INHIBITOR ENZIM
May 9, 2017 | Author: FirdaLestari | Category: N/A
Short Description
Download INHIBITOR ENZIM...
Description
c cc c m m
m m!
"# $ ! % &&# ' &# () *
+
! # & , , # & & * & , , , # , &) , ! - & &, $ & , & ,& , ,+ , # # + # # , # . + & , & & + / 0 # # , &
/
& 1 # & , %, 123- 123- , & ,
,
, , # / , & , & 4 / & ,# # ! / , & ) #/ & , , & & & & #& , # c c # ) # & , & #/ + # & / & , , & & "
&
& , & & , &,
, & #& #&# ) # & &) # / & & , & #& ) # &#,& # & , / # / # #& / #& / &, m #/ # #/ # ,, ) # &) ) # ) # , & & &# & & & , / & & & & , , & & & m # / & ,5 , & & , / , , & & -, & 6 # 6) # & & -&) # , & / & & & * , # # & & #& & , & & * ) #/ ) # & # & & && & , # & , # &, 0 ! & & % ) # m & & & , ) & / 0 ,) / ,) / ,) ' & / , #& # & # ' & # ,& &) , , # & # # , & "& , & &# # # # , +# , #/ , & & , # # $ #& & , & & # & , #&# # & & & & & , &/ & &
& # # &
O
!c ! # & , , # & & * & , , , # ,
&) $&, $ &
, & ,& , ,+ , # # + #
# , # . + & , & & + / 0 # # " ! %/ ,077 &, 7 &7$8 96) #8 %/ ,077 &, 7 &7$9 Anonymous, 2011. http://www.britannica.com/EBchecked/topic/203717/feedback-inhibition c " !
? An is a molecule that binds to enzymes and decreases their activity. Since blocking an enzyme's activity can kill a pathogen or correct a metabolic imbalance, many drugs are enzyme inhibitors. They are also used as herbicides and pesticides. Not all molecules that bind to enzymes are inhibitors; enzyme activators bind to enzymes and increase their enzymatic activity.
The binding of an inhibitor can stop a substrate from entering the enzyme's active site and/or hinder the enzyme from catalysing its reaction. Inhibitor binding is either reversible or irreversible. Irreversible inhibitors usually react with the enzyme and change it chemically. These inhibitors modify key amino acid residues needed for enzymatic activity. In contrast, reversible inhibitors bind non-covalently and different types of inhibition are produced depending on whether these inhibitors bind the enzyme, the enzyme-substrate complex, or both. many drug molecules are enzyme inhibitors, so their discovery and improvement is an active area of research in biochemistry and pharmacology. A medicinal enzyme inhibitor is often judged by its specificity (its lack of binding to other proteins) and its potency (its dissociation constant, which indicates the concentration needed to inhibit the enzyme). A high specificity and potency ensure that a drug will have few side effects and thus low toxicity. Enzyme inhibitors also occur naturally and are involved in the regulation of metabolism. For example, enzymes in a metabolic pathway can be inhibited by downstream products. This type of negative feedback slows flux through a pathway when the products begin to build up and is an important way to maintain homeostasis in a cell. Other cellular enzyme inhibitors are proteins that specifically bind to and inhibit an enzyme target. This can help control enzymes that may be damaging to a cell, such as proteases or nucleases; a well-characterised example is the ribonuclease inhibitor, which binds to ribonucleases in one of the tightest known proteinʹprotein interactions.[1] Natural enzyme inhibitors can also be poisons and are used as defences against predators or as ways of killing prey.
Y Yeversible inhibitors bind to enzymes with non-covalent interactions such as hydrogen bonds, hydrophobic interactions and ionic bonds. multiple weak bonds between the inhibitor and the active site combine to produce strong and specific binding. In contrast to substrates and irreversible inhibitors, reversible inhibitors generally do not undergo chemical reactions when bound to the enzyme and can be easily removed by dilution or dialysis.
There are four kinds of reversible enzyme inhibitors. They are classified according to the effect of varying the concentration of the enzyme's substrate on the inhibitor.[2] O
In ð , the substrate and inhibitor cannot bind to the enzyme at the same time, as shown in the figure on the left. This usually results from the inhibitor having an affinity for the active site of an enzyme where the substrate also binds; the substrate and inhibitor ð for access to the enzyme's active site. This type of inhibition can be overcome by
sufficiently high concentrations of substrate, i.e., by out-competing the inhibitor. Competitive inhibitors are often similar in structure to the real substrate (see examples below). O
In àð , the inhibitor binds only to the substrate-enzyme complex, it should not be confused with non-competitive inhibitors. Both Vmax and Km decrease (maximum velocity decreases as a result of removing activated complex while binding efficiency increases as a result of Le Chatelier's principle).
O
In , the inhibitor can bind to the enzyme at the same time as the enzyme's substrate. However, the binding of the inhibitor affects the binding of the substrate, and vice versa. This type of inhibition can be reduced, but not overcome by increasing concentrations of substrate. Although it is possible for mixed-type inhibitors to bind in the active site, this type of inhibition generally results from an allosteric effect where the inhibitor binds to a different site on an enzyme. Inhibitor binding to this allosteric site changes the conformation (i.e., tertiary structure or three-dimensional shape) of the enzyme so that the affinity of the substrate for the active site is reduced.
O
ð is a form of mixed inhibition where the binding of the inhibitor to the enzyme reduces its activity but does not affect the binding of substrate. As a result, the extent of inhibition depends only on the concentration of the inhibitor.
