority
Introduction April, 1998
to Metallurgy A-23
. Complexity Diagram
of phase
*Due to 3 Allotropic forms (phases) of Fe
_____________
Gff?B,c&:
2554 t-7
- 6, Y,a . Cooling
Aquid
2800
Y Fe F.C.C. nonmagnetic
curve
+3 arrest
___.
_____-_-----.--.
a Fe B.C.C.
lines
. Nucleation +6 : from melt l y : on 6 grain boundaries *a : on y grain boundaries
i, Time 45
Eutectic at 2065OF + Liquid c-g &++Fe,C
28OC
2:;
Eutectic Mixture
+ Eutectic
Mixture
- Should consist of 1666 alternate y and Fe& plates - Usually: rounded y ” areas in Fe,C matrix
+ Arrest line on cooling curve l Same solidification principles as before
h ?Eutectoid 925% F
g
1 f%; ii i i 1
t;i &I E $
I 0.8
z
#Steels&
I
IVT Course Federal Aviation Authority
I
3
4.3
5
Cast irons
1
C%
‘37
li.87
I
Introduction April, 1998
46
to Metallurgy A-24
Arrest line on cooling curve heat treatment + Basis for steel
l
IVT Course Federal Aviation Authority
a;
Y@25%
:I[
0 0.8 1
t
f;e3; 2
3
ii4.3 5i
i
1
Introduction April, 1998
to Metallurgy A-25
Representation of crystal growth from uniformly cooled melt. Crystals begin to form at random locations in melt and grow uniformly until restricted by neighbors or walls of container. a. Crystals beginning to form. b. Unrestricted c.
spherical
growth.
Metal completely solid, with shape of each grain determined interference with other grains and walls of container.
by
48
l
Nucleation Multiple random sites + Equiaxed grains
l
. Faster (but uniform) cooling + More nucleation sites (thermodynamics) + Finer grain structure - Finer grain and cell sizes l
Seeding
=b
finer grain structures
l
Finer grain
structures
mechanical
properties
better 49
IVT Course Federal Aviation Authority
introduction April, 1998
to Metallurgy A-26
Progressive formation of columnar dendrites. Freezing begins at wall of the crucible. Restriction of sidewise growth and the temperature gradient from outside to center of the melt encourage formation of columnar grain shape. a. Freezing
beginning
b. Freezing
continuing.
c. Freezing complete. of solid metal.
at container
walls.
Shrinkage
cavity is formed
at center 50
, l
Nonuniform
temperature
l
Mold walls cool faster Nucleation at mold walls
l
Growth parallel to gradient
l
-Columnar l
cooling
gradients
dendrites
Basis for + Directional solidification l Growing single crystals
(DS) : (SX)
. DS & SX used in jet engines
.,.,.. Columnar Gralns in a lead casting
51
IVT Course FederalAviation Authority
April, 1998
Introductionto Metallurgy A-27
Typical Ingot Structure Steel . Three microstructural + Fine equiaxed
zones
grains (4)
3
-Fast uniform cooling at mold surfaces
+ Columnar
grains (5)
- Growth under temperature gradient
4 Coarse equiaxed -Slow l
Casting l
uniform
grains (6) cooling
defects
Pipe (I), cavities
porosity
(Z), &
(3)
Fabrication
Methods
Topics covered: 0 Overview l
Mill products and mechanical
. Importance
of mechanical
working
working
53
IVT Course Federal Aviation Authority
Introduction April,
1998
to Metallurgy A-28
Metallic
l
components
fabricated
+ By near net shape methods -Casting -Powder
metallurgy
+ From mill products -Machining, adhesive
forming, welding, bonding, etc.
brazing,
forging,
Mill products
l
+ Bars, rods, plate, sheet, tube, wire, billet, and shapes 54 L
c
l
Mill products
produced
+ By mechanical - Ingots - Wrought l
powder
Mechanical
of’
products
working
+ Deformation temperatures - Rolling,
working
at ambient
extruding,
forging,
or elevated drawing
55
IVT Course Federal Aviation Authority
Introduction April, 1998
to Metallurgy A-29
. Produces
the useful shapes
. Breaks down coarse structure . Enhances . Closes
chemical
we use
ingot dendritic uniformity
porosity
. Improves
mechanical
properties
I
56
Topics l
l
covered:
Deformation l
Single
crystals
l
Polycrystalline
metals
Effects of temperature + Stress
relief
+ Recrystallization + Hot vs cold working
. Primary and secondary
IVT Course Federal Aviation Authority
working
57
Introduction April, 1998
to Metallurgy A-30
Study of deformation understand
l
+ Production + Properties
essential
to
of mill products of mill products
Study of deformation
l
+ Two steps -Single crystals - Polycrystalline
Debmation l
metals
- Singk Crystak
Deformation + Elastic l Plastic (permanent) - By slip on slip systems
(4 (4 (4 (b) Elastic and Permanent Deformation of Metal Loaded in Shear. (a) Original crystal, unstressed; (6) elastic strain produced by load below elastic limit; (c) increased elastic strain plus permanent strain by slip, resulting from load above elastic limit; (o’) load removed; only permanent strain remains.
IVT Course Federal Aviation Authority
Introduction April, 1998
59
to Metallurgy A-3 I
. Slip system l Close paced direction + close packed plane 4 Closest atomic spacings :. Strongest l Easier to move along than through
HCP
FCC
60
l
Stress resolved slip direction l
l
l
along
Shear component slip Normal component favors fracture
F:applied force, A: cross sectional area, T: Resolved shear stress l z =Area of slip plane= +2
=OsinX
IVT Course Federal Aviation Authority
F’ A/COS$~~*
’ = LA
SinX
CosX I
Cos k
61
April, 1998
Introduction to Metallurgy A-32
l
Slip starts + At most favorably -X,h=45°
oriented
system
+ When Tc is reached - 7,: l
critical
resolved
shear
stress
No slip when ‘c = 0 + Slip plane or direction I to tensile axis (h=90,cosh=0) l Slip plane parallel to tensile axis (2, = 0, sin x. = 0)
IVT Course Federal Aviation
62
Introduction Authority
April,
1998
to Metallurgy A-33
. Specimen l
ends forcibly
Slip planes & directions -Align
with
. Rotation
principal
=W
. All deformation l
Involve
.I Rotation l
restrained
Universal
rotate
strain
axis
preferred
orientation
processes
restrain
& preferred
orientation
phenomena
I
63
(a) Initial condition of the crystal. The location of the active primary slip plane is shown.
Direc of sli
(b) Shear can be pictured as occurring in this manner on each of the
(c) Since the axis of loading actually remains vertical, the angle changes significantly.
IVT Course Federal Aviation
Introduction Authority
April,
I998
to Metallurgy A- 34
Range of plastic deformation
n: coef.
of strain
hardening
Extension
65
Yield strength
. Releasing load in plastic range Some elastic takes place
l
recovery
+ Some permanent
set
. Generally, yield not well defined l
.z
ti __.‘/__
2 E
to
remains
i i
i
I* !I I II
point
Define 0.2% offset yield strength
v
0.2% offse
I+ -Plastic* (Permanent) strain
IVT Course Federal Aviation
I:I: ;; I: 1a:i:: II :: III I: II; !:i
____-
--_*
-. .
\, .
:: :: : :: i
IL
Strain, in/in Elastic
strain 66
Introduction Authority
April,
1998
to Metallurgy A- 35
. Each grain behaves as single crystal + Rotation & preferred orientation + Grains become elongated
After
Brittle particle
Brittle particles/ compounds
l
Before
Do not deform + Break & form broken lines
l
- Called
stringers
67
l
Mechanical working of say Fe specimen at room temperature + Same effects tensile test
observed
in
- Rotation & preferred orientation - Elongated grains & stringers l
75% prior reduction of thickness
r
Each time section is reduced + Strength + Grains:
* , ductility* more elongated
- More difficult l
Stringers:
z g
50% No prior reduction
to distinguish
finer and longer 66
IVT Course Federal Aviation Authority
April, 1998
Introduction to Metallurgy A-36
. Grain Boundaries + Obstacles -Slip -Force
to deformation
changes
direction
must
be resolved
+ Major source
from
grain
to grain
- gets smaller
of strain hardening
69
Grain
BoQandaties
and
Pmp@mes
. Finer grain sizes + Higher
strength
+ lower
ductility
l
Example:
(usually)
Iron alloys
(see graph) 7
III 0
! 2
4
I 6,
w,
IVT Course Federal Aviation
!
! 8
mm
“I,
!
!
!
’
10 70
Introduction Authority
April,
1998
to Metallurgy A-37
. Mechanical working at room temperature + Continued
of say Fe specimen
reductions*
fracture
. To avoid fracture + Must eliminate
effects
of prior deformation
- By heat treatment
Two heat treatments
l
0 Stress relief (low temperature) + Recrystallization anneal (higher temperature) 71
. Heating
at fairly low temperatures
Slow process + Elimination of effects
l
of prior deformation
- Requires very long times - Not practical l
Practical
stress
relief cycles
,
+ Only eliminate some residual stresses 6 Ineffective in elimination of effects of prior deformation 72
IVT Course Federal Aviation
Introduction Authority
April,
I998
to Metallurgy A-38
l
Heating above recrystallization temperature + New, stress
free grains.appear
-By nucleation
and growth
+ Initial room temperature restored - Further mechanical
. Used between + Also called:
properties
working
reduction Intermediate
possible
passes anneal 73
Stages of recrystallization. (a) Stress-free
nuclei appear;
(b) Nuclei grow into new crystals, and some additional nucleation;
(4
(4
(c) Original crystals disappear, and recrystallization is corn plete. (4
IVT Course Federal Aviation Authority
74
Introduction April, 1998
to Metallurgy A-39
l
For P ure Metals l
TYP tally: 0.3 - 0.5 of absolute melting tern Derature (see plot next slide)
. For alloys + Must be experimentally
determined
75
e
K
OR 3000
g 1500 IE 5s 1000 ..-i 500 z P 8 u
0
K = OC + 273 OR=OF+460
1227 2
t
727
JO00 L
oI*Y~ 0 0
4000
2000
2000
1000 Melting
540227 1I-460’ 1 -273
6000 3000
OR
h E i s ‘3 w i Fz iii u
OK
temperature 76
IVT Course Federal Aviation
Introduction Authority
April,
1998
to Metallurgy A-40
. Finer recrystallized
grain sizes
+ Higher strength + Lower ductility (usually) l
Coarse recrystallized favored by
grain sizes
Less extensive mechanical working + Higher annealing temperatures l Long annealing times l
l
Stringers
remain (see next slide) 77
Before
Microstructure (a) and After (b) recrystallization 78
IVT Course Federal Aviation Authority
Introduction April, I998
to Metallurgy A-4 I
Cold & Hot WoMing l
Two
conditions
define hot working
+ Temperature 2 recrystallization temperature + Rate of recrystallization 2 deformation (strain hardening) rate l
Hot working microstructures Recrystallized grains + Stringers remain
l
l
Room temperature
working
+ Can be hot working -For
low melting metals (e.g., Pb) 79
Undeformed
recrystallization 80
IVT Course Federal Aviation Administration
April, 1998
Introduction to Metallurgy A- 42
Lower energy inputs
l
+ Lower Strength at elevated l Continuous recrystallization -Keeps
strength
low
More reductions
l
possible
+ Higher ductility at elevated + Continuous recrystallization -Keeps
ductility
temperatures
temperatures
high
81
Better dimensional control . Better surface quality
TEMPER ROLL DESIGNATIONS Copper 8 Its Alloys Temper % Cold reduction 114 hard 10.9 20.9 112 hard 29.4 314 hard full hard 37.1 50.1 extra hard spring 60.5 68.6 extra spring 75.1 special spring 80.3 super spring
l
l
No elevated temperature oxidation
Suitable materials
l
for hot, short
+ e.g., high S steels - FeS melts at grain boundaries - Grains pull apart, not deform .
Higher strength 4 Proportional to % cold work (see chart) 02
IVT Course Federal Aviation
Introduction Administration
April,
1998
to Metallurgy A- 43
. For production
of standard mill products
+ Bar (round,
square, flat)
hexagonal,
+ Rod, wire Plate, sheet and foil + Shapes (l-beam, channel, + Tube and pipe + Billets (reforging stock)
l
angle)
. By rolling, forging, drawing, and extruding-
l
To convert standard mill products to + Near-net shape products + More desirable configurations
l
By ring rolling, upset and closed die forging, sheet metal forming, ,many others
a4
IVT Course Federal Aviation Administration
Introduction April, 1998
to Metallurgy A- 44
Strengthening: resist slip
l
l
Resistance - strength - ductility
Providing to slip* : and hardness #.(usually)
means to
t
I . 05
Dispersion hardening l Strain hardening . Grain size . Solid solution strengthening l Second phase hardening l Heat treatment l
66
IVT Course Federal Aviation Administration
Introduction April, 1998
to Metallurgy A- 45
0
Dispersion hardening (powder metallurgy) + Hard particles blended with matrix, compacted and sintered -Hard
particles resist slip
. Strain hardening + Cold work strengthens -Performed l
metals (discussed
earlier)
by mill (e.g., H tempers in Al-alloys)
Grain size l Finer grain sizes strengthen -Grain size control: through working
(discussed
earlier)
during solidification
or
. Solid solution strengthening + Foreign atoms in matrix resist slip - always -Interstitial l
or substitutional
Second phase hardening 4 Alloying leads to formation of hard second phase -Hard second phase resists slip -Example: eutectic systems % component
IVT Course Federal Aviation
B
Introduction Administration
April,
1998
88
to Metallurgy A- 46
S&T? wag mat Tkwam?nt Application properties
l
of heat to change or restore
+ One or more heating
Hardening
l
heat treatments
+ Precipitation + Quench
cycles
hardening
hardening
. Non-hardening
heat treatments
+ Annealing (including + Normalizing 4 Stress relief
recrystallization
I anneal)
89
l
Three
basic
steps
+ High temperature
heating
- Solutibn heat treatment or austenitizing
+ Quenching - Prolonged
delay: no hardening
+ Low temperature - Aging/precipitation
. Performed 0 Not all alloys
heating treatment or tempering
by mill and/or hardenable
user by heat treatment 90
IVT Course Federal Aviation Administration
April, 1998
Introduction to Metallurgy A- 47
. Age/precipitation hardening l Solution heat treatment + quenching
+
age/precipitation treatment + Used for - Nonferrous alloys, (e.g., alloys of Ti, Al, Ni, Co, Cu) - Some steels, (e.g., precipitation hardening [PHI and maraging steels) l
Martensitelquench l
Austenitizing
hardening treatment
+ quenching
+ Used for all carbon-hardened 300M, 4340, etc.)
+ tempering
steels, (e.g., 4130, 91
IVT Course Federal Aviation Administration
Introduction April, 1998
to Metallurgy A- 48
l
Consider Al - 4% Cu alloy ingot + Ingot hot or cold worked + Heated at 520% (968OF) for a few hours + Slow cooled to room temperature
l
Resulting microstructure
(a + p)
+ p: coarse, mostly on grain boundaries -Blocks l
only
few slip planes
(see next slide)
To increase strength + Must block more slip planes 92
Single
phase u j3 phase particles form on ccgrain boundaries
more /I formed; previous /3 grown
Al
2 4 6 8 Copper, wt% 93
IVT Course Federal Aviation Administration
Introduction April, 1998
to Metallurgy A-49
l
Must have suitable alloy + Single phase at some temperature + Favorable precipitation rates . Example: AU%Cu [close to 20241 0 Solution treatment at 520°C (968OF) for about 4 hours + Water quenching 6 Aging in the ambient 240°C (464OF) range
. Purpose:
Temperature experimenting + Affect + Avoid
Al
to obtain single
+ Must dissolve second + Hardening proportional dissolved l
’ 660.37O
L
2 4 6 Copper, wt%
8 94
phase (a)
phase (p) to amount
and time optimized to
by
adequate dissolution undesirable grain growth
- Very high temperatures - Excessive times at temperature 95
IVT Course Federal Aviation
Introduction Administration
April,
1998
to Metallurgy A-50
+ Quench l
delays
Little
and/or slow cooling
rates
or no hardening
Alloy soft after quenching + Can cold work -
Straightening
- Added
or forming
strength
(e.g., T8 temper
+ Softer than slow-cooled -
No second
phase
in Al-alloys)
(annealed)
particles
to block
material slip
planes 96
. At room temperature l
Natural aging - e.g., T, and T, tempers
in Al-alloys
. At higher temperatures + Artificial l
aging
Properties + Aging
vary with
temperature
. Time-temperature
& time
dependence
+ Varies from property
to property 97
IVT Course Federal Aviation
Introduction Administration
April,
1998
to Metallurgy A-5 I
. Quenched
microstructure:
Unstable
(super saturated)
l
- Equilibrium
microstructure:
. Aging super saturated precipitates + Mostly -
within
a + p
a ==z+fine p
a grains
on grain
boundaries
. Fine p precipitates
within
l
Not just
c1
Block
more slip planes,
. Sometimes equilibrium
a grains
increase
transition phases precipitates
strength
form - not 98
. AW%Cu: l
At given
hardness aging
(or strength)
temperature-2
+ Hardness increases with aging time - To peak hardness l
Hardness
decreases
with
aging time (overaging)
. Maximum possible hardness (H,) vs aging temperature: 6 H, increases between 300c-110% l
stages 130 $ 120
H, decreases between 1 30°C-240°C
g 110
d ,oo 2 6 90 ii
I
80
7.
I
I o.om
0.01
0.1 1 10 100 1000 10,000 Time, days
As-quenched
hardness 99
IVT Course Federal Aviation Administration
Introduction April, I998
to Metallurgy A-52
~~@~~~~C~~~~~~~~ff l-h%m?ent Micmstructwe L
Changes
f
*All p phase particles formed *Many slip lanes blocked t P hardness1 t 1
*Strength
I l p phase
particles forming Gome slip planes blocked Gtrength t hardness t r 5
..’ . l . .*; . . . -
s b
.*
.; ,.
-*
. *:’ . P **. . ‘..,I . .. . -. , ,..
.:,$ ,,
t I
:~~a~i~~e~r~.~s~~~~~~~~g)
E
precipitate on larger particles *Less particles present aLess slip lanes blocked Gtrength P hardness t
E
s *As quenched *Single phase a *Slip planes free *Soft
Note: Cooring to room freezes micro-structure-no
temp. at any time additional changes 100
~~C~~~~~~~~~ cti@arf
~~~~~~~#~
Cans~derations
,
. Ab4%Cu alloy . To obtain highest possible hardness
(about
123 Vickers)
-AgeatllO-130°Cforov
. ‘Very long artificial aging times + Not practical + Expensive (furnace time)
. Typically age at 190% for 24 hr l
Accept lower property values As-quenched hardness
IVT Course Federal Aviation Administration
101
Introduction April,
1998
to Metallurgy A-53
AgeiPrecipitation
Hardening
Phase Oiagmms & A/lay Development l
Foundation for development hardenable alloys l
Shape of phase diagram -First
clue to potential
+ Only certain compositions l
of age
hardenable
Examples Al-alloys: AI-Cu (2000 series), Al-Zn (7000 series), AI-Mg & AI-Si (6000 series) + Ni-alloy: Ni-AI, Ni-Ti + Cu-alloys: Cu-Be
l
102
Steel Heat Tmtment Fabrication
and Heat TWHment
. Steel ingots + Mechanical’work
*mill
(wrought)
- mill productl
products
parts
Castings
. Heat treatment + Between and/or l l
at conclusion of fabrication operations For cast and wrought alloys Can be hardening or non-hardening - Hardening: To increase strength - Non-hardening: To eliminate effects or improve qualities of fabrication, or improve hardening response 103
1VT Course Federal Aviation
introduction Administration
April,
1998
to Metallurgy A-54
Steel Heat Tmtment Steel Classitkatiotis l
l
Carbon’ sthels l Low, medium,
Hypoeutectoid, . Alloy steels
&‘high
carbon
eutectoid, & hypereutectoid
+ Low alloy (S 8 weight O/Oalloy content) l High alloy (> 8 weight % alloy content) Eutectoid wypoeutectoid I I
.0?8 I ~
*Irons
4.2
I
Or4
I+-+-+* Low Medium carbon carbon
steels I
Or6
steel I
4-Hypereutectoid I I
4.8
t.0
I,.2
steel----. I
.....
