∫ √ 1 - x dx = cos x 1 17.∫ dx = tan x 1+x -1 18.∫ dx = cot x 1+x 1 19.∫ dx = sec x √ - 1 x x- 1 20.∫ dx = cosec x x√ x - 1 -1
16.
-1
2
-1
2
-1
2
-1
2
-1
2
x dx = x
∫
21.
⇒
x
∫ex (f(x) + f' (x))dx
ex f(x)
=
Spec Sp eciial In Intteg egra rals ls :
∫ √ x + a 1
1.
2
∫ √ x - a
2
1
2.
2
2
∫ √ a - x 1
3.
2
2
dx = log x +√ x2 + a2 dx = log x +√ x2 - a2 dx = sin - 1
1
4.
∫ 1 5.∫ x -a
2
∫ a -x
6.
1
2
2
∫√ x
7.
2
∫√ x
8.
2
( )
1
x2 + a2 dx = 2
x a
dx = dx =
+a
2
-a
2
a tan 1 2a 1 2a
dx =
dx =
-1
x
x+a a - xa x-
√ x 2
x
( )
x-a x+a
log
log
x a
2
√ x 2
2
+a
2
-a
2
+
-
a2 2
a2 2
log x +√ x2 + a2
log x +√ x2 - a2
∫√ a
2
9.
2
-x
x
√ a 2
dx =
2
2
-x
+
a2 2
sin - 1
x a
( )
Stan St anda dard rd Su Subs bsti titu tuti tion onss : →For the terms of the form : 2
2
2
2
(i) x + a (or) √ x + a
put x = atanθ (or) x = acotθ
(ii) x2 - a2 (or) √ x2 - a2 put x = asecθ (or) x = acosecθ
(iii) a2 - x2 (or) √ a2 - x2 put x = asinθ (or) x = acosθ (iv) If both √ a + x , √ a - x are present then put x = acosθ (v) For the type √ ( (x - a)(b - x) put x = acos2 θ + bsin2 θ
Some So me Us Usef efu ul Tri rig gnom omet etrric For orm mul ula as : 2
Integration By Parts : If u and v are two functions of x then
∫
∫
uv dx = u v dx -
∫
d (u) dx
∫v dx dx
Choice Of 1st and 2nd Functions : The 1st function is the function which comes first in the word 'ILATE' I - In Inve vers rsee tr trig igno nome metr tric ic fu func ncti tion onss
L - Lo Logar garthm thmic ic fun funct ction ion A - Alg Algebr ebrai aicc fun funct ction ion T - Tr Trign ignome ometri tricc fun functi ction on E - Exponential ⇒
If one of the two function is not integrable directly then take
that function as 1st. ⇒ If onr of the function is not directly integrable then 'unity(1)' is taken as second function. Forrmu Fo mula lass :
∫(f(x) + xf' (x))dx
1.
=
ax
e sin(bx + c)dx =
2.
xf(x) eax
asin(bx + c) - bcos(bx + c)
a2 + b2 eax ax 3. e cos(bx + c)dx = 2 acos(bx + c) + bsin(bx + c) 2 a +b
∫ ∫
∫a sin(bx + c)dx
4.
x
∫a cos(bx + c)dx
5.
x
=
=
ax 2
2
(loga loga)) + b
loga.sin(bx + c) - bcos(bx + c)
ax loga.cos(bx + c) + bsin(bx + c) 2 2 (loga loga)) + b
Note : → If the integral is of the form :
∫ a + bsinx 1
dx (or)
∫ a + bcosx 1
x
( ) = t
Put tan
2
working rule : tan
( ) = t x 2
Diff Di ffer eren enti tiat atin ing g w. w.r. r.to to x,
dx (or)
∫ asinx + bcosx + c dx 1
1
2 se c 2
x
( )dx sec2
( ) x 2
2dt
dx =
2
1 + tan
( x ) 2
2dt
dx =
sinx =
dt
2dt
dx =
⇒
=
2
1 + t2
( x ) x 1 + tan ( ) 2tan
2
2
2
⇒
sinx =
2t 1 + t2
( x ) x 1 + tan ( ) 2
1 - tan
cosx =
2
2
2
⇒
→
cosx =
∫
∫
→
1-t 1+t
2
2
acosx + bsinx dx = ccosx + dsinx
(
ac + bd x + c2 + d2
)
acosx + bsinx + L dx = ccosx + dsinx + k
(
(
ac + bd x + 2 2 c +d
)
ad - bc log lo g De Deno nomi mina nato torr c2 + d2
)
(
∫ ccosx + dsinx + k
)
1
+ (L - Ak) ⇒
ad - bc log lo g De Deno nomi mina nato torr 2 2 c +d
where A =
(
CBSE CBSE
ac + bd c2 + d2
)
(or) Nr = A (Denominator) + B(Denominator)
#If the integral is of the form of
∫ acos x + bsin x + csinxcosx dx (or) 1
2
2
∫ a + bsin x 1
2
dx (or)
∫ a + bcos x dx (or) 1
2
∫ acos x + bsin x + c dx (or) 1
2
2
∫ (acosx +1 bsinx bsinx))
2
dx
working rule : ⇒
Divide both numerator and denominator by cos2 x and then tak akee 't 'tan anx x = t' Intteg In egrrati tion on of im impr pro ope perr fr fra act ctiion onss : ⇒
f(x) is said to be improper when degree of f(x) > = degree of g g(x)
(x) ⇒
Pro roccee eed d thr hro ough di div vidi din ng nume merrato torr by de den nom omin ina ato torr Dividend = Divisor × quotient + remainder
#If the integral is of the form : +q px + q dx (or) ∫ ∫ axpx+ bx +c √ ax + bx + c 2
2
(or)
∫(px + q)√ ax
working rule : d Numerator = A. dx (Denominator) + B ⇒
where A and B are constants to be determined
Intteg In egrrati tion on of Ir Irrrati tion ona al Al Alg geb ebrraic fr fra acti tion on : → Irration functions of the form : 1
(ax + b) n can be evaluated by the substitution ⇒
tn = ax + b
2
+ bx + c
→ For
∫ (x - k) √ ax + bx + c 1
r
1
⇒ (x - k) =
→ For ⇒
x2 =
t
∫ (ax + b)√ cx + d 1
2
put x =
dx su subs bsti titu tute te
2
dx
2
1
⇒
t
-1
dx =
2
t
dt
1
t2
#Integration of the type :
∫sinm x.cosn x dx (i) If one of them is odd then substitute for the even power (ii) If both are odd substitute either of term (iii) If both are even use trignometric identities only
Red edu ucti tion on For orm mul ula ae : → In =
∫xn eax dx then ax
⇒
a
→ In = ⇒
(a
In = e xn - n .In - 1
∫sinn xdx
In =
→ In =
)
- sin
n-1
x.cosx
n
+
n-1 .In - 2 n
∫
cosnxdx
cosn - 1x.sinx n-1 ⇒ In = + .In - 2 n n
→ In =
∫
tann dx
tann - 1 x ⇒ In = - In - 2 n-1
→ In =
∫cotn dx -1
⇒
In =
→ In =
- cotn
x - In - 2
n-1
∫secn xdx
secn - 2 x.tanx n-2 ⇒ In = + .I n-1 n - 1 n - 2
→ In = ⇒
In
cosecn xdx
∫ - cosec =
n-2
n-1
x.cotx
+
n - 32 .I n - 1 n - 2
Note : → Don't forget to add integration constant 'c' for all integration formulas. - - - - - - - - - - - Prepared
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.