54 % Caw ... . . . ..
High-carbon
Carbon Steels
IVT Course Federal Aviation
104
introduction Administration
April,
1998
10 Metallurgy A-55
Steel Heat Thatment Critical fempepipture Range l
Heat treatment l
l
Apply to carbon and alloy steels
Carbon l
principles
steels easier to understand
Using Fe-C phase diagram
(see next slide)
- Each steel has different upper critical temperature - All steels have one lower critical temperature (1333OF)
105
Sfeel Heat Tmfmenf Critical TemperaWe
800 vo600 Y-
008%C ,
Range, con&
I
i ,
0.8 1 Steels e
I
1 4-
I
Cast Irons
Carbon percent Logarithmic
IVT Course Federal Aviation
106
Introduction Administration
April,
1998
to Metallurgy A-56
Non-hardening
Treatments
Effects of Slow Cooling .IXI....
Development of a normal hypoeutectoid structure in a 0.40% C steel slow/y cooled from above upper critical a.
Original austenite
.I :,;:
.,,._.:,
. ..-.. :I,
grains
b. Ferrite appears at austenite grain boundaries c. Ferrite grains grow d.
Eutectoid
temperature
is reached
e. All remaining austenite is transformed into pearlite Note: At room temperature Ferrite + pearlite Ferrite called proeutectoid
ferrit
L
Non-hardening
Treatments
Effect of Carbon Content I l
l
l
All hypoeutectoid steel (C c 0.8 transform in same manner as 0.4% C steel of proeutectoid asC%* In eutectoid steel (C = 0.8%) only pearlite forms In hypereutectoid steel (C > 0.8% steel) + Cementite forms, then pearlite
Ferrite, a
108
IVT Course Federal Aviation Administration
April, 1998
Introduction to Metallurgy A-57
,
i”‘::
Non-Hanlening Full Annealing
.,.
:.
:
..I’
‘.
1.:; .&,,.1,.
’
Heat Tmatments and Normalizing
. Full annealing
and normalizing
+ Heat above upper critical l Slow-cool to ambient - In furnace (annealing) - In air (normalizing)
~ l
Normalizing 4 Finer structure
& stronger
- Due to faster cooling l
Overheating l
rates
=w coarser
Poor mechanical
structures
properties 109
IVT Course Federal Aviation
Introduction Administration
April,
I998
to Metallurgy A-58
Full Anneal, Normalizing, Graphkal Repmsentation
and Overheating . A: Austinite, y F: Ferrite, a P: Pearlite (a + Fe,C)
Overheated Steel ,,.
Full Anneal & Normalizing Effect of Carbon Content .%Cff + More cementite -Strength
to block slip
8 hardness
8, p
z g gk = 80 ft .8 m 280 240 200 160 120
-..--.--.
ductility
4
fg E;i
-Jr =C :si Z” gii :P ii$ s
Normalized Annealed
.8
% Carbon
Composition
111
IVT Course Federal Aviation
Introduction Administration
April,
1998
to Metallurgy A-59
Non-ham/e&g
Heat Tmfmenfs Cementite, Anneal
The Subcritical l
Heating at 1000 - 13OOOF for several hours l
l l
Fe& (Black) Ferrite (White)
Cooling
rate not critical
Cementite platesespheroids For cold-worked steels + Subcritical anneals at -1 300°F - Also rectystallize
l
Spherodized
ferrite
4k
SDheroidized
structure
+ More ductile 8 softer than pearlite
Heat Treafmenf Isothetmal . Essential
of Steel
Transfomations to understanding Molten salt bath 1425OF (774OC) Austenitizing
hardening . Perform
experiment
on
eutectoid (C=O.8%) steel (see slide 106) + Austenitize
say 4 specimens
- By heating above 1333OF
+ Transfer
to bath at say 13OOOF
- Below 1333OF, :. subcritical
+ Hold for various - Specimen
Cold water Quenching
periods of time
1 shortest,
4 longest
+ Quench in water to stop reaction l Examine microstructures
Molten salt bath
1300°F(704%) Isothermalheattreatment 113
IVT Course Federal Aviation
Introduction Administration
April,
1998
to Metallurgy A-60
isothermal Transformation , 0.8% c mm?oid) $a%!~. .I .. . .37 ,, ,. , ,/,.
IVT Course Federal Aviation Administration
4
Introduction April.
1998
to Metallurgy A-61
Isothemal
Transformations
T7T Diwmms . Repeat previous experiment + At several transformation down to 1000°F -Obtain
isothermal
reaction curves
+ Use data to construct - lTT: l
temperatures
TTT diagram
Time-Temperature-Transformation
At lower temperatures + Transformation + Transformation
starts sooner products finer 115
TTT Diagmn 0.8% ‘C (Eutectoid
Steel) A: Austenite
1700C: Cementite B
800 0.1
Time, seconds
(Log. scale) 116
IV? Course Federal Aviation
Introduction Administration
April,
1998
to Metallurgy A-62
TTT Diagnims Other Carbon Steels l
Similar TTT diagrams + For hypoeutectoid - Ferrite
forms
(C < 0.8%) steels
before. pearlite
+ For hypereutectoid - Cementite l
(C > 0.8%) steels
forms
before
pearlite
End result always l
Austenite
transforms
-Equilibrium
phases
+ Finer & stronger temperatures
to F + C on phase
products
diagram
at lower 117
777 Diagrams of Carbon
Effect
A+F+C Time HYPOEUTECTOID W
I)
I)
I)
EUTECTOID e
HYPEREUTECTOID
Carbon Content 118
IVT Course Federal Aviation
Introduction Administration
April,
I998
to Metallurgy A-63
77T Diagrams Tmnsfomation
Below OOWF
. Isothermal transformation say 400°F + Transformation
down to
starts sooner
- Down to 1000°F
+ Below 1000°F -Transformation -Finer, stronger
times increase & more ductile products
0 Critical cooling rate + Rate to avoid all F+C transformations next slide)
(see 119
77T IXagrams Critical Cooliolg Rate
A: Austenite F: Ferrite C: Cementite
1
10
100
Time, seconds
777 Diagram
IVT Course Federal Aviation
for a 0.40%
C Steel
Introduction Administration
April,
1998
to Metallurgy A-64
that
Ti-eafrnenf of Steels
The Martensite Reaction 0.4% steel austenitized + Reach MS (martensite
l
- Austenite
and cooled at rate >critical start) temperature
transforms
to’martensite
Reach M,(martensite
l
- Transformation
finish) temperature ends
Complete 77T curve for a 0.40% C steel
4
z...\,
. 0.7% l M, below ambient temp. - Retained austenite - Between
martensite
- Eliminate treatment 0
More retained
needles
@C
by “subzero”
T, >T2 >T3 >T4
austenite as C%*
123
The MartensHe Reaction Effect of C%. Time. & Temroeratunz
0 F 900
$330 ; 200 100 O
Austenite
%
$700 3 E 500
25% _--------------------_-----------_____________~~I"O~76% q 0.1
0.2
0.6
0.6
1.0
1.2
% Carbon.
(unstable) Martensite
Martensite 1
10
100
lioo
Time, seconds
IVT Course Federal Aviation
0.4
Martensite Formation in a 0.40% C Steel 124
Introduction Administration
April,
1998
to Metallurgy A-66
Heat Tmatmeht Eikt
of AMoying Elements
. TTT diagram l
of Steel
moves
right (longer times)
With increasing carbon and/or (except Al, Ti, Co, Nb, V)
. Longer times;
alloy
i.e., lower critical
content
cooling
rates
+ Milder quenches required for hardening - Less risk of quench cracking/distortion l
MS, M, pushed
to lower temperatures
+ With increasing carbon and/or alloy content (except Al, Co) l More retained austenite at room temperature - Adverse effects on some properties 125 L
Heat Treatment
of Steek
HatienabiMy . Cooling rate at center < at surface . During
quenching + Pearlite may form in interior. - Section will have low strength
l
Hardenability: Ability to harden thick sections + Deep hardening steels: Low critical cooling rates + Shallow hardening steels:
Logarithm
high
critical
of time
cooling
rates 126
IVT Course Federal Aviation
Introduction Administration
April,
1998
to Metallurgy A-67
Heat Tmtment
of Steel
Depth of Hardening a
Depth to which martensite
l
Increases + Higher -Alloy
forms
with hardenability content
+ More severe quenches - Quenchant type, temperature -Agitation -Size of quench tank l
Smaller
section
sizes 127
Depth of Hadening EiBct of Allov Content Steel
Nominal
Total Alloy %
Max. Hardenable (Oil Quench)
4130 __msw___-wwm-_2.18 ~~~~~~~~~~-~~~~~----~~-~~
Dia., in
0.50
4140 __~~~~__~~~~~~~ 2.55 _____-______---___--___I________ 1.00 4340 ______-__- ____-
4.20 ______________________________ccc_ 2.50
3()0M -----I-
5.90 --~~~~----~----------I----
5.00
128
IVT Course Federal Aviation
Introduction Administration
April,
1998
to Metallurgy A-68
Heat Thatmen? Considerations . Section
of Steel in Hardening
size
+ Problem in carbon & low alloy steels (see next slide) l
Severe quench Increase Increase
l l
l
depth of tiardening risk of cracking/distortion
Use of higher alloy steels l
Larger section hardenable with milder Less risk of cracking/distortion
l
More
l
quenches
expensive 129
Depth of Hardening Effect of Section Size Effects
of mass
Bar size In, 1 2 3
Effects Bar size in.
1 2 3
(J, kai 151 107 103
of mass
on typical
CJ~ . aI 128 83 78 on typical
properties
Elong.
of heat-treated
in
Reduct. .
18.0 20.0 22.0
55.0 58.0 60.0
properties
CT, kai
(Jo kai
Elong.
165 133 125
143 109 95
15. 18 19
in
2 in. %
of heat-treated
4130 steel
Surface d. HB 307 223 217 4140 steel
Reduct.
Surface
in area %
hard. HB
50 55 55
335 202 293 130
IVT Course Federal Aviation
Introduction Administration
April,
I998
to Metallurgy A-69
Heat Titedatment of Steel Tempering . Steels must be tempered l
after quenching
To reduce brittleness
. In tempering + Steel heated to some temperature - Below
lower
critical
+ Held for some time -Typically
2 - 4 hrs
+ Cooled at any desired temperature
rate to room
131
Tempering E&c? on Prppeties l
Tempering
accompanied
by
+ Reduction in hardness & strength + Increase in ductility & toughness + Changes in other properties l
Tempering + Strength + Ductility
temperature and hardness and toughness
%’ 4& (usually) @(usually)
132
IVT Course Federal Aviation
Introduction Administration
April,
1998
to hletallurgj A-70
Tempering ,Microstructure l
Changes
In tempering: Martensite =&tempered martensite + Tempered martensite: mixture of cementite & ferrite + Tempering
temperatur
- Size of cementite
part
- Strength
and hardnes
- Ductility
and toughnes
Black particles:
with tempering
Cementite
temperature
White background:
Ferrite
.:,.~;:.‘;;.:.:::,, ~
..‘:.! ..:j .:i.‘;’.$y.. .:t. c., . ,..1
oj)
@
Tempering TEM 133
Heat Treatment of Steels ,Temperin_qCurves 290,ooo
.
270.000 250,000 230,000 210,000 190,ooo 170,000 150,000 130,000 110,000 mm 70,000 50,ooo 400
5w
Normalized
I
NT Course Federal Aviation
600
700 900 900 looo 1100 Tempering Temperature, OF at 15GIPF, reheated to 155oOF, quenched
1200
1300
in agitated
oil
134
Introduction Administration
April,
1998
to Metallurgy A-71
hat
Tmatment
of St&s
Case Hatdenim . To develop hard surface retaining tough core
layer while
Methods
l
+ Chemical: hardening
surface enrichment elements
with
- Carburizing - Nitriding -Others (carbonitriding,
+ Non-chemical: -Induction,
boriding)
heating flame.
laser,
surface
layer only
light 135
Case Wdening
of Steels
Cartwizin~ l
Heat to within + In contact
austenite
range
with carburizing
-Solid (pack carburizing) -Liquid (salt bath carburiting) -Gas (gas carburizing) - most l
Soak to achieve
l
Quench
l
Temper
desired
agent
widely
used
case depth
136
IVT Course Federal Aviation
Introduction Administration
April,
I998
to Metallurgy A-72
Case Hardening Nitnwna l
l
of Sfeels
Harden and temper as usual Heat to nitriding temperature tempering temperature) l
In contact -Gas
with nitriding
agent
(gas nitriding)
-Liquid
(salt bath
nitriding)
l
Soak to achieve
desired
l
Cool to ambient
temperature
l
(lower than
Cooling
case depth
rate not critical 137
Case Hardening Non-Chemical l
Surface
of Steels
Methods
layer heated to austenite
range
+ By induction, flame or other method + Case depth controlled by
l
- Heating
time
-Heating
parameters
(e.g., frequency
in induction)
Quench Surface layer hardens + Unheated core: unchanged
l
l
Temper 138
IVT Course Federal Aviation
Introduction Administration
April,
1998
to Metallurgy A-73
Fabrication
Opwations
. Can affect microstructure + Due to processing
and properties
temperature
-Welding, brazing, adhesive machining
+ Due to mechanical -Forming,
abusive
working
forging
+ Due to reactions -Welding, l
bonding,
with filler metal
brazing
Must consider
or remedy effects
I
139
l
Include + Cleaning,
l
coating,
sealing
and inspection
Can affect
final product l Acid cleaning, plating: hydrogen embrittlement + Plating on aluminum or titanium: poor adhesion + Painting, thermal spray: exposure of base metal to processing
temperature
+ Pre-penetrant etch: destruction hydrogen embrittlement l
Must avoid
or remedy
of surface finish,
effects 140
IVT Course Federal Aviation
Introduction Administration
April,
1998
to Metallurgy A-74
Appendix B
Appendix B
Aircraft
Alloys
In the following appendices, some of the alloys used in the aircraft industry are s presented. Designation system and chemical composition listings are included. The listings are by no means exclusive and, as such, they do not include all the alloys used in the industry. CONTENTS: Appendix B I--------------
Aluminum
Appendix B2--------------
Titanium Alloys
Appendix
B3--------
Appendix
B4-------------1
______ Carbon,
Alloys
Low Alloy, and Alloy Steels
Corrosion Resistant (CRES) Steels
Appendix BS-------------- Superalloys
Instructional Video Teletraining Federal Aviation Administration
Course
Introduction April,
1998
to Metallurgy B
Appendix B
Appendix
Aluminum
Instructional Video Teletraining Federal Aviation Administration
B-l
Alloys
Course
Introduction April,
1998
to Metallurgy Bl
DESIGNATION
SYSTEMS
FOR ALUMINUM
ALLOYS;
OVERVIEW GENERAL
Aluminum alloys are identified by alloy designations, processing details.
to describe their chemistry. and by temper designations. to describe their
Alloy Desienations A four digit system is used for wrought alloys whereas a three-digit one is used for cast alloys. In each category. the alloys are grouped by major alloying element(s). Prefix X signifies an experimental alloy.
Wrought
Cast
Alloys
Aluminum, r99.m%. ............................. Aluminum alloys pxpd by M rlkyial ekmcnt(s): Copl=r .......................................... hlAn&u”. .................................. .......................................... Mmsium ..................................... Msgncsium and silicon ......................... zinc ............................................. Otbct elements ................................. Unused series .....................................
Ix.Lr
Aluminum, Aluminum
Alloys
z99.m. . . . . . . . . . . . . . . . . . . . . . . . . . Lua alloys gouprd by majw dbyin(
ckmmltr):
copper...: ....._..._...................,...,,.. 2r.r.l
.:. 3ur Sux 6ur 7xXx &;u 9ur
Silicon. with addal copper l ndla nqnesium .................................. Silicaa ......................................... Magnesium .................................... zinc ................ ........................... Tin.. ........................................... Otbcr eknwnrs ................................ Unused tir ....................................
Irr~ 4r.n~ JUJ 7rr.z krs PUJ buJ
XxX.0: CASTtNCS xXx.1,.2: INGOTS
Temper Designations Temper is identified by a letter or a letter plus one or more numerals: e.g., 606 I-F, 606 I -T6. 5052-H3. The basic temper designations are: I - F: as-fabricated 2- 0: annealed 3- H: strain hardened by cold \rork ( for lr-rought products only ). Letter H followed by two or more numbers to indicate level of strain hardening. 4- T: Solution treated and aged. The letter T is followed by a number from I-IO to indicate heat treat specifics. Notes Wrought 2xxx, 6xxx. 7xxx (except 7072). some Sxxx, and cast 2xx, 3x,, 7xx and 7xx alloys can be heat treated to high strength levels.
ALUMINUM ALLOYS WROUGHT Composition
;=. Ia3 IO40 104s IOSO IwA lobs lum lml la35 Ian Km lla, Ill0
uNsk.m . APlOY) A91015 API050 A91060 API@35 A9lOXl A9lUa A9l@S A9lWO A91 IO0
of wrought
Lsom.
Y
..
..__.__... 0.35 ............. ............. Alw.5.. AlW.6.. .............
undloyd
0.6
0.Y) 0.r) ... .0.25 ... .0.x 0.3
03l z.9 035 03
aluminum
0.M 0.M 0.M 0.05
0.M 0.M
0.03 0.03
0.01
0.03
0.X Alw.7.. ... .o.xl AlW.8.. .... 0.13 0.L’ ............. 0.10 0.1: ............. 0.07 O.lF ............. 0.010 O.aM 0.95 (Si * Fe) Alw.ocu ... .... ........ or) 0.8
0.005 0.03-0.30 0.04
0.01 .. 0.05 0.01
I.00 (Si + Fe1 0.10 O.rO
0.05 o.m-0.35
0.05 0.01
0.03 0.03 0.02
0.02 0.m
aluminum --
%4#
Mn
C.
&IO 0.10 0.10 0.0
and wrought
0.M
cr
RI
“.
0.M 0.M 0.0 0.03 0.03 O.Ol 0.01 0.02 0.01
L OJJ 0.10 0.03 0.05 0.05 0.0 0.01
. ..
om 0.m 0.03
. .
83 ... ... ” ... ” 0.m 0.03 0.m
0.015 ......... O.,Q ...... .........
0.01
023
alloys u-
-
v
n
0.M 0.M
... ... ” ...
0.0 0.M
0.05 0.M 0.M
... ... ...
0.02 (v
Ian llrn
A91m ‘,.
Alw.0 .;.... ... .._....,..
12x A91230 Alw.3.. .... 0.70 1.5i + FCI II35 A9llls ............. 0.60 ,Si l Fo If35 A912ls ............. 0.65 ISi + Fen 1w A91345 ............. 0.15 03-030 ............. 1145 A91145 035 (S + Fcr I345 A91W ............. or) 0.40 144.5 ................ OJo(Si + Fcrbl IIY) ................ 0.45 tSi + Fe1 INO A91350 E-AI 99.5.. .. 0.10 O.AO
0.10 o.w.9 0.0s 0.02
............. O.rO tSi * FCI ............. 0.30 1Si + FCI E-AI 99.7 .... 0.10 0.X
0.M 0.03 0.02
lzdo In0 13-m
A912&3c) A911m ...
1175 127s IIW II85 l28( II83
A91175 ............. ................ ............. A9llBl A9lms ............. ............. A9lm ................
0.15 lSi * Fe1 0.08 0.1: 0.09 0.w 0.15 iSi + Fe, O.‘%,d) O.Qdl 0.05 0.1:
1189 IIW
APlIi%Y .‘.
............. .............
0.M 0.05
1193 IIW x01
APll%l(cl APIIW “.
0.01 0.0x 0.1) 03$Q 030 0.11) 0.5
gg
.
g
::: . ” .‘.
” .. “. .
ml ml4 2214 2017 2117
Arnll AJ9all4 A92214 ml7 A92117
Xl018 PI.4 2618 2219 2319 2419 2319 1021
AK018 Acml8 A92618 A97219 AmI9 A??,419 A92519 ml(c)
0.M
0.05
0.m 0.05 om 0.m 0.0
0.10 0.01
0.0
...... o.,lJ ...... o.,o ...... o.,o .... ..o.,o ...... o.pI ...... 0.m ............ ...... 0.m 0.01 ... 0.~
0.05
0.0s
0.05 ...... 0.05 0.01
0.0
0.01 0.m
0.m 0 SW.
0.01
0.a
0.02
0.02 0.02 0.02 0.02 0.01 0.01
0.02 0.02 0.02 0.m 0.01 0.m
...... ...... 0.01
OS05
0.01
0.01
0.01
0.01 0.01
. 0.01
0.01
0.0,
.
0.10 o.oyb, o.owJ.al 0.05
0.10 0.05-0.10 0.01 0.01 0.02
0.m ...
......
0.m
0.03 0.01
‘B”0.m : li)
......... 0.03
... ... ... ... ... ...
...
0.05
8.O.u.l
w + li) ... ... ... ... ... ...
0.0 0.0 0.M OJJj 0.1 0.m ......
...... 0.03
...
...
0.M
...
0.M
... 0.05 B. 0.02 P + m (I) ...
...
0.04
...
0.04
0.03
0.01 0.03 0.03
0.03 0.03 0.03
;z 0.05
...
0.03
om
0.05
...
0.03
om
om
...
0.02
B. 0.02
.u
-
..
0.03 0.03 0.03 0.m 0.03
0.m 0.m 0.m 0.m 0.03
.. ‘.. ...
0.02 0.01 o.ca3 . .
0.01 0.01 o.an 0.0s om
..
0.M #. .
0.M 0.m
0.u 0.10
99.00
0.m 0.03 0.06 0.03 0.03 0.m . 0.02
0.m 0.03 0.m 0.m 0.03 0.m ” 0.m 0.m
... ... ... ” ” 0.0 “. 0.~0
W3O 99.35 99.X W35 w.45 W.45 W.U
0.03 0.03 .
0.m 0.m
... ...
‘.
0.02
” ” 0.u
. .
9935 994 W.U rz W.U 99.m w.m 99.85 Pp.90 Pp.98 Pp.00 Pp.10
*
99.33
isi
0.10
(v + 5) ...... ...... ......
...
0x0
0.m
...
...
om
0.05
‘. .
0.w
0.03 0.02
0.m ‘.. 0.10
0.10 0.10 0.10 0.10 OS0
0.m 040
0.x) 0.8
. . ..
0.10 0.10 0.10 0.10 0.10 .‘. 0.10 I.7-7-l 0.10 1.7~Ll 0.e1.2 ‘. . .. .
0.x 0.x 025 0.x
.’ .. .. .’
... ...
... 0.01 + lxct (a) 0.01 (v * mo
(v
... .......... ... .......... ............. ............. ............. ............. ... ..........
mJ8
0.M
om 0.04
.
rma Td
0.03 0.m
0.03 0.m 0.03 0.02 .‘.
.’
0x6 0.05 0.05
1 -
. . . O.bl.3 .._ 0.8
0.M O.U-
0.M 0.W 0.3l .a 0.X 0.3 0.1) 0.‘
. . . . . . . . . OYM.8
AKu6Bi Fb.. ruwsi.. AKwiM&.. AICU4Mg.S. AKuuh4g ..^ _..
0.40 03LI.2 03&I.? 0.3348 Ozno.8 __
o.0.8
04
0: 0.‘ 03 0.‘ 0.:
O.CQ5 O.CC6 W-5.0
0.032
0.006
'..
O.Is4Jo E-o.8
0.1(Fo.45 O#l.O 0.02 050 O.al.0
0.10 010 ‘..
15-23 4.PJ.O s-F63 3.3-5.0
0.10 1.0
l.LLz.o 3Y.6 0.7-1.1 s.u.0 3.9-5.0 3.cs.o IYJ 3-3
Oh-l.0 O.S&l.O 0.x . 0.404.2 0.4cLl.2 0.40-1.0 0.43-1.0
Ea.5 3-3 I.%?.7 S.8-6.8
0.20 0.n
223.0
0.20
. o.m-o.40
S&6.8 0.2IM.Y) S.ti6.8 0.XUl.Y) 5.3-U 0.I0-030 H-6.8 0.2(u).*)
03sI.1 O.Ol.ll oa.50 . . . OdM.8 Om-o.8 o.*M.a 0.01.0 0a.Y) 0.45-0.9 13-1.8 l”L1.8 0.02 0.01
0.02
... 0.10 0.10 0.10
0.m 0.m
...
...
o.os-O.Y)
‘..
Om
...
“. .”
El
0.x 0.25 0.z 0.10 0.10 0.10 0.10 0.10 0.10
0.03 0.M O.COS 0.005 . .
0.M
w .
0.1043
zmlh
OJCU32Qul~ 0.m Bi.
...
.. . .. .
I.CZO~F% Ii1
. . . .. .. . . . . .’ -.
81-2
i
ALUMINUM ALLOYS WROUGHT ---
I br -
?I 0.15 0.U 0.15 0-m
. . . o.mBi.o.&lJ pb ml am xl36 2037 a338 aD18 am z 3102 3(m 3lu3 Ei m 3104 ylll 310 YLlb XV7 3107 3xn UJ7 Ku7 aDp MI0 WI1
... ................ O.ml.3 0.61.2 ................... 0.10 0.12 A9am ................ 0.x) 0.50 mm37 ................ 0.m 0.50 A9aoyI ................ 03bl.3 0.6 A92w ................ 0.15 0.X A9xm ............... 0.10 0.12 ... ... ............................. 03 A93m i:: 0.10 A93l(a ................ 0.Y) 0.7 A9XOJ ....... 0.6 0.7 ................... OJO 0.7 ... ... ....................... 0.7 Am03 AkinI it: 0.7 A9Jm #uMnl.~I.. .... OYI 0.7 A93lC" ................ 0.6 0.0 Am AlMnl.M@_C .... 0.6 0.7 A931(15 ruMd)St#U s. 0.6 0.7 A93006 ................ OX 0.7 A9YB7 ................ O.-W 0.7 A93107 ................ 0.6 0.7 0.45 ................... 030 ................... 0.6 0.0 ................... 0.40 0.7 APYlOP ................ I.&I.8 0.7 A9JOlO ................ 0.10 0.20 A93311 ................ 0.u) 0.7 0.6 0.7 ................... 0.6 I.0 ................... 0.6 1.0 ................... 0.6 0.8 ................. 0.6 0.6 AWM ................ P.&IO.5 0.8 AWIM ................ P.&l03 Od ...... ............. O.Cl.2 0Yu.B ...... ............. I.&i.' o.*l.o A%03 ................ 6.L-_' 0.W ................... 4.s5.5 0.n ...... ............. 6..C: 3 0.20 ...... ............. b.f-7.5 0.20 ...... ............. J.Y5 o-15 AWJ2 ............. ..ll.&lJ J 1.0 A9404J Alsd.. .......... 43v.o 0.8 A9433 ... ............. 6.U.: 0.6 050 A94543 ................ m-7.0 A%4J ................ L-1.6 0.8 0.8 Awn4 ................ 7.b9.2 APO(S ................ 9.&ll.O 0.6 API145 ................ 9.3-10.7 0.8 A%!,‘7 ~12...........11.0 .O 0.6 A9SM ABQI .......... 0.r) 0.7 ... ,uMgllB, ....... 0.15 0.7 ................ 0.8 APYM 0.40 A9WIO ................ 0.40 0.7 ............... 03 0.23 ...... ............. 0.40 0.a AmI6 ................ 0.2 0.6 ................... 0.40 0.7 A95O.J ................ 0.33 0.7 AW,t2 ................ 0.D 035 ApyY3 ................ 0.40 0.7 .................... 0.50 0.a A95W Alh4115inO AlhQIJ ...... 0.a 0.7
3312
XII3 )Ol4 XII5 ml6 Uxy 4lM yIlb m 4033 ux)p y),o u)II 4013 4032 4M3 4343 4543 4443 an4 4045 4145 yY7 m xx8 yxlb SO10 sol3 y)l4 WI6 WI7 2440 5042 yY3 Yyv w1y)
AlMnlCa
...................
llCZ.9 424.a x-3.0 1.c2.2 Obld tC1.B lC3.0 I .au 0.U 0.10 o.w.al 0.10 0.0 p.p" 0.0.25 iz O.:WN O.M-030 O.owJ.IJ 0.10 0.30 0.10 0.10 0.03 0.cso.20 O.iO 0-W 0-w o-10 03 01' 0.2 0.E 0.11 0.05 I.&13 0.1) 01) 0.m.n 0-u-l-l 03 0-Y 0.10 0.10 0.X 033 IS.7
OJO 0.613 O.Iw.aono.s O.IlLo.aI 0.l0-0.a 0.20-0.6 0.M 0.10 0.ao.n o.LLu).y) I.&l3 O.%IJ I.&,J ,.&lJ I.&I5 O&l.4 Id-I5 0.zuo.a 0-d 03Wd 0.43-a.9 O.yL4.8 0#4J.9 1.2-18 1.2-1.8 o.xu.9 0812 0Sl.l 0.9-1.4 1.043 03lM.9 oYu.9 0.10 0.10 0.03 0.bl.J 0.0 0.10 0.10 0.10 0.m ... 0.M 0.10
0.611 IJ-I.9 OxLod O.uLl.0 !2ld 035 1.1-1.9 0.QLo.m .........
...
0.6-1.4 ... ... ... ...
0.0 0.10 0.10 om ...... 0.M 0.10
... ... "
......... on
0.10 ... ...
od-I3 O&l.3 OdLQ.6 om4.a OX-O.6 0.6 ...... 0.10 ox 0.01 0.10 ... ... 0.10 OX-O.6 0.10 0.20-0.7 0-d I.&LO I.&LO 0.01 0.3 0m.u 0.4S-4.6 0.Jw.u 0.4.w.7 0.a-o.B od-IJ 0.05 ...
:?I 0.aw3.10 0.10 02 0.a 01) 0.10 O,!-Q3
0.M O.lwO.O 0.I04Jo 0.a 0.10 ... 0.M 0.u E 0.10 0.15 om 0.ssI.I 0.10 0.61.0 o.a.od od-13 O.IM_X)OS-O.60.15 ox-050 3Jd.a o.xLo.9 4.0-53 o.m.7 I.Cl.9 0,&o& I.SU
0.2 0.1 0.m-o-u 0.10
0%I.4 om-030 0.7-1.2 0.sl.l
I.blJ 3.040 0.7-13 I.623
0.1)
0.10
1.1-16
... ......
... ...
...... ...... 0.10 a.29 0.10 0.20 ... ...... 0.0 0.05 0.M4.a 0.1w.a 0.m ...... ... ...... ...... ...... ...... 0.20 o.au3.2.5 ...... ...... ... ...... ...... 0.10 ... ... 0.0
... ... ... ... ... ... 0.M 0.M ... ... ... ...
... o.w0.7
...
050-I-1 ... ... ...
...... ...... ...
0.n o.a, 0.25 0.2s 0s 0.~ 0.10 0.25 0.M o?J 0.10 0.a o.,o 0-a
...... ...... ...... ... 0.M ...... ...... ...... " ...... ...... ...... ...... ......
0.25 0.25 0-y 0.40
...... 0.0 ...... ......
O.IuI.*) 0.y) 0.20 0.10 025 0.m 0.0 0.0
...... ...... ...... ...... ...... ...... ...... ...
0.10
......
OYLI.0 0.504.0 0.3 0.n 0.m 0.20 0.m 0.10 0.M 0.10 0.10 0.10 0.0 0.2s 0.10 o.a, 0.10 0. ,o 02 0.10 om 0.10
...... ...... ...... ...... ...... ...... .... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ... ...... ...... ...... ......
...
0.a 0.M 0.n
...... ...... ......
0-Y) 0.10 0.7-15 0.15 .........
...... ...... ...... ......
...
... ... ... ... 0.a ... ... ...
0.I0-0.r) 0.10 0.M 030
... ... ... ...
0.29 0.25 0.n 0.m
...... ...... 0.1 ......
0.10
...
0.a
......
0.10 0.10 0.10 0.0) om 0.10
zr
. . . .
0.M 0.M
o.oJ-o.IJ O.Ol-O.l6Zrfo)
t(O) . . .
0.M .
03 0.15 0. Is 0.15 0.1s 0.10 0. Is 0.10 O.OJ 0.10
O.lOt+li
... . . . . . .
(I) . 0.0
0.10 0.10 0. IO 0. IO 0.10
. . . . . . . . .
0.10......
... ... ...
0.15
0.08-0.15
0.03
0.10424 O.IOzr .
ZI
o.lwao . . . .
0.10 0.10 0.10 0.M 0.10 0.10 . . 0.10 0. IO 0.10
.1
O.oz-o.PEi . . . 0.M
." .
6
0.10 0.ou3.l5
@I (4) (4) o.w.07
Be w
E o:oLo.al 0.02
...
0.M
0.0
w . .
.
0.10 0.3 0.0 0.w 0.10 0.10 0.10
0.M 0.0 0.M 0.05 0.0 0.M 0.M 0.0 0.03 0.m 0.M 0.0 0.M 0.0 0.03 0.M 0.M 0.M 0.M 0.M 0.0 0.m 0.M 0.M 0.03 0.0 0.05 0.M 0.0 0.0 0.M 0.m 0.M 0.0 0.M 0.M 0.03 0.M 0.0 0.0 0.M 0.M 0.0 0.0 0.05 0.M
0.1s 0.15 0.u 0.1s 0.15 0.10 0-u 0.15 0.1s 0.10 0.U 0.u 0.15 0.15 0.15 0.U 0.1s 0.15 0.U 0.15 0.1s 0.1s 0.1s 0.15 0.15 0.15 0.13 0.U 0.U o.rJ 0.U 0.u 0.15 0.u 0.U 0.U 0.u 0.13 0.U 0.15 0.1s 0.15 0.u 0.u 0.15 0.U
(curldad)
61-3
I
ALUMINUM ALLOYS WROUGHT u--
r,------?I z 3451 5052 5n2 5352 5.552 5m2 g 5454 5554 5654 m
Ais.24 A95454 A95554 A956% A95m
:g 5MI 5UI
%54
n
S
................... A952s3 ................ hpsml AIM@. A95151 ................ ... AlM52.. A95351 ................ A95154 A95M2 AIM&u bs57s2 ................ A55352 ................ A92452 ................ A%652 ................
0.m 0.08 0.40 0.m 04 0.08 025 025 0.a
......... ........
AJq3J........
...
........
0.10 0.10 0.7
a
bb
0
rc 1-FI.7 1.3-1.8 1.7-22 IS21 1.7-U 1.622 l&U 2128
M
...... ...
... ... ... ...
0.M 029 0.u 0.u 0.m
OSO ......... ......... ...... ...
0.05 ...
0.10 0.10 o.pI 0.10
......... ............ ... ...
...
0.0 0.10
... ............
-"g 0.0 0.40 + Fe) 0.40
2.mA 3.1-3.9 )*I-3.9
o.u.Q35 o.wJJ5 o.wJj
... ... ...
0.m 08
...... ......
zc3.0 2.4-3.0 3.1-3.9 u-3.6
0.w.m 0.05-0a O.lso25 030
... ... ... ...
on on 02n 0.m
......... ...... ....... ......
* Fe)
0.10
0.10430
3.1-3.9
aw
...
0.m
.........
on 0.25 on 0.12
0.4 0.0 0.4 0.0 0.17
0.10 0.10 0.10 0.10 O.aO
0.054113 0.w.m 0304.0 om-1.0 0.15445 o.u-o.45
4S5.6 4s5-5 4.7-55 4.7-53 O.&l.2 0.6-12
0.QW.D 0.w.m 0.a.o.m o.Owl.ID ...... ......
... ... ... ...
0.10 0.10
......... ......
on 0.a
......... ......
6
0.0 ono.u,si 02 on 0.45 0.0
. .............
0.45
(Si
(Si
(S
E 0.10 0.40 0.40 0.10 * Fe) 0.Q * Fe)
0.10 0.10 0.15 ...... o.w.3!? o.w.35
z20.,0 2.226
......... ...
..u
m--w 5356 5456 55% 139
A95356 a5456 A.95554 A95uI
... on
Alhf&qA) AJu#Mal...... ................ ................
.....
5457 ~95457
................
0.m
0.10
0.m
559
A955n
................
0.10
0.12
0.15
569
A%69
................
0.05
z 51a YIO 518 m 5086 6101 6201 6301 em2 X03 61133 day MM (I(15 4m KO6 61% Ma36 Ku7 Ko6 61109 ml0 6110 a11 6111 (on
Ml3 dDl4 mu 6016 6017 6UI Ml ml a.7 M
... A93ua A%l.s2 A9mQ A951m ................... A9%% A96101 A%mI Nmol ................... A%%3 .................. A96aY Ag60D5 A9610 A9an .4WB3 ................... ................... A.wm7 ................... A96oa) A9mlO A%110 A%011 A96111 ....................
Aim@. E.-i. ................ ................ NM@Si ............... A&6Q ................ ................ ................
................ ................ ................ ................ ................ ................
................... ................... .................. ................... -17 A%Ul A%351 A%951 A9@53 A%253
0. IO 035
: : : .......................... ................ AlM@JMe.. ... AlM#JMa ....
................ ................ A&lMg-5Mrl.. ................ ................ ................
......... ......
........
........
G .........
0.03 0.05-0.15 0.m 0.10 0.10450 0.10 0.10 0.10 0.10 0.10 0.10 0.01 0.10 0.01 os1.0 OS-I.0 0.01 03
0.45
AJM@2..
h 0.10
0.10 0.10 0.25 0.U 0.U 0. IO 0. IO 0.10 0.10 0.10 0.10 0.01 0.10 QB 0.10 0.10 0.0 0.10
0.0)
Y?,:::::::: NM#ua.. ..... AlhQ%ldA) .... ................ N&3 ..........
..
T
H
DDllr
= auIoPhL
010 0.30 0.00.7 0.40.7IA) oa 0.40 O-.7 oYM.9 osO.9 0.649 OS-I.0 0.35-1.0 OJM.6 O.U.9 0.61.0 0.6-0.9 0.W.6 020-0.6 oJsO.7 o.w.4 OSMP 0.619 O&12 O.lclJ 0.61.2 0.7-1.1 0.61.4
0.61.0 O-.6 .o.ma.a . .C,, OJ5-0.7 0.612 0.7-1.3 o.BOsl (,) (r)
6i
- Fe) 0.35 035 0.4 0.0 03 LE 030 0.7 0.23 0.6 0.6 0.10-0.30 035 035 0.7 035 025 025 0.7 035 033 OJO Od 1.0 04 0-w
0-w 025 0.IWo-D 0s 03-030 zl3 0.6 E
0.10 0.10 0.15 0.15 0.10 0.10 0.a 0.10 0.10 0.10 0.10 O.IM.25O.Iw.m 0.10 0.m.Y) 0.10 0.10 0.10 0.10 0.1so.m 025 0B-o.m
o,,M),y) 0.03 o.m-0.7 0.15 0.2%0.50 0.a4.10 0334.0 OS-I.0 0.204.7 O-CO O.lU 0.15
0.m
0.6 0.6 0.200.6 0.10 0.10 0.0.15 O.Iu).lb 0.M-o.m 0.I3-0.30 0.W.~
on 0.W.6 0.W.6 oiso.7 O.M.9 oJo.9 0.10
i&d O.aM.6 odM.7 0.6 O.Iso.45 0.a1.0
0.61.1 OLB 0.10-0.~ 0.m 0.w.m 035 0.10 o.w.40 0.10 0.10
O.ao.6 0.w.m 0.10 04~ 0.10 i:&., 0.10 ... ...
0,w.a
............
0.61.0 u-43 4.0-5.0 4.0-5.0 4.w.9 4s52 4s5.1 IS-1
...... 0.054.zI 0.u 0.10 o.w.zI 0.04.~ 0.05 o.M-o.LI
... ... ... ... ... 0.03 ...
0354.6
0,m
0.6-0.9 o.MI.9 0.4sO.7 iJ&,J
0.03 0.10 0.05 0,5
Od-IJ O.ULO.7 0.yLo.6 0.4so.I 0.G0.6 0.45-0.9 o.a-o.0 0.4so.B 0.60.9 0.04.7 0.a d 0.6-1.0 0YM.l 0.612 os1.0 0.612
0.35
...
...... 0.10 0.10 0.W.U 0.10 0.m 0.10 o.w.2 030 0.10 0.10 o.ouLz5 030 0.10 oa
OS12 o.a.ll od-1.1
0.10 om 0.10
OS-O.6 04w)# &J.& O.ao.6 1.1-1.4 1013
0.10 t)Ju)y......
O-.60.,,,
.........
0.0
...
0.0 ,su
0.0 ......
on on 0.a
......... ......... .........
on 0.10 0.B
...... ...... .........
...
o,,o
...
... ... ............ ...
0.10
......
on
.........
... ... ... ... ... ... ... ... ... ... ... 040 ... ...
... ... ... ... ... ...
...... 0.l5a.s 0.04-035
0.m
... ...
v
-
0.M
...
n
CZL
0.06 ...
0.m 0.m 0.0 0.0 0.0 o.Lu 0.05 0.05 0.03 0.0 om 0.05 0.M 0.M 0.0 0.05 0.M 0.05
0.10 0.10 0.u 0.u 0.u 0.10 0.u 0.u 0.10 0.u 0.10 0.u al.5 au 0.u 0.u 0.u 0.u
rem lml em mm Rm ran rem rem fun mm m run fan mm mm rem m rem
010
0.M
0.u
mm
...
0.0 0.M 0.0 0.m
0.u 0.u 0.u 0.u
Inn m w Km
om 0.m
0.u 0.10
(rm -
0.10 0.M 0.u 0.u 0.u 0.u 0.u 0.u 0.u
rem m rem Rm rem Iem w run rmY
0.10 0.10 0.U
... ......
0.0
063
oa5 ... 0.0
I:: ......
... 0.10
023 0.0 oa 0.05-am 0.m.u 03
!r? W 0.G3.6
1 *L -
%,'
0.06030 0.m 0.w.m
(*I f.)
...
0.M
...
...
0.0
...
...
0.m
...
...
Ml
... 0.10 0.10 0.u 0.U om 0.u
0.03 0.02 0.M 0.05 0.0 0.0 0.M 0.05 0.0
odbe
...
am
0.10
rem
0-e
... 0.u 0.08 0.10 0.10
0.03 0.05 0.M 0.05 0.05 0.05 0.0 0.0 0.0 0.05 0.05 0.M 0.0 0.M 0.05 0.0 0.0 0.0 0.0 0.m
0.10 0.u 0.u 0.u 0.u 0.u 0.u 0.15 0.u 0.u 0.10 0.u 0.u 0.u 0.u 0.u 0.U 0.u 0.u 0.u
rem ran rem rem rem rem rem rem rem rem mm Rm rml r+m fun rem m mm rem w
0.u 0.u 0.u 0.u 0.u 0.u 0.u 0.u 0.u 0.u
Ipo m m w rem m rem w w rem
(4) 0m7.4
...
o.oM.14 oa o,a, O,@ 0.10 0.10 0.B (,JJ 0.10
......... ...... ............ ......... ......... ...... ......... ............
oa on 0.m 021 G.Z on ,J 0.u
......... ...... ... 0.054.m ......... ......... ......... ......... .........
03
......
02 0.10 0.10 OB 0.0 M QB 0.m 0.10 I.624
......... ... 0-a ......... ......... ......... ...... ......... ......... ......... .........
28 ...
0.o.u
2s
0.M-o.m
28 ...
0.1 I% 0.020 m ...
...
0.10 0.10 0.u 0.10 0.10 0.u 0.10 0.10 0.10 0.u 0.10 0.10 oa,
0.10 0. LO 0.10 0.u 0.0 0.u oa , ... ...
0.0 0.0 0.0 0.0 0.M 0.05 0.0 0.0 0.m 0.M
(aootpd)
814
I,
ALUMINUM ALLOYS WROUGHT
cuaA%463 6763 A96762 &j . 6066A9686 mA9wm 6411 6181 dDgl 7ml m
035 033 0.40 0.10 0. IO 0.20 0.15
0. IO 0.&0.ul o.Iao.roo.n-o.35 0.33 0.15-0.40 0.10 0.P 0.04-a I6 0.m.m 0.7-1.2 0.I5-0.40 0.10 0.10 0.10 1.62.6 0.20 0.M 0.10 0.M 0.0s 0.611) O.blJ
0.10 0.u 0.10 0.05 0.03 0.05 0.61.1 O.QI.0 O.lW.45 0.U o.aL1.0 OB 030 0.2wl.7 o.m-o.7 0.a am 0.10 0.10
0.25dl.6 0.8-1.2 0.7-1.0 0.7-1.1 0.aI .2 0.4549 0.4so.9 0.45-0.9 o.soa.5 0.61.4 OS-l.2 0.61.0 0.61.0 0.61.2 263.4 O-w-I.0 LO-LO I.&I.8 0.7-1.4 0.7-1.4 2.1-29 2.2-L7
0.12 0.15 0.15 0.6 024
0.1s 0.20 0.25 0.7 033
ILL2.0 0.05 o.bi.2 0. IO o.loa.7
0.10 0.IW.x) o.m-o.15 1.0-1.5 033-0.7
2.l-L6 l.Pl.6 l.au “’ LL3.2
O.C8 O.IIU.XI 0.04 ...
AIM& ... . Ao+sal ..,... . ,............. .._,___...._.. Nmglsim Alupsi
[email protected]
Om-o.6 o.uLa.5 o.a-a.7 0.40.0.8 0.40-0.8 Om4.6 O.m-o.6 0.21M.b .,............ 0.04.6 O.Sl.6 . . . . . . . . I.&l.7 .............. 0.7-1.1
[email protected].. ..... 0.aI.2 AsilM@in ...... O&l.’ ... ..............
O.lW. 0.7 0.40 054 0.7 0.35 0.15 0.m 0.15 0.50 OJO 050 0.45 zz
.................
030
................. ................. ....... ................. ................. .................
0.z 035 0.10 0.10 09 0.10
...
.” *.'. . A9m)l
my-
.........
0.0 o.wo.3s 0.10 0.10 0.M-o. 0.10
I4
'. 0.M 0.a 0.10 0.10 0.10 0.25 0.IW.U odo 0.05 o.ctQ.Al 0.IM.Z 0.10-0.25 O.W.CS
mio mli 7012 ml3 ml4
.. A~~II(C) .. . ~97013 ...
AlzatM@. ................. ................. ................. ................
mi5 7016 7116 ml7
... ~9Fll6 ...
................. ................. ................. ................
0.20 0.10 0.15 0.35
0.30 0.12 0.30 0.45
0.0&0.15 0.45-1.0 0.x11.1 0.20
0.10 0.03 0.M 0m-o.33
ILLI 0.bl.4 o.ai.4 Lo-1.0
0.15
7018 ml9 .m
.. ..
................. ... ............. AKd5hQI ................. .................
035 0.35 035 025 03
0.45 0.45 0.40 04 0.3
0.20 0.20 0.m 0.U om-I.0
o.u-050 o.u-o.so o.Ma50 0.10 O.IW.40
0.7-13 1~2.3 1.0-1.4 I.&1.8 263.7
0.40
0.10-0.6 0.10-00.6 0.1W.6 0.cso.m 0.lW.Y) O.M.6
2.63.0 OS-I.0 0.61.5 i.si.9 0.7-1.1 lS2.3
0.05&35 0.05-0.35 0.05-0.35 .
l-w.0 I-F20 l-FL0 LO-15 us.3 I.Cl.6 Lo-l.6 Lo-29 La-29 1.9-26 2.PL7 1.7-u l%Zl
“’ 0.10 “. 0.04 O.lN3.B Oa
...
1.9-29
0.Lwo.Y
0.10 0.0 oxl 0. IO 0.06 ON-O.8
0.10 0.9-l-c 2.1-29 2.1-29 1.9-L6 I.2-LO
..’ “’ 0.1.9&9 0.I8-0.28 O.lboz5 . ..
m2l m
.'
. A9mZI .
yp.J aJ24 a
..’ . .
g m
....
0.10 0.u
.....
................ ................. ... .............. ................. ................. " .............
050 0.33 ii 0.3 0.35
i:: 0.Y)
OX-1.0 0.10 0.10 0.60.9 0.IW.Y) 0.lW.r)
................. ................. ................. ................. ................. ... .............. ................. .................
0.10 0.15 0.06 0.n 030 om 0.20 0.3 0.15 0.12 0.12 035 0.15
0.12 0.30 O.oB 030 0.40 04 0.40 0-U 0.m 0.U 0.15 0.45 0.70
o.m-o.9 ox-O.9 oN.cl.9 0.m-o.Y) 0.10 0.m . IL1.9 l.Ll.9 L&L6 I.923 0.15 1.b2.6
0.03 0.10 0.m 0.m O.lW.yI on . . OaI od) 0.10 0.10 O.IW.45 040
0.12
0.15
1.62.4
.
0.7W 0.23 0.a 0.15 0.10 0.a
* Fcl 0.6 030 0.10 0.12 0.6
0.10 0.05 1.L2.0 I L-2.0 l.LI.9 OYJ-I.0
.. .
0.15 0.25 0.P 0.25 02 0.10 0.0 0.03 0.10 0.B 0.25 0.20 0.m 0a 6.W.O 5.0-63 u-4.6 4.0-5.0 rs53 4s53 5?-5.6 5.8-63
0.10
5.76.7 4.&53 La65 I L?.o 5.2&l
035
0.10
4.651 4.~5.0 4.2-53 r&51
0.10 0.m 0.10-0.35 0.0 0.10-0.Y3
0.10 0.10 . .
0.03
"
.
. (9) .
.
.
0.03
. . .. . . . . . .. . . ..
0.03
43-5-l JYJ r.LL5.0 J.&&O 43-U
0.M 0.M
. ... . .
4.0-6.0 3.fL5.0 3.040 4.652 32-45 43-53
0.20
. . . . om4.25 0.I0-0.20 0.aMl.m ‘. 0.12-0.25 (0 0.iw.m (0 O.lW.16 .
Am A97129 .. . .
mY3rsmr, m46A9m6 7146 A97146 m9 Amn9 71Y) A91149 m5Q.A9-m0 7150
A971y)
xm64
-RYE HR m75m 7175 7475
ii7aaM@ ................. ................. ................. .................
‘..
A9Ff72 AV74Tl A97175 A97475
&!a~. ........... ................. md5higcu ................. NZd5lh4&u,AI .................
...
O.IW.LL O.lW.22 O.o( 0.04 o.oso.2s O.lM.25
.
.
.
.
.
.
.
.
.
.
I
.
.
4151 42-51 4.2-U la-5.9 3545 6.67.6
6.S6.0
24 t
0.10 O.aO 0.15 0.15 0.10 0.10 033 0.m 0.m 0.01-0.06 0.1 0.M 0.20 0.10
ZI 0.06 0.03 t o.m-o.ce
0.m ” m + a) 0.iw.m i3 0.10 0.03 . 0.M O.lW.25 zf 0.l5 0.lo.G~ 0.IW.B (v) O.fnQ.18
24 0.15 zt 0.u ... ZI 0.10
l-l?,, .
0.10 0.10 0.10 o.wa. I4 24 0.M 0.os-o.30 zl 0.10 o.aul.zl 0.m .
. 0.a 0.03 .
6.67.6 7.242 7.?&2 5.767 5.%.9 3.OAO 6.1-73
24 zf 24
O.IW.10
(ZJ
m29 7129 mp m
0. IO 0.U 0.10 0.10 0.U 0.10
-
0.M 0.05 0.m
.. .. .
l .
0.M
‘. 0.03 I ..
0.a 0.03 0.10 O.lu.18 I 0.a 0.IW.M 24 om 0.10 . 0.10 0.m.o.u 24 0.m 0.oao.u I 0.05 0.U 0.00) Pb 0.10 (-4 0.1w.Yla ‘.-.
w
. . Wl
.”
0.u 0.u 0.U 0.15 0.u 0.u 0.u 0.10 0.u 0.15 0.u 0.15 au 0.u 0.u 0.u 0.u 0.1s 0.10 0.u 0.u 0.111
0.05 0.05 0.0s 0.M 0.0
0.15 0.15 0.u 0.u 0.15
0.0 0.03 0.M 0.0
0.u 0.10 0.15 0.u
0.M 0.u 0.M 0.M 0.05 0.0
0.1s 0.u 0.15 0.u
0.05 0.0 0.03 0.03 0.0 0.0
0.15 0.15 0-u 0.10 0.1s 0.15
0.03 0.m 0.m 0.M 0.M 0.M 0.0 0.M 0.05 0.m 0.M. 0.m 0.0
0.10 0.15 0.10 0.u 0.U 0.U 0.1s 0.u 0-u 0.u 0.u 0.u 0.15
0.05
0.15
0.m 0.M 0.M on5 0.M 0.0
0.u 0.15 0.15 0.15 0.u 0.U
li) 0.05
.
0.M 0.05 0.M 0.M 0.M 0.M 0.M 0.03 0.05 0.m o.ra 0.0 OJn 0.M 0.0 0.M 0.05 0.M 0.M 0.M 0.115 0.M
0.m 0.10 0.06 04)
~~~~)
81-5
.!
,F
;.T;.&
.I”
i.
ALUMINUM AiIiYS WROUGHT
= a lzzI 7176 Et 7179 ma
LZ)h s
ImshDD #7m &f7,76 ... Amm A.9713 A91opo
‘. . . . .., . . .. . ..__..... . . . . . . . . ..
0.50 0.a 0.u 0.30 0.u 0.12
ml
.49mI
...........
mm1
A!aml
............
E eIm
.o.u ::: ....................... 0=3 .&waw3 ............ 0.a
Bm m
0.17
ml7
Am07 ............... ............... A98011 A93111 a9112 AmI4 -17
............ ............ ............ ............ ............
0.x) 0.6 0.0 030-0.9 o.m-I.1 1.0 .04 0.10
mal 60x
A9Kuo A.mxl
........... ...........
.O.lO .O.lO
ml0 ml1 8111 11112 Ql4
............
.o.u
............
6lxl
A5uIrn
aDl6 8176 8n6
A9W76 ............ APB176 ............ ...............
8x3 A5um ............
.......... ......... ......... .......... ..........
0.15
h 0.7 Eli 0.Y) oa 0.15
Ma
. 030 0.m 0.10-03l 0.10430 . .
Y
0
1.7-u u-3.1 2s3.2 29-3.7 29-3.7 2.W.O
O.Iao.35 O.lWZl 0.17425
0.U
1.1-1.8
,
0.45-0.7
0.u
...
0.4 O.oOd
OB 0.m
0.m ...
0.0 0.0
... ...
12-20 l&Z0 O.W.6 01547 0.61.0 o.a-I.0 1.0 l.Ll.6 035-0.11
01) 0.10 0.70 0.10-030 0.10 0.10 0.40 0.B O.IM.aD
oJw.0 03M.o 03-1.0 0.1&m 020 0.10 0.6 0.D-0.6 ...
0.10 0.10
... ...
0.10 0.X3-0.8
0.m O.lM.30
0.a
LO-LO
...
...
...
...... 0.IcLo-w) 0.0 0.05 0.7 0.10 0.OlJ.M
IQ
L
0.9-13 . . . .’ .
. . ...
. . .
...... ...
0.0
.
0.0
......
0.0,
O.Cn
0.1M.Y) O.LFo.43 0.7-12 0.7 0.7
0.05 0.04 0.a 0.7-U 0.7-l-l
... ... ...... 0.10 0.10
0.lM.Y) 0.oLo.12
...
O.Luo~
... ......
. . .
0.m
on
1.0-1.6
0.10
0.613
0.10
..........
0.30
OS
I.622
0.10
Ox-l.2
0.10
xwn
.’
..........
0.10
0.15
03so.6
0.05
0.e1.4
o.Ql
x9192
“.
..........
0.10
0.15
o.m.7
0.0
0.9-1.4
0111
OB . . . . . . ..,
OB . ,..
1.0-1.9
J&7.1
‘.’
I”
Oa3-odca
. . . . .
0.0 0.03 0.0 0.10
0.616 0.10 0.40 0.10 0.10 1.0 0.10 0.0
om 0.0 om om om 0.05
co
au au a10 au au au
. . .
.. .
. . .
0.M
. 0.m
o.m-o.7
0.M 0x4 0.10 0.05 0.05
. . .
.. .
0.03 ” .” ..’ . ” . ‘.
o.,o
omau
w
,.. . . . . . .. . o.o( B. 0.033 Ii tml O.ilk4 B . . . O.IM.mD O.o)B
.
0.m
aio
w
.
0.m OM 0.03 0.0 om
0.10 0.u alo 0.u 0.10
w ,j%m w m w
0.m 0.m 0.05 om 0.0
0.10 0.10 0.u 0.u 0.u
w ran nm rem nm
0.m
0.u
... .” .
OB Iv + WC) 0.0 B WI 0.01 B
.
0.10 5s7.0 so 18.~tL0 0.10 so O.oc4.16 2.~ 0.10
..
Cd
oa
.
.‘.
(2) (U)
.,. . .. .. . . .. .. . .. . .. . .. . .. . .. om
0.m
0.10 0.M
0.01
..........
%r -.
. . .
0. IO
...
... ... ... ...
”
. . . . . .
0.005 0.0
...
O.a, 0.01 ............ 0.05
a
3.7-43 6L7.3 667.4 3.8-4d 3d4d 7-7
(a
..
. 0.m 0.0 003 Ode
o.uLl.qo)o.oy).u .........
,a, I.0 (Si * Fe) 0.10 0.60.9 0.03-O.U O.&l.0 03 03-0.0
0.10 .O.lO .0.05-0.m I.&LO 0.7
ca 0.8-1.7 I.&L4 I.622 0.ULO.B
[email protected] 0.613
..
..
Om.16
2~ 0.10
0.m
0.u
w
0.29:
zr 0.u
0.05
0.u
w
016
I
ALUMINUM ALLOYS CAST Composition
of unalloyed
and alkyd
c=*-1
aluminum
castings
(rrr.0)
and ingots
(MN.I
capmm.
I
or rxr.2) r(s
1
F
I
I!4 I IJO I 160. I 170. I 201 .o m1.2 ml.0 A201.1 8201.0 D31.0 201.2 2W.O
AOI~I
......................
IW
AOIJOI AOldOl AOIrnl A02010 A02012 A12010 Alrnll h2mto AOZOIO A01032 A02040
In#n ln@M In@x S ln#ol s lnpc s S
ma.2 2W.O 206.2 AT&. .O Al032 m.0 m.1 x8.2 211.0 213.1 ‘22.0 222. I 224.0 224.2 240.0 240. I 242.0
ho2042 AOZW A02052 AI2E4 Al2062 AO?OBD AO?CO I AOZPZ AOZl3O A02131 AO22M AO222, A02240 A02242 A02400 A024DI A02420
A199 J ............... AIp9.8 .............. AM.7 ................ ...................... ...................... ..................... “. . ._..............._. .. . ,....,.._..__.____. lJ22 hlCu4MnTi RI64 AK&Ti RZl47 AlCu4MgTi ...................... ... ._ ................. .................... ...................... ....................
:42. I 242.2 A242.0 A242.1 A242.2 24J.&a, 243. I 31.0 295.1 9J.2 -36.0 296.1 -36.2 IO5 0 YIJ.? AIOJ 0 A30J.I h30J.Z X&O 3w.l 3aI.2 119.0
A02421 A02422 A12CO Al2421 AI2422 AO24)O A02411 A02950 A029Jl AO?9J? A02960 A02%l A02962 AOMJ4 AO,OJZ AIM0 AI3OJI AI3OJ2 AOWI(LD AONI AOX A01190
119.1 119.2 h3I9.0
A01191 A01192 Al3190
._. .
IryoC
....
.................. ................... .................. ............ ..... ................... ........ ......... ..................... ...................... .................. .................. .................. IJZ? AICU(Ni?.Ug2 RI64 hKUCurSi?Mr: ................... .................. ..................... ................... .................... ...................... .................... ................ ................ .......... ........... .: ............... ................. ................... .................. ................... ................. ................... ................... ................... ...................... 3J22 h.lSiJCu) JJ2l AlSiSCulMa 3122 ALSiiu4 1J22 AJSaCu(Mn RI64 ~JSIJCUJ Rl6( ALWCuJFc RI64 hJsifLu4 . lJ22 JJ22 IJ22 3J22 RIU RW RI64
h1SiJCu.l AlSKdMn hlSKti AISi(Lu4Mn AlsiJCUl .dSiJCdFe hlsibCu4
In OF&&J 0.10 0.10 O.OJ O.OJ O.OJ 0.30 OX
S. P Irisa 5. P InpC S. P lnnn S-P Inpc InLDl 5. P lnloc 5. P lnpl S. P Innot S lnpr
0.X 0.1) 0.10 0.10 O.OJ O.OJ 2.L3.J 2.M.J 2.W J I.bJ.0 I .bJ .o 1.0
5. P In&n lnpn 5 ln~m In601 S IrUa 3 ln:ol Ingot P ln@l It,@, S/P Inp~ 5. P In#aI 1~ S. P lnpc Inp
0.7 0.: 0.6 0.6 0.6 o.3J O.JJ O.JJ 0.7-l .s 0.7-I.J 0.7-l .: 2.0-1.0 2.e1.0 2.04.0 4.sJ.J 4.J-J.J 4%J.J 4.LJ.J 4%J.J J.&&O J.U.0 J&6 0
5. P ll?pX lw=
J.ti6.J J.J-6.J J.M.J
2.0 0.M 0.02 0.x) OS0
cn o&, (hl O.lJ 0. IO 0.10 0.07 O.OJ 0.m O.lJ
0.1J 0. I0-0.m O.IJ 0. IO 0. IO 0.01 ::9 0.8 I.2 0.9
1.5 2
A:,0 O.o( 034 0.40 1.0 0.1 0.6 0.8 06 0.6 0.40 0.30 I.0 0.8 0.8 I.2 0.9 0.8 0.6 O.IW.LI 0.20 0.15 0.1) I.0 0.1 0.8
1.0 0.8 0.6
0. IO
ICI
O.OJ .’ ... 4.6S.2 4.CJ.2 4.&J-O 45J.0 4.LJ.0 4.~J.J 4.bJ.2
ICJ Id ICI 0.20430 O.ZO-O.JO 0.2lLWO 0.2&0.40 0.2O-O.m 0.20-030 0.20-0.30
... “’ ... O.IM.JJ 0.2W.JJ O.IUl.3J 0.2Q4.3J O.tM,)J 0.10 0.10
4.2J.0 4.24.9 4.2-J.0 4.:-J.0 4.2-J.O 4.LJ.0 M4.J 3.Y.J 1.Y.J 6.0d.0 6.W.O 9.2-10.7 9.2-10.7 4.J-J.J 4%J.J 7.0-9.0 7.M.O
0. IO O.OJ 0.20-030 o.20-oo.Jo O.ZO-O.JO 0 m-o.Jo O.JO 030 0.30 0.6 0.6 0.m 0.m 0.2o-o.Jo o.zw.Jo 0.30X1.7 0.3047
O.l~.JJ O.ZW.JJ O.IJ-o.lJ 0.2w.3J O.lMl.3J 0.2w.lJ 0.10 0.10 0.03 0.10 0. IO O.lJ-o.3~ 0.~0.3J ‘.’ ” U4.J ~h-66.J
1.J4.S
0.3J OJJ 0.10 0.10 0.10 0. IO O.Imo.lJ O.IJ-O.lJ
1.2-1.8 1.3-1.8 1.3-1.8 1.2-1.7 1.3-1.7 l.Ll.7 1.8-2.3 l.!L2.3 0.01 0.01 0.01 O.OJ O.OJ O.JJ 0.10
J.J+J l.J-4.J 3.7A.J 1.7A.J 3.74.) 1.M.J 3.Y.J 4.0-J.0 4.0-J.0 4.CJ.0 4.bJ.0 4.bJ.O 4.0-J.0 ISI-l.J I&I.J 1.M.J 1.CI.J I&1.J 4.CJ.0 4.bJ.0 4.0-J.0
I.040 ID-40 l.M.0
0.3J 0.3J 0.30 0.3J O.JJ 0.30 0.X O.OJ 0.10 0.10 O.OJ 024 030 0.30
O.JO 0.54 0. IO
s. P
i4l ICI ICI id ... ... ...
“’
O.OJ O.OJ O.OJ O.OJ
l.Ll.7 1.3-1.7
0.10 0.10
O.OJ 0.01
O.OJ
0.10
O.JJ O.JO OY)
0.10 O.OJ 0. IO 0.05 I.0 I.0 O.Rl 2.J 2.J 0.8 0.8
o.Jb6.7 0.3bo.7
0. IO 0.10
1.7-2.3 1.1-2.3 1.7-2.1 1.8-2.3 1.62.3 la-Z.3 1.9-2.1 1.9-2.3
0.31 O.lJ 0.10 0.10 0. IO 0.10 0.M O.OJ 0.3J O.fJ 0.30 0.50 024 0.M O.lJ 0.01 0.10 0. IO 0.01 1.0 I.0 030
O.OJ 0.01 0.11 0.3J
0. 3J
” O.lJa2J O.IJd.2J O.l%o.2J 0.20-0.40 0.20-0.44
0.3J O.JJ 0.u
0.10 0.10
“’ ..,
0.10 0.10 0.10
.” .” . ”
ICI (Cl Id O.IyL.lJ O.IY).lJ O.IMkJS O.IH.3J 0. lM.lJ 0.1so.2~4t) O.IJ-O.lJW
.
O.OJ 0.01
0.2J 0.u
.
. “.
0.1) 0.3J 0.10
1.0 I.0 0.10
O.JJ
3.0
O.OJ O.OJ O.OJ 0.01 O.OJ O.OJ
0.1~.30 O.lM.2J O.IW.30, O.IJ-o.2J O.Iu).30 O.IJazJ 03 .
0.73 0.20
. .
0.2) 03 0.25 0.29
0.31 O.lJ 0.20 0.20
. .
0.21 0.Y 0.20 0.074.20 0.07-O.Dl 0.o7-o.m 0.06o.m
0.ow.m
.
,
0.2J 02 0.20 0.2J 02 0.20 0.u
0.20 . .
0.20 0.20 t:: 03 0.m
.
02 0.23 0.m
o.oxc~ O.OXCJ 0.0~~~ O.OYi) O.OXi) 0.03W 0.030) O.OJ@ 0.0~1) O.OXIJ
0.10 0.10 0.10 0.10 0.10 0.10 0.10 O.lJ 0.m 0.20
w.JQ W.Y w rem nm rrrn rctn rem pem rem
0.05 0.05 o.oJ 0.M O.OJ 0.05
O.lJ O.lJ O.lJ O.IJ O.lJ 0.1s OS0
tern nm nm rem rtm RKI rem
024 030
rrm rem
030 030 0.3J 0.1s 0.10 0.10 O.IJ O.IJ
Rln rem rem rem rem rem rem R~I
0.13 O.IJ O.lJ 0.1) O.lJ O.IJ O.IJ 0.1~ 0.11 O.lJ O.IJ O.lJ O.lJ O.IJ O.lJ O.IJ O.lJ O.lJ 0.11 030 0.m 0.54
rem FC~ rtm ran feat nm Fcol rrm Rln rem rem ran i-cm nm rem rem ICEI mn rem mm Rm rem
0.50 030 0.m
lcm IEm em
”
“. “’ ” .’
O.OXrn) O.OXmJ O.OJ 0.03 0.05 O.OJ 0.05 O.OJ O.OJ 0.0~ 0.0%(n) 0.0~3 O.OJ O.OJ O.OJ . . 0.0)
O.OJ O.OJ O.OJ b.oJ 0.0s ‘. ” ‘.
‘. ‘.’
. ..
m
Icontinued)
81-7
ALUMINUM ALLOYS CAST w-7 IL U -a m9. BlI9.0 8319.1 ID.0 120.1
hr.0 J24.I 124.2 11.0 31.1 112.0 Jl2.1 312.2 133.0 113.1 AJll.0 A33J.I 136.0 11.1 316.2
JB.0 339.1 l41.0 Y1.I 154.0 J)c.l III.0 JJJ.1 IJJ.? A15J.0 AlJJ.2 ClJS.0 C3JJ.I CIJJ.? I%.0
Kolbl
bmm. I
Al3191 A2llal A23191 A032m A03201 AOIZY) A01241 A03242
AO1m AOlrnl A01120 A03321 A01322 AoIlY) AWJII AIlIlo Al3331
AOIW A03361 AOJW AO31m
.
AOl4JO A03411 Mlno AO3J4l MIJJO AO~JJI
n16.2 JJ7.0 lJ7.1 AJs7.0 A317.2 8157.0 BJJ7.2
cls7.o Cm.2 DJJ7.0 I%.0 JY.2 JJ9.0 JJ9.2 Jmas)
In@4 S.P lqol .._ s. P ..ln#ol P lnrol lngol S ..lnp I __ P
"'............ " "'...............
.
.................. .................. ................ ... ............. ... .................. ..................... ..................... ... .................. ... .................. ... .................. ................ ... .................. ..................... ... .................. ............. ................. .................. ..................
la9c 12
. . . . . . . . . . . . . . . . . . lnpl
AIIJJO AI3JJZ
ti3lJ2 A03JW
P Insol In@ P ., lnpc D lnpol P
s. P InpI InpI s. P Into1 S.P IfUOl
.... .......
................. ................. .................
. .. . .
.
. JJZ? AlSi7M:
“..
AlSi7M6
.- lnpc
._....
S.
..................
AO3J6l AOlJ62
............ .............. .................. .................. ............... .... ............. ............
All%l All%1 rclJ.52 Ax&l A2lJt.2 A3Jw) A3lJ62 AblJm
lnpl 5. P lfl6Ol IlIp s. P Ingot 5. P ln;or S.P b-1 s. P ln@w s. P lrrpc s. P lnla s. P Inlou
... --
..................
A63J62
....... ......
A01570 A03J71 AlIS AI3J72
................. ........... .............. .................. .................. .................. .................. .................. ................. ..................
h?.Mn
AOhao AOJWl Ao3m A03J92 AOMXw
....
SSP . IW@ s. P
.......
R'l47AlSilOMI(O...
x0.2 Am.W AJ60.1W
c60.2 IN.0
AOlfO2 Al!.6W AIWIW AlW'2W A03610
.., . "
.
. .. .
.. . . ... _._.............._ . . . ._................
P
lnpl
.....
C. l.U.0 l&4.0 lo-r.0 2.040 2.W.O 0.4Ul.6 0.4&0.6 0.4o-o.6 I.bZ.0 l&22.0 2.0-4.0 2.u.o 2.o-4.0 x0-4.0 l.U.0 l.M.0 l.U.0 0.Jbl.J O.JO-1.J OX-I.J Id-l.0 l.J-3.0 o.w.9 o.s0.9 1.6-2.0 1.62.0
0.50 0.8 0.8 0.8 0.8 0.50 030 0.10 O.eW.6 0.20-0.6 030 0.50 0.10 020 0.50 0.50 030 0.3J O.lJ 0.10 0.M 0.M 0.54 030 0.10 0.10
0.10 0.I0-0.Jo 0.IJ-O.Jo 0.0%0.6 0.10-0.6 0.40-0.7 o.rJ-O.7 0.4-4.7 O.XU.6 OX-O.6 0.Ll.J 0.6l.J 0.eI.1 0.ow.m 0.I0-0.JO 0.054.Jo O.IO-o.Jo 0.7-1.3 O.&l.1 o.er.1 0.JW.J 0.6l.J 0.10 0.10 O.W.6 0.4so.6
I.&I.J l.O-1.J l&l.J I.&I.J 1.0..I.J 1.0-1.5 I&I.5 1.lLl.J
O.JOlol O.JUol O.OJ O.OJ 0.03 0.10 0.10 0.0) O.l%o) O.lUoJ 0.0s 0.10 0.10 0.05 0.0s
4.LJ.J 4SJ.J
4.J-J.J
0.m O.lJ O.t40)
O.BXOl
4.LJ.J 4.S-J.J 4.sJ.J 4.!-J.J 4.sJ.J 6.J-7.J 6.J-7.J 6.s7.J 6.L7.J 6.J-'.J 6.G7-7.J h..C7.J 6.L7.J b..c).J 6 L7.J 6..c7.J 657.J 6.J--'.J 6.J-7.1 6.J-7.1 657.J 657.J 6.J-7.J
0.640) Osao) O.lbO.2J 0.20 O.tJ 0.12 0.09 0.06 0.07 0.04 0.20 0.12 O.tJ 0.12 0.m 0.12 0.09 O.Qb
6.S7.J
0.09
6.W.J 6.W.J
0.W 0.20
7.ti.6 7 a.6 tl..cp.J 6.J-9.J
D
9.0-10.0 9.s10.1
9.cLIO.O
I* In-
::: 0.6 1.0 0.8 I.0 0.1 I.2 0.9 0.9 I.2 0.9 I.2 0.9
O.lcO.23 0.09 0.06 0.20 O.lJ 0.11
9 e-10.0 90-10.0 9 610.0
D
if I.2 0.9 I.2 0.9 0.6
8.SI0.J
D
. 1~ .
h 0.1
4.s10.0 m-IO.0 1.040.0 a.ewo a.o-IO.0 Il.&If.0 II.&11.0 ll&l1.0 II&13.0 ll.&l3.0 6.7-7.7 6.7-7.7 8.6-9.4 8.6-94
P
.,.,
s !.U.S !.U.J .c.h5.J S.Od.0 S.04.0 7.W.0 7.&&o 7.0-6.0
1sIO.5
Jm I-
J522AtSKuIM9 Rl6( AlSiJcUl. ..........
El47 S%.l 516.2 AluY.0 dJ6.I A.M.2 BJ16.0 BJ#.? CJ116.0 CJY.2 FJY.0
-cl
AOIJJZ AJIIB h)llJl
w.
I
0.:) 0.2) 0.10 0.20 0.20 0. IO O.OJ 0.01 0.0s 0.0) 0.20 0.10 0.0) 0.01 0.20 0.10 0.05 0.01 O.OJ 0.01
Mm
%
03
0.35
0.1s
0.23 030 030 0.10 024 0.50
. . . . . . . . .
8:;
.
. . . .
.
0.2W.4J O.W.4J 0.17d.2J O.IW.2J 0.4-9.6 0.45-0.6 o.ao.7 0.4-0.7 O.W.6
0.01 0.4-4.6 O.OJ 0.4SO.7
0.6
O.JS
0.4b3.6
0.10
0.10 O.JS O.JJ 0.05
0.459.6 0.4CW.6 0.4-0.6 0.4U.6
02
0.W.6
0.30 0.30
. .
.
. I
.
.
.
.
.
. ..0.20 O.OJ
..
0.m 0.10
. E
O.&w)O.Zit&O
0.m 0.20
4
w
Td
".
0.50 0.54 030 0.54 0.m 0.m 0.20 O.lJ 0.50 0.50 o.so 03l 0.30 0.m 030 0.50 030 .
-a
0.10 0.10 0.05 0.03
0.1s 030 03 O.JJ O.lJ O.IJ 0.15
nxm rem mn mm It* RI rrm l-cm Iem l-cm lem rem IeEl Iem Iem rem rem rem rem rem rem mm rem rem rem rem
0.03 O.OJ O.OJ 0.05 0.03 0.m 0.0s 0.0s
O.lJ O.lJ 0.15 0.15 0.10 0.1s O.IJ 0.15
rem mm rem m mm rem i-cm mm
0.M 0.M 0.05
O.lJ 0.15 0.1)
mm mm mm
0.0s 0.05 0.01 0.W 0.01 0.0s 0.0.4 0.M 0.M
rem rem rem rem mm rem rem rem w
mm mm rem T~(D mm
” ". O.lJ O.lJ 0.05 ” .” ” ” ” ” ” ” 0.1 0.05 0.0s ..'
.
0.0s 0.15 ICP 0.0s 0.15 l-tm
0.0s 0.01 .
O.ou).ZO
O.OYpl
0.044.m o.two.m
0.m 0.10 0.10 0.10
0.io.o.m
0.03w O.ospl
O.lJ O.lJ 0.10 O.lJ 0.10 O.lJ O.lJ 0.15 O.IJ O.tJ 0.10 O.lJ 0.10 O.JJ 0.10 O.lJ
O&S 0.M
O.tJ O.lJ
rem rem
"' -..
O.Yrcm o.?omm 0.u O.ZJ O.lJ 0.1)
mm rem w mm
0.044.m
O.OJ O.OJ O.OJ 0.10 0.05 O.OJ
0.o4-o.m 0.wo.m 0.04-o.m
0.w-o.m . . .
..
0.01
.
o.m-o.7
b.m
0.01 O.OJ 0.01 0. IO
.
:: f: 0.73 0.20 0.2s 02 '.' " 0.m 0.20
02 0.U 0.m
0.0) 0.10 0.10 O.OJ O.OJ
.
. #
02 0.2.l 0.20 o.lM4.m o.w-o.20 0.20 0.20 0.m
0.U
O.Jh3.6 o.ao.6 0.4Jd.6 o.Jo-o.7 O.JU.7
. .
0.311 .
O.xw).IJ 0.2J-O.4J
0.0s O.OJ 0.10 0.05 0.01 0.01 0.10 O.OJ O.OJ
0.35 O.lJ 0.10 1.0 I.0 1.2-2.0 1.2-1.9 0.10 0.10 O.lJ O.JJ 0.0) O.OJ 0.03 0.10 0.10 0.0s
O.N.O.4J O.lbO.4J
n 0.25 0.2J 0.2.J O.lJ 0.23 0.20 0.20 0.20 o.zJ 025 0.23 0.2s 0.20 03 o.zl 0.u
L;-u -AL
1.0
0.2W.rS 0.23-0.4J 0.30-0.4J O.L5&4J
0.01
$9
.
.
0.20
0.10 03
. .
0.2J 0.25
a.10 0.20 0.10
0.6 0.6
.
0.44d3.6 0.4Ql.6 0.1(M.6 0.4IFo.6 0.ti.i 0.4fU.6 0.4-0.6 030-0.6
0.24
2.0
t 1.0 1.0 1.0 1.0 1.0 I.0 I.0 0.10 I.5 I.5 I.0 I.0 0.10 1.0 1.0
... 0.10 0.10
0.20 0.12
0.7-1.1 1.1 1.0 0.6 I.1
Y 0.15 0.50 030 0.15 O.lS 030 O.JO 0.10
0 "
2.0-3.0 2.lLl.O 2.Cl.O 0.sl.J O.B-I .J . . . .
0.01 0.10 0.m 0.10 0.10 0.10
0.10
r(*
OS0 0.10 OS0 0.40
::ii
0.ou1.20
0.m 0.10
0.cu.m
o.QJ(pJ rem
0.o44.m
o.o~(p~
0.04-o.m 0.m-o.m
0.I2-o.rn 0.m 0.m
O.IJ 0.10 O.IJ O.IJ
it0
"' ". ...... ...... 0.m
0.M 0.01
0.~~0) 0.1s O.oYrl O.IJ rem
0.05 O.QJ
ALUMINUM ALLOYS CAST Cd-s-h-,
L--fizb ma,
VW.*.
%I.1
AO#ll
k.6J.o Y3.I 364.0 3b4.2 369.0 3b9.1 %O.o(sJ MO.2 AUO.OhJ
A03630 A0363 I ~0364 A03642 AO~M AOWN AOlWUsJ A03802 ~Ilao
A360.11S) AJm.2 BJBO.0 a380 I 3R1.0 393.1 yL3.2 Mb.0 s84.1 N.2 MRb.0 A384.I
MS.0 sm.1 390.0 590.2 Al90.0 AM. I 8190.0 8390. I 392.0 392. I 393.0 393. I 193.2 408 2IrJ uR.2lX) 4Il.?lXJ 413.asJ
4lJ.2lSl AllhXrl A4II.llrJ A4I3.2 8413.0 B413.l 435.21~) 441.0 443. I 443.2 AU3.0 A443.I BU3.0
A13OOllsJ Al)802 A2J.300 A28wI
0011) . ..,..... . . ,.. . ,._...... ., __.........,,..... . .. _, ,_. ._. 352 .USi&XFr RlMNSi&X3Fe.... _..,.__..._....... ............ _. ,.. _. __, . . ..... . ..................... ..................... ........... ..................... .
BA43.l CUJ. I c443.2 4U.O bu.? A4440
AMI1 Au430 AU431 AM432 AOurO AM442 Al4UO Al4441 AI4442
D tc,‘n,, . . . . . . I____. D . . . . Ianw
IfI I0@l ln@ D lasa
.:. .......
.................. IfG .................. .................. ‘2 ......
D Inpc D Inw s. P Inpl D III&M D lryol S.P.D lnpl lnpl l,,#~l Lnpl In@
................. .................. .................. .................. .................... .................. .................... ................... ..................... ..................... ..................... .................... .................... .................... .............. 3% AISilXuFasJ !!2 AISil? FCIII RIM AlSiJ2lsl RIM NSil!Culrl RI64 AlSil2CuFn11 RI61 AlSilZFetsl Cl47 AJEI~IsI....,.
.
D
. . InLa
..,......,........ _.......... ... .. .....................
.
D Iapc
it ln#ln IfI@
G
Mm
w
cs
9.LlO.S 4.M.O 4.540 7s9.3 7.5-9.5 II&12.0 11.0-12.0 7.5-9.3 7.s9.3
0.8 I.1 0.8 I.5 0.7-1.1 I.3 I.0 2.0 0.7-1.1
0.m 2.s1.5 2.5-3.5 0.20 0.20 024 024 m4.0 ~.o-b.O
0.23 111 (II 0.10 0. IO 0.3J 0.13 0.50 0.10
0.4Ql.b 0.I3-O.4O 0.2044 0.20-0.40.2w.m o.2sOLo.ul O.W.45 0.3oa.45 0.10 0.10
0.,m-o300.20&% (1) (0
7.L9.J 7.5-9.5 7.s9.J 7.5-9.1 7.3-9.3 9.L1I.J 9LII.J 9.s11.s 10.5-12.0 10.~12.0 10.s12.0 10.s12.0 10.s12.0
[email protected] lJ.&l3.0 I6.Cl1.0 Ib.O-18.0 IbO-Ill.0 lb.%M.O 16.0-18.0 lb.&18.0 l&O-2O.O II O-m.0 21.&23.0 2l.G!l.O 21.&23.0 8.5-9.5 9.s10.0 IO.Cl2.0
1.3 1.0 0.6 I.1 I.0 I.3 1.0 0.61.0 1.3 1.0 0.61.0 1.3 I.0 2.0 I.1 1.3 0.61.0 0.50 0.40 I.3 I .o 1.J 1.1 I.3 1.0 0.8 0.61.3 Oh-l.1 0.61.3
3.040
0.m
1.040 l.M.0 m-4.0 3.040 2.&1.0 2.O-3.0 2.s3.0
0.50 0.10 030 0.m 0.) 0.50 0.10
0.10 0.10 0.10 0.10 0.10 0.10 0. IO 0. IO 0. IO 0. IO 0. IO 0.10 0.10 0.30
ll.&l3.0 II&13.0 11.413.0 ll.&l3.0 ll.&l3.0 11.613.0 Il.cLlJ.0 3.L3.9 4.U.O 4.M.0 4.5-6.0 4.54.0 4.Sb6.0
2.0 0.7-1.1
.................. .................. ..................... s .................. ....................
S.P
?I
I.3 1.0 ::!a
0.4 0.4 0.) 0.6 0.6 i::
3.045
030
m-b.5 1.Lu.s 1.04.J 3.b4.5 2.O-4.0 2.040 4.PS.O 4.bS.O 4Lu.o 4.040 4.6S.O 4.er.0 0.40-0.8 0.4040 0.7-1.1 0.7-1.1 0.7-1.1 0.10 0. IO 0.20
0.m 0.10 0.m 0.m 0.50 0.50 0.10 0.10 0.10 0.10 0.m 0.m O.W.6 0.2W.6 0.10 0.10 0.10 0.10 0.10 0.10
I.0 0.10 1.0 1.0 0. IO 0. IO 0. IO 0.O.l
0.b
0.19 0.10 0. IJ 0.15 0.03 0.35 0.33 O.OS 030
0.6 0.10 0.30 03
i: 024 030
0.15 0.15 0.6 0.6 0.10 0.23 0.10 0.10 0.10 0.05
0.33 0.35 0.1) 0.35 0. IO 0.35 0.03 0.10 0. IO O.Q(
3522 Alsii RI@
CUI.0
Y
s. P Inpt ... D . Inpt _. D In&H ... D .__. I&o,
...... ..
. AI4IYXsI AI413IlsI Al4132llJ A24130 824131 AO4352lyJ AbuY) AO443I AO4432 A IWO Al4431 A24430
-eI 1q.n
AOl830 A03831 A0132 A03R4 A03841 A03842 Al3W AIWI A0150 AO3RSl AOX A03W2 Al1900 Al35Ul A23900 rlllpol A0397il A03921 A0393O A03931 A03932 AC"CSZlx1 A04092tr~ AlMll21~J AWl3alJ
-..kll-
I
RIM ...
MSii.. ......... ._ ................ AISiJFe ....... ................. .................. ........... ...... ................. .................. ................. ..................
5. P lnpc D
‘SE ln#Ol P lnpl ‘ruol
4.54.0 4.340 4.%.0 4.540 4.W.0 6.S7.3 b.W.5 657.5 6.S7.5 6.L7.5
0.8 0.6 2.0 I.1 0.7-1.1
0.10 0.07 0. IO 0. IO 0.05 0.05 O.O¶ 0.0s 0.0s O.OS 0.0s
M
0.W.d 0.3O-O.O 0.m4.40 ... '.. . .
.
o.rOGu 0.so-o.b.l o.rQ3.61 o.JOabJ 0.43-0.65 o.m-o.6( 0.6-1.2 0%I.2 0.7-I.1 O.bl.1 0.6-1.3 '.' "' "'
I
.
.
0.23 0.u 0.15 0. I3 0.0) 0.m 0% 0. IO 0.50 0.30 0.10 ::i 0.30 0.m 0.10 0.50 0.m 0.10 0.50 0.50 0.m 0.m . . . . 0.10 0.10 0.m 0.m 2.e2.3 2.C2.3 2.e2.3 . . . .
0.m 0. IO 030 0.M 0.05 O.O¶
0.03 .
L
L
0.4 J.o-4.1 3.ec.J 0.15 0.15 1.0 0.9 3.0 0.10
0.10 o.LI 0.25 0.13 0.15 0.10 0.10 0.35 0.10
::9” 0.10 ::i 1.0 2.9 0.10 3.0 2.9 0.10 1.0 0.9 1.0 2.9 0.10 0.10 0.10 0.10 1,s I.4 0.50 0.4 0.10 0.10 0.10 o,,o 0.10 0.10
0.m 0.10
0.m 0.4 0.05 0.10 0.10 0.10
0.25 0.25
0.m 0.53
0.25 02
0.10 0.m 0.m
.
. . 0.50 03
03 0.35 0.m 0.4 0.10 0.15 0.03 0. IO 0.10 0.0s
F -4l w
n
0.05 WJ (UJ O.OXVJ O.OYVJ 0.03 0.05 '.' .'
i:: 0.20 '.'
."
1d
*4,
0.13 0.m 0.30 0.13 0.15 0.111 0.13 0.m 0.20
rem nm rem fern rem tern rem mm mm
0.35 0.35 0.15 0.35 0.15 0.13 0.10 03 0.33 0.10 0.111 0.15 03 0.m ." ." ." ." ." .., 0.30 0.30
. . . '.' '.. . . . . .
. . .
'.. ". 0.29 0.20 0.20 0.20 0.20 0.23 0.20 03 0.io-o.m O.lO-O.2O 0.1Mo.20 .
.
.
. ‘.. 0.10 0.10 0.10 0.10 0.10 0.10 0.15 0.15 O.WrJ O.O%wJ O.ORwJ 0.10 0.10 0.10
0. IJ 0. IO O.lJ 0.15
0.03
. . . .
. . . 0.2J 0.23 02 0.2J 0.m 02 0.23
..
0.25 0.23
0.13 0.13
.. ..
02 0.x) 0.x) 0.10 0.20
. . 0.05 0.05 0.05 '. 0.03
03 03 0.20 0.m 024 054 0.30 0.30 024 03 0.20 0.b 0.b 0.M 0.20 0.2O o.xl 0% 0.13 O.IJ 0.13 0.20 0.20 0.20
Iem rem rem mm rem rem mn rem ltm rem mm Rnl rem rem rem Rm rem rem nm rem nm #-cm Rnl rrm
0.25 0.20 0.23 0.23 0.10 0.20 0.m 020 OJS 0.35 0.15
Rln rem mm nm ll!m mm rem mm trm l-em lu0
0.31 tern 0.05 0.05 .. 0.05 0.0s 0.05 0.05 0.03
OJ5
tern
O.lS0.15 03 03 0.13 0.15 0.15 0.15 0.15
mm Rnl rcm rem Rm rc0l rrm rem r4m
scurr.4: WJ.4.J
Bl-9
/
,”
,,
‘-‘I:
,f.% ,,
.F
s
4
ALUMINUM ALLOYS CAST gL#.,
LyIbb
lm-
-0
s
bS7.5 511.0 Jll.l Jll.2 J12.0 .._ 112.2 ;;;:;
AOJllO AQ(,,I AOJ,IZ A@120 AQ(lz2 ml&
Jl4.0
AOJlYl
J14.1 J14.2 JIJ.0 JIJ.2 Jl60 J16.1 Jlt.0 JIB.1 111.2 J20.0
A05142 An5150 ~O5lJ2 AaJI60 A05161 AOJIrn AOJIOI Ao5ls2 Am200
.
. . . . . . . .. . . . . . . .. ~___.....__.__._. ~__............__ .... . .. .. ~................ . . . . . . . .. . . .. . .. . . . . . JWAlM&l RI64 AlMI.3:
Inpl In&M s lu@l P ln#oI
o.Jo-o.7 o.Joa.7 o.Jo-o.7 1.4-2.2 l.CL.2 0.30 0.30
OJJ
520.2 JlJ.0 JJJ.2 1u3J.O Mu3J.I BS3J.O B515.2 705.0 705.1 7070 ml.1 710.0 710.1 711.0 711.1 112.0 II?.? w.0 7lJ.I n1.0 RI.2 RZ.0
AOJ202 AoJm AOJJJ2 AIJJJO AIJJJI A2J3m dlJ2 A07054 Arm51 A07070 AOrml A07100 AO7lOl A071 IO AmIll AO713l A07122 A07130 A07131 AURIO A07712 AOTfX
77i.i A07722
1so.o
u0.I
151.0 8sI.I
ArnJm ArnJoI -JlO AmJII
852.0
A!20520
152.1
A06521 Am@550 -512
8Jl.O U1.2
O.JJ 0.30 ox-I.0 0.504.0 0.3el.J 0.3Sl.J 0.3J O.)J 0.23
... ....... . . . . . . . . . . ..___.... 3J22 AlM#IO RI64 AIMlo: 111147)rlGgb . . .... . ~................ . . ~................ . ... . . ..__._ . '....,.........,. . ‘........__..___ . ~............_._. . . . . . . .._...____. . . ... . ~..__...__..,..., . . . . . . . . . . . ..__..
I-
s Ml
+ IIuo~ s 1~ s. P lnpr S. P lnpl S ltuot
.....
................ ............... ..... ..........
P IW s 1wc-l
................ ................ ........ ....... ................ ...... ......... ................ ................ . . . . . . . . . . ..__...__ ... . . . . . . . .. . . . . . . . ~_._._.,.__.,,,,,
s. P lnpl 5 IvS lnpr s. P Inpc S.? lm
... . . .._.._.._..... . . . ._.___...__..,.
S.,' m
.. . .. .. . - .._.._____._._._
. 5. P 1~
?* 0.61.3 0.54 0.40 0.30
0.6 0.30 0.40 0.30
0.w) 0.40 030 1.1 0.61.0 ox-I.0 0.JJ-0.7 I.8 I.1 0.7
Cm 0.10 0.1) 0.1) 0.10 0.3J 0. IO 0.10 0. IO
O.lJ 0.15 0.10
0.m 0.10 0.30 0.Y) 0.U 0.U 0. IO
0.25 O.IJ O.lJ 0. IO 0.20 0.20 0.15 0.10 0.20 0.20 0.20 0.20 0.15 0.15
0.30 0.20 O.lJ 0.10 0.20 0.15 0.12 0.1 0.6 0.8 0.6 0.w) 04
0.25 0.20 O.OJ O.OJ 0.10 0.10 0.10 0.05 0.n 0.20 0.20 0.20 O.JSOo.bJ 0.1Ml.61
0.m 0.30 Ou)
0.1-I .4 0.7-1.1 O.-Y)
0.J54.65 O.lUl.65 0.25
0.15 0.25 0.2J O.lJ 0.10 0.15 0. IO
0.40 I.1 0.8 0.15 0. IO 0.15 0.10
0.25 0.4rLI.O 0.40-1.0 0. IO 0.10 0.10 0.10
0.7 0.7
0.7 024
0.7-1.5
O.lJ
2.61.0
0.7
2.0-1.0 0.40
0.30 0.7
0.40
5.5-a 5.x5
0.50
0.7 0.50
0.7-1.1 0.7-I.J 0.7-1.3 1.7-2.1 1.7-L.)
),U.O I.040
Ma
ci
MI
xl
o,,o
0.3J OJJ 0.10 0.8 0.10 0.30 0. IO
0.3J OJJ
1.M.J 1.W.J
1.64.J 3.Y.J l.b-4.J 3.Y.J 1.ti.J
0.IJ-o.Q 0.1M.44 O.JJ O.JJ 0.10
2.M.5 7.J.d.J 7.66.J 7.&&J
0.404.6 0.0s 0.011 0.05 O.OJ 0.10 0. IO
...
...
.. . -. 0.25
'..
. .
.
,.. .. .
l-l
. 0.2tw.40 0.2SO.u) 0.204.Y) 0.2SO.Y) .'. J
0.1s O.lJ o.to O.JJ
0.10
'.. '.' " ...
"
0.25 03 0.20 0.25
0.20
1.4-2.2 LC2.2
" '.
0.20
O.lJ O.iJ 0.10 o,,o
'.. ... ..'
0.U 0.25
. . . . 0.2&0 0.w.a 0.15 O.lJ O.OJ
iti 0.20 0.15 O.lJ ..'
0.;; 0.10 O.,J
0.1&O.i3 0.10420
O.lJ 0.05
.
O.lJ 0.10
...
.
9.5-10.6 9.610.6 6.2-7.J 6.67.J 6.S7.J 6.Ct.J 6%7.J 6.67.5
o.lo-a.45 0.5ca.6J 0.5&0.65
.
...
i.W.J
1.4-1.8 l.Sl.1 1.6-2.4 1.9-2.4 0.6-0.1 O.bsM 0.2wlr5
-.
. .
1.W.J 3.64.J 1.64.J 2.w.o 2.74.0
0.4b3.6
h
0.10
0. IO O.W.6 O.W.6
0.15 0.10 O.lo-o.rr 0.10-0.2J 0. %0.Y 0.IW.U 0.05 0.05 0.404.6 ON-O.6
Ir
. . . . I
. " .
0.40-0.6
”
. ,..
2.7-u 2.7-u r.u.5 4.0-4.5 b&7.0 b&7.0 6.0-7.0
6.0-7.0 5.0-6.5 s&&s
0.40-0.6
0.m
'.'
0.20
ltm rem nan rem rem rem Rml rem mm rrm rem nxn rem mm Rln
0.20 O.ISO.25
0.05 0.05
0.15 0.3
Rln rem
0.05 0.10
0.20 0.25
rrm rem
0.10
03
bptl
0.15
7oa.o
"'
7.oao
'.'
0.25
0.10 0.10 0. IO 0. IO 0.10 0.10 0.10 0. IO 0.10 0.10
0.8-1.0 0.8~1.0 0.6-0.8
0.06-0.20 o.wto.2Q 0.06-4.20
. '.
b.J-7.J 6%7.J 6.&7.0
0.bu.t
0.064.20
09 o.,o
o.&oo.9 0.7-0.9
0.9-1.5
. . . . . .
0.9-1.5 .
0.IQ-O.20 0. I0-0.20 O.IO-o.2a O.lO-o.20 0.m
'..
5.w.o JS7.0
.
J.5-7.0
0.m
5.5-7.0 5.s7.0 5.5-7.0
;:i 0.20
. .
-;
0.15 0.15 0.15 O.lJ 0.15 O.IJ 0.15 0.15 0.15 0.15 0.15 O.lJ 0.15 0.15 0.15
0.1.'
5.L7.0 5.s7.0
rem ten! tnn feEI rem mm E,"
0.05 0.05 0.05lUl O.OJ(bbJ O.OJ O.OJ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 O.OJ 0.05
0.35
6.S7.0
O.lJ 0.15 0.15 0.15 O.IJ
0.2J 0.20 O.IM.25 O.I(M.23 0.23 0.25 0.I0-0.25 0.1Wo.25 0.U 03 0.U 0.2J 02 0.25 0.20
0.35
"
0.05 0.05 O.OJ 0.05 0.1 O.OJw O.OJ(ZJ
rem
0.23-4lm
0.7-1.1 0.3m.7 0.340.7
mm awn rem mm em mm rem mm
24,
0.25 0.10
0xLo.m
0.7-1.1
0.X O.lJ 0.15 0.1s 0.1s 0.1) 0.15 0.15
-..
0.6 0.6
"' " '.. ..'
Td
0.10 O.OJ 0.011 0.0) O.OJ 0.05 O.OJ 0.05
'..
O.IsK5 0.25
0.10 0.10 0.10 0.10
cmb
0.20
rem
0.05 0.0s
0 I5 O.lJ
rrm Iem
0.05
0.15
rem
0.05 I' .
0.1s 0.m 0.x)
rem Rln Rln
.'.
0.30 0.30
rem mm
.,.
0.30
mm
0.m 0.30 030
fern rcm mm
I
El-10
ALUMINUM ALLOYS TEMPER DESIGNATIONS Temper Designation System for Aluminum and Aluminum Alloys
Temper dcsigttatiot~ for wrought prod. UN that are sttcttgthcacd by straio hrrdcning EonCat of att H follwd by two or more digiu. The 6nt di&il following the H indi-
The ~entprr Jesignatmn system used in the Cmted hater for aluminum and alumtnum alloys is used for all product forms tboth wrought and cast). with the exception of ingot. Tk sy~ctn IS based on the Yquences of mechanical or thermal treat. ments. or b&h. used to produce the various tempers. The temper dcsignatlon follows the alloy dcsignaiion and is separated from it by a hyphen. Barx temper designations consist of irntividual capital Ic~tcn. Major subdivisions of basic tempers. where rcquircd. arc ittdicated by one or more digits following tk letter. These digtcs designate rpccific sequcoccs of treatments that pre duct spcctfa combmations of charactcristics in the duct Variattons in trtalment conditions within major subdivisions arc idcntilied by additional digrts. The conditions during heat treatment Isuch as time. temperature. and quenching t-ate) used IO produce a given temper in one alloy may diflcr from those employed lo produce the ~amc tcmpu in another alloy.
c&r
use
rrnin hardening rcntaining after the product hu ken panidly annealed. HI, ad Slahilized. This @es IO products that an! StJain-hardened vd W~OSZ t~~~hanical ptopettiu arc slabihd by a lowmtempcraturc lhcrma laxalmcnl a as a tudt ol heat intraluced during f&icab. St&&at&t uwally imptover ductilsy. T?tis dcsigmtbn applies only to those rlbys Ihal. unku slabdid. duauY rgc adlen at tmm tentpctaturc. The digit Mow-
Strain-Hardmd
Basic Temper Designations Designations for the common tempers. and descnptiis of the sequences of opcta. ttons used to produce these tempers. arc given in the following paragraphs. F. &-t&k&ted. This h spplitd to pm& uctsshapcdbyoddwork&botwork+~ ittwhkhoos@alamaol =WPt3xx thertualomditioruor stmin turdckug is emplqd. For ~IGU&I produa. tkrc are no-p?qxltylitlths. 0, Awdcd 0 applies to wrought pmduaa lhat UC annealed to obtain Iwststrength temper and’10 U products that arc anncakd IO improve ductility and dinunsiond stability. llte 0 may be loUwed by a dir atut than zeta n, slnbwwght Pducb Otdy). This indicates products that tuvc been srrcn&eatd by strain hardening. witi or urithout supplementary thermal treatmm to ptotlucc some rcductimt in strength. Tk H is always folkvcd by two or tnore di&s, as discussed ia the suztion “System dm Strain-Hardened this attick
Ptuluc~”
W, Sdutpn Htd-lrcatd This is an unslablc tcrnpcr applicable only to alloys whose strcagth naturally lspontancousty) changes at room temperature over a duration Of months or even years after solution heat trcattmtt. The dcsignaton is spe&ic only when the period of natural l gmg is indicated @T example. W ti h). See &o the diacussktt of the L-51. Tk5?. and M tcmpws in tbc section “System for HcrtTreatable Alkrys” in thir article. 1. b(Utio0 Heat-Treated. This applies to alloys whose strength ix stable within a few weeks Of sdution heat treatment. The T is always follaed by one or more dipu. s discussed in the Mction “Sptcm lot HcrtTrca~able AlLays” in this ankle.
the specific &quc~cc of-basic opcta-
tioas. Hl, stircOnly. This applies to ptoduc~ thaw arc strain hardened to obtain the desired suet@ without rupplcmcntrty tltcrtd matmeat. The digit following the Hl indicates tbe degree of strain hardening. n2, sltaln-andPUtMy& mJed. This pwuina to ptoduas IhI arc rLtti-budcacd more than the duitcd fld amout and tbcn reduced in strcngrh IO rbe duired level by partial annealing. The digit lothAng the H2 indicate4 degree of
ia
When it is desirable IO identify a vartatton of a twodi@I H temper. a third digit (from I lo 9) may be assigned. fhc third digit is used when the degree of control of temper or the mechanical properties are different from but close lo those for the twedigit H temper designation IO which if .is added. or when some other chatacrcnsttc is signifKantly affected. The mintmum ultimate tensile strength of a thrcedigtt H temper is at least as close IO that of the corresponding twc+ dlgit H temper as it IS IO ctthcr of the adjacent two-digit H tempers. Products in H tempers whose mechanical propcnics ate below those of HA tempers are assigned variations of HAI. Some threedigit H remper designations have already been assigned for wrought products in all alloys: Hz/f applies to products that incur sufC cient sttain hardening tier fitta~ artrtcaiing to fail to qualify as 0 temper. but not so much or so consistent an &mount of stain hardenmg to qualify as Hxl temper. HI/2 petins to products that may acquirc some strain hardening during working at elevated tcmprrature and for which thcrt are mechanical propcny limits.
ing the H3 indkatcs the dem of sttain hardening rmnaini~ alter subilizdi~n. MdiIiotul 1-r D+utiau. For IIlays that age soften at room tempctature. each Ht temper has [he same tnittimum ultima~t tensile strength as the H3x temper with the same second digit. For other alloys. each Hk temper has the same minimum uhimalc tensile sircngth a~ the HIx with the same second digit. and slightly higher elongation. The digit following the designations H 1. Ii!. and H3. which indicates the degree of strain hardening. is a nut~~t3l from 1 through 9. Nurr~tal 8 indicates 1cmpet-s with ultimate tensile strength equtvaknt to that ackved by aboul 75% cold reduction ivmpctatum during reduction not to exceed 50 T . or I20 ‘R lollowinn full annealing. Tcmprn between 0 (anrtc&d) and 8 a& designated by numerals I thtuugh 7. Mated having an ultimate tcnsilc strength ap proxtmatcly midway between that of the 0 tempct and the 8 temper is designated by the numeral 4. midway between the 0 and 4 tempers by the numeral 2. and midway between the 4 and 8 tempers by the numeral 6 Numeral 9 dcvgnatcs tempers whose’ minimum ultimate tcnslle strength exceeds that ol the g temper by IO MPa (2 ksi) ot more. For twwdigit H tempers whose secund digits ate odd. the standard lirmts for clrcngth are the anthmctic mean of the rtandard limits for the adjacent two-d@! H tempers whose second digits arc even. For alloy5 that cannof be sufklcntly cold-reduced to establtsh an ultimate tensile qtrcngth applxable to the 8 temper (75% cold reduction after full annealing). the 4. lcmpcr tcnsilc rlrcnglh may k established by cold reduction of approximately S58 following full annealing. or the 4.tcmpcr rens~le strength may tx crtabhrhcd by cold reduction of approximately 35% after full annealing.
Bl-11
ALUMINUM ALLOYS TEMPER DESIGNATIONS System for lieal-Treatable Alloys The temper Jcsignauon skrtcm for wrought and casl product\ IhaI arc Jtrengthcncd by heal IrcaImenI employs the W and T dcsignalions described In Ihc section “Basic Temper DcJignaIIons” In [his ar11. cle. The W dcsignalion denotes an unslable Icmpcr. whereas the T designation denote, D Jcable remper ocher Ihan F. 0. or H. The T Is followed by a numhcr from I IO IO. eact numkr indicaring a Jpccfic ~qucnce u1 basic IrcaIments. 11. Coded From UI Elevaled-tcmpralun sJuPin8 Process and NaIuralh Aged IO a sU~*hlly Stable Cmditim. lhs desIgna IIon applies lo products rhar arc no, cold worked afler an elcvrtcd~rempcr;lIure rhrping process such as casung or exwu~~~n and for which mechanical propcnies have been stabilized by room-tempcnturr aging. II also applies lo products arc flattcncd or nnightcncd afIcr cooling from rhc shaping omccss. for which the effecIs d Lhe cold wart Imparted by flattening or straightening are not accoumed for in Jpccihcd D~ODCRV limits. 12. Coded from an Ekvalcd-TemperaIure Shaping Process, Cold Worked. awl Namrally Apl to J Subrtrnlially Stable Condilhm. This varialion refers IO producIJ IhrI arc cold worked Jpecilically IO Improve scrcngth aficr cooling from a hoI+orkmg process such as rolling or cx~ruJIon and for which mechanical propcr11cJ have ken JIabillzcd by room-Icmprature agmg. II also applies IO products in which Ihe cff~~~ of cold woti. impaned by flancmng or sIr-aIghIening. arc accoumcd for In specified properly limirs. 13. blulion Heal Treated. Cold Worked. and NMurally Aged lo a Subrtantiallv Stable Condillon. T3 applies IO producIs IhaI are cold worked spccilically IO improw sIrcngth afwr solution heat Ircatmcm and for which mechanical prop&es have been stabilized by room-IempcraIure aging. II also applies IO products In which Ihc cffectr of cold work. imparted by llartenmg or slnaighterung. are accounred for in JpccIfied property limirs. 14, sdutial HCal lrclled ud wI8rally Aged ICI a Subrtantlally Slabk Corulll. This Jignilies products that are no1 cold worked lltcr solution heal Ireatmem and for which mechanical propenies have been SObilized by room-temperature aging. If Ihc producls are llallencd or siratghicned. ilie cffccrs of the cold work Impaned by flancning or sIraIghIcning are no1 accounted for in JpcGd propcny limirr. 15, Coded From an Ekvatd-TcmpraIurc Shaping Process and AIMXally Agd. TJ includes producrs 1haI arc no, cold uorked after an elevated-IcmpcraIurc Jbaping process such as casting or extrusion and for which mechanical propcnIes have been JubJlanIially improved by preeipilalton heat lrealmcnt. If the producer are flalIened or straighlcncd afIcr cooling from the shaping process. the effecIs of 1hc cold work impaned by llatlening or straighwning art not accounied for in JpccIIicd prop crty limils. 16, Sdulion Heat lnrled and ArliIicWIy A& This group cncompasxs prcducts
. . _
Ihal are no, cold worked aflcr solulion heat treatment and for uhIch mechanIcal propxr‘[ICI or dimensional JIrbiliry. or boIh. have b~cn subsmnlially Improved by prccipitauon heat Ircalment. If Ihc producls arc flaIIeocd or stta&tencd. the clTec~J of the cold work ImpatIcd by llatlcnmg or JIraighI. cmng arc not accounted for in JpeciIied propny limits. 77, nut Trea1ed and omagmi or Slaixd. l7 appltes to wrought pral1~1s th1 have been precipitation heat Ireatcd beyond the pomt of maximum Jtrcngch lo ptwde some rpccml chancteri,tic. such as tntunccd rcsiswuc IO JtrcJJ-coIroJion cracking or cxfotia11on corrosion. II applies lo a.51 product.5 char arc arIifmially aged lRcr solution heat treacmcnt to provide dinwtsiorml and SI~CII&I JtabiliIy. 18. Sohim Heat Treat4 Cold Worked, ad Artiliciily A& This designation applies to prcducrs lhat UC cold worked spc ciF&ally IO Improve strcngIh after solution her1 rreaunent and for which mccbanlcal properties or dimensional Jtabili~y. or both, hyc been JubJunItally improved by preckitumll kal Lrcalmcnt. The cffec0 of cold work. including any cold work imprrrcd by flattening 01 s~rening. are ac%uIled for in Jpccilicd propcny limilr. 19, Sdution Hut Treated. Mificially Aged, ud Cold Worked. This grouping is comprised of products 1ha1 arc cold worked J~ecilically IO improve slrcngth after they hove been Precipitation heat treated. 110. Co&d From an EkvaIed-Temperahut shapiv PmeJJ. cdd WorLcd, 4nd Mifwially Agd. TIO tdcntifies producrs that arc cold worked specitically IO rmprovc s:rcngIh allcr cooling from a hot-worling pmcor such as rolling or cxltusion and for which mechanmal propcnies have been substantially improved by prccipttauon heat wcauncrn. The effcc~s ofcdd work. includirg my cold work imparted by flattening or Juaigl~lcning. arc accounted for in Jpccifted projx?~ limits. Ad&hod 1 Temper Vaiatiau. When i1 is desirable IO Identify a wiation of one of he Ien nujor T Iempen described above. additional d&J. the firs1 of which cannot k LCI~. ntay bc ad&d IO Ihc dcJignaImn. Specific KCS of additional di(pIs have been assigned lo Jlrcss-relieved wrough1 pmduc,,: Sttcn Rtlirvrd by. Strrrching. Comprrrrkg. or Combination of Strrtrhing and Comprrrring. Thus designation applies to Ihe following products when stretched to Ihe IndIcaIed an~oun~s aflcr solution hut treatment or atkr waling from an elevatedlcmpmafurc shapmg process
4 TISI apphec specIfIcally :o @ale. lo rolled or cold-Iinished rcmj and bar. IO die or ring forgmgs. and to rolled rings. These producrs rece1w no funher Jwal~lenlng her stretching l T1510 apphcs IO cx~rudcd rod. bar. shapes and Iubmg. and IO dnwn tubing. producrs In this temper rccmvc no fuunhcr slraIghlcning aflcr svcIchq l TIS I I refers IO products Ih! may receive minor Jtnighwning afw urcIching IO comply ;viIh srandard ~olcnt~cs This variation compressing.
involves
stress
relief
by
Tr52 applies IO products thl arc SIICJJ relieved by compressing after solulion heat lrca1mcnl or after coding from a hot-workmg process to produce a permanent se1 of I to 5%
l
The nex1 desIgnaIIon is used for produas tha1 are SWCSJ rclwvcd by combining stretching ud compressing. l
TIJJ applies relieved by die. l’lhese M-may k
to die forgings that are stress restriking cold in ik fmish same digi,51. 112. and added IO Use designation W
IO Indicate unstable soluwn-heat-Ircated and sIrerr-relieved Iemprrl Tcmpcr designalions have been assigned 10 wrounht heal treated from the 0 ~I raroduc1J or Ihc F Icmpcr IO dcmonrwatc rcrponsc IO heal Ircatmcnl: 0 TX means solulion heat uuIcd from Ihc 0 or the p Iempcr IO ckmonswa~e rcJponsc to heat IrcaImeaI and plurally aged IO a JubsIamia.lly s&k condiIion l T6? means sdution hca1 ~ratcd from the 0 or rhc F temper IO deCtY5pXlStfO heal imatmcnt anti anit%aDy aged Temper designations TX and T Q also may be applied IO wmught products heat Ircarcd from any Icmpcr by the user when such hca1 treatmen msult~ in the mechanical properties applicable IO lhesc Icmpers. System for Annealed Pm&c& A digit folkwit!g [he “0” &icams a pralucr in annealcd condition habq spcial charac~crisrics. For eurnplc. la heat-~u~ablc alloys. 01 indiCaleS a protlducr thal has been heal ~rctwd a1 approxinwcly the sarr~ lime and Iemprruurc required fa solu~nm kat Ircalmenf and Ihen au cooled to room ternprature: [his designaumn appirs IO prcducls 01a1 arc to be machmcd pm to solulico hear trmmcm by tk user .Merhanical property limits are nc4 applicable. Designation of Unregirltrrd Tmpers Tk IcIIcr P has ken asrtgratd ~oderu~e H. T . and 0 temper vatiatons tk+t M ncgcktcd ktwecn manufacturrr and pwchaw. The lcrter P follows the temper de5igwion that rrms1 rmrl) pcnams. Tk use of lhI5 1ypc of deJignaIion includes situaouts where: 0 The use of the temper is vlffIcienlly Itm. iIcd IO prccludc its rcgisrntion 0 The ICSI conditions arc dilTcrcn1 from [hose rcquwed for rcg~stntmn vuh 1hc Aluminum Associalion l The mcchamcal propn) limils art noI established on Ihe same basis as required for rcgwraoon wrh ihe Atuminum Asso clarion
El-12
Appendix B
Appendix B-2
Titanium
instructional Video Teletraining Federal Aviation Administration
Alloys
Course
Introduction April, 1998
to Metallurgy B2
DESIGNATION DESIGNATION
SYSTEMS FOR TITANIUM
ALLOYS
SYSTEM
There is no standard designation system for titanium alloys. Alloys are designated by: 1. Alloy content: e.g., Ti-6Al-4V, . . . 2. Trade names: e.g., Beta C, Transage, . . . 3. Specification: ASTM, AMS, , . , The same designation is used whether the alloy is wrought or cast.
CLASSIFICATION Titanium and its alloys are classified into four groups: 1. Commercially Pure (CP) Titanium 2. Alpha/Near Alpha Alloys a) Major alloying elements: Al, Sn, Zr b) Minor alloying elements: V, MO, Nb, Ta, Fe c) Many alloys can b heat treated to high strength levels: Ti-8AI-I V- I MO, Ti-6A1-2Sn-4Zr-2Mo 3. Alpha-Beta Alloys a) Major alloying elements: Al, V, Zr, Cr, Mn, MO b) Minor alloying elements: Sn, Fe, Cu c) Many alloys can b heat treated to high strength levels: Ti-6Al-4V, Ti-6AL2Sn-2Zr 4. Beta/Near Beta Alloys: a) Major alloying elements: V, Cr, MO, Nb b) Minor alloying elements: Al, Sn, Zr, Fe c) Many alloys can b heat treated to high strength levels: Ti-1 SV-3Cr, Beta C, Ti- 1OV-2Fe-3A1
82-l
WROUGHT TITANIUM ALLOYS C.P. TITANIUM
Comparison
of various
specifications
for
commercially
pure
titanium
mill
products ,-
mh
‘c
JIS Class I.. ASTM ~mdc I IUNS R500250, _............ 0.10 DIN 3.7023 ........... 0.08 COST BTlX$ .......... 0.05 ES l%27Uin.-. ............ JIS Class 2.. ASTM endc : ICNS RJo46ol .......... 0.10 DIN 1.7035 ........... 0.08 COST ET14 ........ 0.07 BS 23.35th’ JIS Class 3.. ASTM Me 3 ILNS RI3001 __........... 0.10 ASTM @ride 4 tUNS R507001 0. IO DIN 3.7055 0.10 ASTM -de 7 IUNS R524fm ..__.__. . ..O.lO ASTM grade I I ICNS R5??.W1 0.10 ASTM grade I: tC.SS RS34001 .._....... 0.10
n O.Ol.(
cwdd~lkm.~au 3 0 0.15
0.03
h
0th
Tad OtblJ
0.20
...
...
... ... ... ...
... 0.10 max ... ...
... ... ...
... ... 0.30 mu
0.18 0.10 0. IO
0.03 0.05 0.0,
0.20
0.05
0.3 0.20 0.20
0.03 0.06 0.04
0.30
0.0:
0.30 0.25 0.30 0.20 0.30
ICI
0.35
0.0.’
0.30
ICI 0.013
040 0.3
0.05 0.06
0.50 0.30
... ...
ICI
0.3
O.O!
0.30
0.12-0.25
Pd
ICI
0 I8
0.03
0.20
0.I24.23
0.3
0.03
0.30
IC) 0.013 O.OW 0.0125 0.015 IC) 0.013
0.010 0.0125 0.01s
0 01:
,..
0.20 0.20 0.20 0.20 0.25
... ...
leek u-Mh
u
t75A-410
40-w
240 295-410 295 285410 343-S IO ;: 190-MO 382-530 480-617
55-77 70-90
440
64
Fe+dkml
rym-@1 MR
u
16Sfb)
2Ub)
170-310 175
2-5 25.5
195 2IUbJ
28 31(b)
27-10 245
4040 35.5
285 3431b3
-1 .* 27
41 U)(b)
3n-sm
55-75
SW u&m
a0 67-85
a4 323
70 47
343
30
275410
4040
20
Pd
240
35
170-310
24.5-45
24
0.2-0.4 MO. O.&O.9 Hi
480
70
380
53
I:
”
82-2
WROUGHT TITANIUM ALLOYS ALPHA/NEAR ALPHA ALLOYS Compositions
of various
alpha and near-alpha
IPIdan rprcilblim
Impurlly
*
Bars IAECMA slandards prEN?J?I and XII ._ ._... .___, 0.05 Sheet w strip 1prEN2128) and forgings 1prEN2522 and 2531.. .O.O! fl-SAI-L.SSSa
IUHS daiglurkil
II
C
titanium -iiizzY
Fe
0
m
,*I
*ooriw yai
.ICIN MO
Ckk’
0.08
001
0.2
0.2
0.4 total others
2.0-J au
0 08
0.01:
0.2
0.2
0.4 total olhers
:.w.au
0.08 0.08
0.02 0.0:
0.5 0.5
0.2 0.2
O.OOSYIb)
0. IO
Impurity limits same as AMS 4910 0.02 0.4 0.2 (bl 0.4 0.3
0.2 0.2
lb) 0. I5Si
4.cG6.00 4 w-6.w
0.0125
0.2s
0.12
0 + Fe = 0.32. O.o05Y, 0.05 each. 0.3 ronl 0 + Fe = 0.32. otherrIb, 0. I5Si
4.So-5.75
tUNS da@rutioa
R54521,
sheet. srnp,
.O.Ol!
0.05
.O.O?.(
0.03
0.0125
0.25
0.12
0. IO
0.015
0.30
0.02
VTJI ,U.S.S.R.,
..O.O’
2.0-3.0 2.ocr1.00
4.OCt.w 4.00-6.00
0.013 0.015
Tl.JAI-2.SSn.ELI
AMS 4924 [bars. fcqmgsl
4.G6.0 4.5&5.7S
0.10 0.10
AM.5 4909 fplak.
0. I?a.TPd
?.aJ-3.00 :.wml 2.00-3.00
IL’NS RMlOl,cl
AECMA. Ti.PM _. AMS 4915. 4916. 4911 lnnllsl. 4955 ,wrc,. 4972 (bars. lo&&. 4973 lforgingsl ................... .o.o.c ML-R-81588 lnng. wire1 ......... .0.01 TI-6242
mm.orb
Rw2ol
DIN17851 lalloy WL3.7llS) . ..O.OJ AM 4910 ,platc. sheet. strip, .O.O.( AMS 4926 lbars. rings) and AMS 4966 lforgmgs, ASTM B 265 lp+. shcc,. slripl .O.O! ASTM B 348 ,brr. bdlct, and ASTM B 381 ,forgingr). .O.OJ 3420-TA7 IChincscJ.. .O.OJ
TI-gAl-IV.l.Wo
alloys
Uaia -15 w
Impurity
limlls not available
8
0.08 O.OI.(
0.01s O.OOJ
0.30 0.20
0.1: 0. I?
O.lWJY. lb1 0.1 lotal Id). 0.15. O.ooSY 0.13s~. 0.1 mar orhcrr
IV 0.75-1.25 0.7Sl.25
O.?Cl.LcV 0.7>1.1’V
,UNS RS462OHcr
.AYS 4919. 4975. 4976
0.0:
O-O?
ul:!
0.2
0 I!
L S govcmmenr
0.04
0.0s
uutc
0.2.’
0.15
.O 0: ..O.O!
0.03 0.0s
0.012 0 0125
0.1: 03
0. IO 0. IO
0.4 lOllI
.0.04 .O.CU
0.W 0.04
0.003 0.013
0.12 0.12
0.17 0.1s
lb). O.OOJY
0.012J
0.10
001:
0.20
lmdlnryl
TI-6AI-2.Yb.ITa-0.8 Typlcai.. C.S. govcmmcnr
J J0-6.50
I&?.!
3.M.4
I .b’.’ - -
S.SO4.JO
l.lC.2
3.644
I .bX
MO (CSS R562101 lmilinryl
._.
. .
6 H-&s
0.8 0%I.00
?Nb. ITa ,.cXOKb. O..GI..cTI
Tl-679 IUNS Rs790) Typlcal. AMS 4974 Ibars. lorgingsl Brmsh TA.18. TA.19. TA 2:. and TA.26 British
TA.20.
TA.27
Tid?4ZS,cNel.. .._. Ti-5Al.5%?Zr-?Mdfl TibAl-2%.l..‘Zr.IMo.. IMI 685 lMl829 _.. ._..._.._........... IMI BY
_. ._. .O O !
. 0.05
00125
“’
II 1o.w I.5
5 4.0-60
I 0.8-1.2
O.?SL ncm 0. I w.17Si
2.025
10.5-l I.3
4.u.o
0%I.2
XL2.3
10.>11.5
4.0-6.0
O.bl.?
0.1-0.s.% 78.M li m m &me as TA.:’
4 3
3
3.5 4.5
I.5 ! 3 4
I 0.S 0.25 OS
4
0.4
6 5 6 6 5.5 5s 6
O.CbSi 03Si 0.3JBi. O.lSI 02SSi INb. O.ISl 0.7hb. 0.4% O.&C 0.43Si
B2-3
WROUGHT TITANiik ALLOYS ALPHA-BETA ALLOYS
TyplCal
41loy Ti-P6J m AECMA jnndard prEN25M for bars. ,411oy Ti-PM m .AECMA ,nndard prEN25 17 for sheer. wlp. plate DIN 17851 Catby WL3.71651,. ,4MS 4905 lplarel .AMS 4906 fshccr. wip, .4MS 491 I fplalc. sheet. smp8. 4MS 4920.4928. 4934. and J967 lneg5. forgmgs. wires) ,4MS 4954 Iwlrel ASTM B 265 iplate. sheer,. 4STM F 467 IIWISI and F 468 IbollSl lv6.G4V-ELI
IL%
.4YS A979 ibars.
0.3
0.2
0.0,
tbt
0.3
0.2
0.4 local
5.5-6.75
6
J.5-4.5V
0.05 0.05 0.03 0.05 0.05
0.08 0.08 0.05 0.08 0.08
0.01: 0.01 0.01’ o.o,y 0015
0.3 0.3 0.25 0.10 0.30
0.2 0.2 0.12 0.20 0.20
0.4 lOlaI ICI. O.caJY 0.4 mral kt. o.m5y
5.5-6.75 5.56.75 5.6-6.3 5.5d.75 5.5-5.75
3.54.5V 3.Y.5V 3.lw.4v I.Mu.5V l.ti.JV
0.05 0.03 0.05
0. IO 0.05 0.10
0.01:.’ 0.015 0.01.’
0.30 0.30 0.40
0.20 0.18 0.20
ICI. O.u)5Y ICI. 0.005Y IC)
5.5-fl.75 5.%x75 5.5-6.75
3.Y.5V 3.u.5v 3.J-J.JV. O.I:-O.?JPd
0.05
$1 IO
oo,:.’
0.40
0.20
ICI
5.5-6.75
0.0.’ O.&I 0.01
008 0.10 0.08
0.01:5 0013 0.01:.’
0.25 0.10 0.25
0.11 O.IM.I9 0.13
ICI. O.W5Y (dl
5.5-6.75 5.56.75 5.5-5.75
0.05
o.10
o.ol:!
04
0.20
1U.O ?).O’
0 01 001:
0.35-1.0 0.35-1.0
0.20 0.20
tc,. O.c!mY
5&o
2 1.5-2.5
0.M
0.0.
0.01
0.3.%l.O
0.20
ICI
5 o-6.0
1.5-2.5
0.0.’ O.O! 0 01 0 (u 0 03
‘l.utl 0 :o UIU n.o u.u.(
O.Ol! o.n13 0.011! 0.012! OOI’.’
0.50 0.30 0.15 0.10 0.25
0.20 0.20 0.15 0.11 0.14
0.0: ”
0u.c
0.01:
0. IO
0.12
4
3..u.5v
0.1 max
0.1 max.
0.1 max
5.5-5.75
J.Iu.JV 3.Y.5V J.Y.JV 3.J-r.JV
IUNS US66201
Trpical 4MS J918. 4936. 4971.4978
(Mn
0. IO ~I.08
Rs64a1,
.aMS J907 and 4930.. ,4MS 4996 fbdlell .4STM F I35 fbar, _. .4STY F 467 tnu~rl and F 468 Iboll5l. Ti-6Al-6V-2%
0.05
0.0.’
O.O4 I.. o.cu
forgings,
0.7Ku. ev 0.35-I .sccu. 5.0-6.OV Same a5 aboe
a-f3 alloy5
L’NS iAOl?Otin AYS J908l css 5670 I,” AM.5 J9701.. T&a6 I tiNS R562bOl T1.17 lscc also Table 5~1.. TI~AI-~S~.?Z~.:C~-~~O.. I.vl-551.. Tt.JAI.Z..(V tin A.MS 49431 IHI 550... ,. IW 679.. .................. IMI ml.. ................ Tld.4l.lMo-IVIe ..........
8.OMn 7 6 5.2&s
,: 0.05
UM 0 0:
O.OlC O.Ol1!lr,
0.30 0.25
0.12 0.1:
0.3 total
4 2.5-1.5 J 2 6 a M-6.5 6
-3 1 1.7i2.25
4 I .7:2.25
4 2 II I II-t.2 2
4 6 4 1.75-2.25 4
. ..’ 4 5 3.ti.r .
4 I . I IX-?.? 7
r.ocr O.,W.?‘ISi. 1.7~2.25cr O.JSi ?.&J.OV 0.25Si ICu. O.?Si IV OcmSI
WROUGHT TITANIUM ALLOYS BETA ALLOYS
Compositions
beta
titanium
AMS 4917 AMS 4959 Iwirel MIL.T-9006. MIL.R-815.98 MIL.T-9047: MIL-F-83142 High-loughntrr grade
0.05 0.05 0.05
0.05 0.05 0.05
0.02s 0.030 0.025
0.35 0.35 O.ls-o.3~
0.05
0.05
0.023
0.35
0.01s
0.01
0.008
MIL.T-9U46. MIL-T-9017. and MIL-F-83142 Beta C (UNS R58MOl. Same as above Beta Ill.. _. AMS 4977. 4980 ASTM: B 348. B 26). B 337. and B 338 Ti-IOV.?Fe-3AI.. Forgmg alloy Tel53 ..,........ Shecl alloy Ti-17ldl.. Engme com~rcrv~r 4#OY Tnntage 175 Hiph-clrenglh. clcbaledlcmpnl”re Tnnsage 134,. High-strcngrh allo) Ttansqc I29 .:..
0.0s
0.05
0.015
0.05 0.0s
0.05 0.10
0.05 003 0.05
Ti-I3V-I tUNS
ICr-3AI 580101
Ti-BMc-8V-2Fc.3AI (UNS R588201..
of various
alloys
0.17 0.17 0.17
(bl (bl. 0.005Y 0.4 IOUI
0.17
2.L-3.5 2.5-3.5
2,>),) 2.343 2,M.J
12.s14.sv. I2.5-l4.W. I2.~14.SV.
.
0.lItma.a). O.OBtnom)
IC)
1.6-2.4
0.16
0.4 tocal
2.6-3.4
0.01s 0.020
0.30 0.35
0.12 0.18
0.4 roral 0.4 IOUI
3.M.0
0.0: 0.03 0.0:
0.015 0.015 0.0125
1.C2.J 0.30 0.25
0.13 0.13 0.084 I3
IC) ICI IC)
2.>),) 2.5-33 4.M.5
2.s3.5 1.62.4
1.62.4
0.03
oa!l
0.015
0.20
0.1.’
IbYe)
:.2-l.:
6.5.7.5
1.5-2.5
O.O?
008
0.01)
0.20
0.15
tbre)
xL3.0 2
1s2.5
ss6.5 II
3.7M.23
3.545 4.w.s
10.&12.Kr IO&l2.W IO.&l2.CCr
12%I4.W.
IO.&l?.Kr
12.~14.W.
[email protected]
7.sa.J
7.J-B.JV
3.Y.5 lO.&l3.0
7.5-&5V
3.543
9.2%10.75V IL16V. 2.5-3.5Cr 3.5433 I?&l4.OV
.” “.
I I.&l3.OV II.W
82-5
CAST TITANIUM
Comparison
of cast
*lbl . . . . TidAIdV TidAIdV ELI(b). Commercially pure Iitanium Igrade 2). . TibAl-2Sndt.2Mo
titanium
bladd mhdWI d& 8596
ALLOYS
alloys
Nadd
I
?(
C
II
1% 6%
0. I8 0.11 0.25
0.015 0.010 0.015
0.04 0.03 0.03
O.W6 O.W6 0.006
6 6
7%
0.10
0.010
0.03
O.W6
0
AI
,I
umpdkm. nr v cr sr
o,,, 0.10 0.1)
, 4
6
0.15
.”
. .
2
2
6
0.1s
...
”
2
6
6 3
”
Cl%
0. IO
0.03
0.006
Ti-MI-L.SSn .................... Ti-3AI&‘&rdZrdMo t&U-C) Ti-ISV-JAI-3Cr-3Sn (Ti-13-3). ..... Ti-II00 .........................
C I% C 1% Cl% Cl%
0.16 0.10 0.12 0.07
0.015 0.015 0.015 0.015
0.03 0.03 0.03 0.04
0.006 o.ax 0.006 O.OW
5 3.5 3 6.0
0.2 0.2 0.2 0.02
... a.5 15 ...
M-834
Cl%
0.10
0.01:
0.06
0.006
s.a
0.02
...
T&l
.............
........................ ...........................
. . .
. . . .
WL . . .
28
Y
..3
. 3
0.010
TibAl-ZSndZr4Mo
. . . .
Ma
2.5 3 2.75
4 . . 0.4
4.0
0.J
, .
,
. .
‘. 4
0.7
. . 4.0
”
. . . . . 0.45
3.3
0.35
1 w
poprtlr(nn)
Ccned p”rposc Crywcnictarghmss Comsiofi =rismC Elcvawd-rcmpmurc C=P Elevated-rcmperuure rIren8Ih Cryogenic toughness RT strength Rfr~n#h Elevated-tcmpcruurc propenies Elevated-kmpcmrurc properties
IOOQ
826
Appendix B
Appendix B-3
Carbon, Low Alloy, and Alloy Steels
Instructional Video Teletraining Course Federal Aviation Administration
April, I998
Introduction to Metallurgy B3
Steels Classification Steels can be classified in more than one \\;ay: l- By composition: Three classes are identified a) Carbon Steels- No intentional alloying elements added. b) Low Alloy Steels- Total alloying element content I 8% c) Alloy Steels- Total alloying element content > 8%; stainless steels excluded, 2- By end product Spring Steels, Tool Steels, Bearing Steels. Gun Steels,... 3- By properties High Strength Low Alloy Steels (HSLA). Ultrahigh Strength Steels, Electrical 4- By processing Carburizing Steels,
Nitriding
see appendix
D
Steels,..
Steels
Designation Systems Classification
by composition
is the most
Carbon and Low Allov Steels The AISVSAE designation system cast or wrought.
N-AA
fypaOf#&dd
dwu
8ofAiMl
CarlmE
23xX 25Xx
mad
and rephoaphw
St&a . . . .Ni 3.50 . .Ni 5.00 Steela
. . . .Ni .Ni . . . .Ni . . . ..?Ji
1.25: 1.75; 3.50: 3.00;
Cr Cr Cr Cr
0.65 and 0.80 1.07 1.50 and 1.57 0.77
steels.
The same
AUO~
content
Sted~
. .N;.&82;
Cr 0.50 and 0.80; MO
UBVXX
.Ni 1.82; 0.25; V . . .Ni 1.05; 0.35 . . Ni 0.30; . . . Hi 0.55; . .Ni 0.55; . .Ni 0.55; .Ni 3.25; . .Ni 0.45; . Ni 0.55; . .h’i 1.00;
Cr 0.30: .Ho 0.12 and 0.03 min Cr 0.45; MO 0.20 and
47XX . . .
.
Cr Cr Cr Cr Cr Cr Cr Cr
0.400; 0.50; 0.50; 0.50; 1.20; 0.40: 0.20; 0.80:
MO MO Ho MO MO MO MO Ho
50xX.. 51xX
designation
systems
is used whether
are as follows.
the steel is
TypOOflrerlAd
nomid
Chromium
rlloy
woteot
SteelA
WXXX SlXXX 52XxX
.Cr 0.50 .Cr 1.02 .Cr 1.45
c 1.00 mill
Chromium-Vanndium
61Xx
0.12 0.20 0.25 0.35 0.12 0.12 0.20 0.25
Steela
.Cr 0.60,0.80 and 0.95; V 0.10 And 0.15 min
Tungsten-Chromium Steel 72XX . . .W 1.75; Cr 0.75 Silicon-Mangfmere 92XX
.
9xX
Steele
.Si 1.40 and 2.00; Mn 0.55.0.82 and 0.85; Cr 0.00 and 0.65
High-Strength
Low-Alloy .VAriOuA
hmtl
. . . .Ni 3.50; MO 0.25
Chromium
designation
NuQltrAh end didtr
‘PypcOf~lAd nomhl
433xX
48xX
SteeL
t%WUhEl*MO~ybdCllUl
The corresponding
Nickel4folybdcnum Steela 16XX....N;&85and1.82;Mo0.2Oand
.Mo 0.20 and 0.25 . . ..MoO.40 and 0.52
41xX
and low alloy
dldta
81XX 86xX 87Xx 88Xx 93xX. 94Xx 971xX 98Xx
Steel,
Molybdenum 40XX 44xX
(Mn 1.00%
.hIn 1.75
Nickel-Chromium 31XX 32XX 33xx 34Xx
for steels.
NlckelCbrodum-Molybienum
carbon (max Mn range1.00 to 1.659)
13xX..
for carbon
A&
.PlAin
Mangaacme Nickel
eontent
Steeb
..
used system
NumerAla
Auoy
lOXX(a) . Plain carbon 11xX.. * .ReAulhuircd 12XX . . . .Fk.Jiui” 15xx
is used
widely
sti
Steelr @AdAA
!h?dA
XXBXX
B denotea
bomn
fuel
leaded
steel
.%dA
.Cr 0.27.0.40.0.50 and 0.65 . . .cr3fp7. 0.92. 0.95. 1.00
Lmeded XXLXX
Sccclr .L denotee
SkdA
. .Cr 0.50.0.80 and 0.95; MO 0.12. 0.20. 0.25 and 0.30
Occasionally, industry; e.g.,
a steel D6-a,
will have no AISUSXE HY 80 and 3OOM.
designation
. In such
cases, the steel
is identified
by the trade
name
assigned
by
Alloy Steels Alloy
steels
are strictly
identified
by trade
names
assigned
by industry;
e.g., HP-9-4-30
and Marage
300.
83-l
CARBON STEELS composltioa roqos and limits (or AlSl4A.M motuboa+ quality rwois
c-poswoa SA1 standard
mogos and msulharlxod
AISI-SAE
UNS
dcrilnatioa
,O.lO
0.25-0.60
0.04
0.05
Ml010 Ml012 Ml015 Ml017
.O.Oi-0.14 .0.09-0.16 .0.12-0.19 .0.14-0.21
0.25-0.60 0.25-0.60 0.25-0.60 0.25-0.60
0.04 0.04 0.04 0.04
0.05 0.05 0.05 0.05
Ml020
.O.l?-0.24 .0.19-0.27
0.25-0.60 0 25.0.60
0.04 0.04
0.05 0.05
-0.20.0.30 .0.26-0.36 .0.40-0.50
0.25-0.60 0.25~0.60 0.25-0.60
0.04 0.04 0.04
0.05 0.05
Ml023 Ml025 Ml031 Ml044
max
GlllOO
1117 Ill.9
....
1137
. . .
1139
..
1140 1141 1144 1146
. . . . . . . .
. . . . . . ..
.. . . . . . . . . . . . . ..
0.08-O. 13
0.30-0.60
0.14-0.20 0.14-0.20
Cl1370
0.32-0.39 0.35-0.43
1.00-1.30 1.30-1.60 1.35-1.65
ran~ea and iimlk fee AISI.SAI earboa Hooh with a maximum manganow l xsoodiag l.lo%-aoatlfinisbad proawes for forging‘ roliod aad cold flaisbod bmrr, win rod and seamlosr
1513
.
1522 1524
1525(b) 1526 1527 1536(b) 1541 1547(b) 1548 1551
. .
. . . .
. .
1552 1561 1566
hot
rubimg
AISI-SAE designation
smu
F0mr Am-SAE dcrl#tuUon
0.10-0.16 0.15-0.21
1.10-1.40
0.040
0.050
1.10-1.40
0.040
. .
Cl5220
0.18-0.24
1.10-1.40
0.040
0.050 0.050
Cl5240
0.19-0.25 0.23-0.29
1.35-1.65 0.80-1.10
0.040 0.040
0.050 0.050
1024
Cl5256 G15270 Cl5360 Cl5410 G15470 Cl5480 G15510 G15520 Cl5610
0.22-0.29 0.22-0.29 0.30-0.37 0.36-0.44 0.43-0.51 0.44-0.52 0.45-0.56 0.47-0.55 0.55-0.65 0.60-0.71 0.65-0.76
1.10-1.40 1.20-1.50 1.20-1.50 1.35-1.65 1.35-1.65 1.10-1.40 0.85-1.15 1.20-1.50 0.75-1.05
0.040 0.040
Cl5720
CorrporHion rosalhwisod
Pmu
Cl5130 G15180
Cl5660
1572(b)
Ma
C
Cl5250
mm and UNS dcrignatioa
0.08-0.13 0.13-0.20
CODHO*
HeatzgF;;uqw
1518(b)
.65
0.37-0.44 0.70-1.00 0.08-0.13 0.37.0.45 1.35-1.65 0.08-0.13 0.40.0.48 1.35-1.65 0.24-0.33 0.42-0.49 0.70.1.00 0.08-0.13 1151 . . . . . . . . . Cl1510 0.48-0.55 0.70.1.00 0.08-0.13 'aJLimitonpho~phonueonrent1~~~eninTable1~chccrpiulvaluci~O.D(W maximum phwphoma. BcuuroTtheadvcrsee~~tol~ilieo~on machinability ~teel~liadinthti ~bl~~~gcnerallyno~dco~idi~cdilh rilicon.Steelli~vdin thirub