Irreversible inhibitors usually covalently modify an enzyme, and inhibition cannot therefore be reversed. Irreversible inhibitors often contain reactive functional groups such as nitrogen mustards, aldehydes, haloalkanes, alkenes, Michael acceptors, phenyl sulfonates, or fluorophosphonates. These electrophilic groups react with amino acid side chains to form covalent adducts. The residues modified are those with side chains containing nucleophiles such as hydroxyl or sulfhydryl groups; these include the amino acids serine (as in DFP, right), cysteine, threonine or tyrosine.[13] Irreversible inhibition is different from irreversible enzyme inactivation. Irreversible inhibitors are generally specific for one class of enzyme and do not inactivate all proteins; they do not function by destroying protein structure but by specifically altering the active site of their target. For example, extremes of pH or temperature usually cause denaturation of all protein structure, but this is a non-specific effect. Similarly, some non-specific chemical treatments destroy protein structure: for example, heating in concentrated hydrochloric acid will hydrolyse the peptide bonds holding proteins together, releasing free amino acids.[14] Irreversible inhibitors display time-dependent inhibition and their potency therefore cannot be characterised by an IC50 value. This is because the amount of active enzyme at a given concentration of irreversible inhibitor will be different depending on how long the inhibitor is pre-incubated with the enzyme. Instead, Kobs/[ ] values are used,[15] whereKobs is the observed pseudo-first order rate of inactivation (obtained by plotting the log of % activity vs. time) and [ ] is the concentration of inhibitor. The Kobs/[ ] parameter is valid as long as the inhibitor does not saturate binding with the enzyme (in which case Kobs = Kinact).
4
Kinetic scheme for irreversible inhibitors
As shown in the figure to the left, irreversible inhibitors form a reversible non-covalent complex with the enzyme (EI or ESI) and this then reacts to produce the covalently modified "dead-end complex" EI*. The rate at which EI* is formed is called the inactivation rate or Kinact. Since formation of EI may compete with ES, binding of irreversible inhibitors can be prevented by competition either with substrate or with a second, reversible inhibitor. This protection effect is good evidence of a specific reaction of the irreversible inhibitor with the active site. The binding and inactivation steps of this reaction are investigated by incubating the enzyme with inhibitor and assaying the amount of activity remaining over time. The activity will be decrease in a time-dependent manner, usually following exponential decay. Fitting these data to a rate equation gives the rate of inactivation at this concentration of inhibitor. This is done at several different concentrations of inhibitor. If a reversible EI complex is involved the inactivation rate will be saturable and fitting this curve will give Kinact and i.[16] Another method that is widely used in these analyses is mass spectrometry. Here, accurate measurement of the mass of the unmodified native enzyme and the inactivated enzyme gives the increase in mass caused by reaction with the inhibitor and shows the stoichiometry of the reaction.[17] This is usually done using a MALDI-TOF mass spectrometer. In a complementary technique, peptide mass fingerprinting involves digestion of the native and modified protein with a protease such as trypsin. This will produce a set of peptides that can be analysed using a mass spectrometer. The peptide that changes in mass after reaction with the inhibitor will be the one that contains the site of modification.
þ
Chemical mechanism for irreversible inhibition of ornithine decarboxylase by DFmO. Pyridoxal 5'phosphate (Py) and enzyme (E) are not shown. Adapted from[18]
Not all irreversible inhibitors form covalent adducts with their enzyme targets. Some reversible inhibitors bind so tightly to their target enzyme that they are essentially irreversible. These tightbinding inhibitors may show kinetics similar to covalent irreversible inhibitors. In these cases, some of these inhibitors rapidly bind to the enzyme in a low-affinity EI complex and this then undergoes a slower rearrangement to a very tightly bound EI* complex (see figure above). This kinetic behaviour is called slow-binding.[19] This slow rearrangement after binding often involves a conformational change as the enzyme "clamps down" around the inhibitor molecule. Examples of slow-binding inhibitors include some important drugs, such methotrexate,[20] allopurinol,[21] and the activated form of acyclovir.[22]
? Dari Wikipedia bahasa Indonesia ? adalah biomolekul berupa protein yang berfungsi sebagai katalis (senyawa yang mempercepat proses reaksi tanpa habis bereaksi) dalam suatu reaksi kimia organik.[1][2] molekul awal yang disebut substrat akan dipercepat perubahannya menjadi molekul lain yang disebut produk. Jenis produk yang akan dihasilkan bergantung pada suatu kondisi/zat, yang disebut promoter. Semua proses biologis sel memerlukan enzim agar dapat berlangsung dengan cukup cepat dalam suatu arah lintasan metabolisme yang ditentukan oleh hormon sebagai promoter.
Enzim bekerja dengan cara bereaksi dengan molekul substrat untuk menghasilkan senyawa intermediat melalui suatu reaksi kimia organik yang membutuhkan energi aktivasi lebih rendah,
sehingga percepatan reaksi kimia terjadi karena reaksi kimia dengan energi aktivasi lebih tinggi membutuhkan waktu lebih lama. Sebagai contoh: Ö + ß ї Öß (1) Y + Öß ї ÖYß (2) ÖYß ї ßZ (3) ßZ ї ß + Z (4)
Meskipun senyawa katalis dapat berubah pada reaksi awal, pada reaksi akhir molekul katalis akan kembali ke bentuk semula. Sebagian besar enzim bekerja secara khas, yang artinya setiap jenis enzim hanya dapat bekerja pada satu macam senyawa atau reaksi kimia. Hal ini disebabkan perbedaan struktur kimia tiap enzim yang bersifat tetap. Sebagai contoh, enzim Į-amilase hanya dapat digunakan pada proses perombakan pati menjadi glukosa. Kerja enzim dipengaruhi oleh beberapa faktor, terutama adalah substrat, suhu, keasaman, kofaktor dan inhibitor. Tiap enzim memerlukan suhu dan pH (tingkat keasaman) optimum yang berbeda-beda karena enzim adalah protein, yang dapat mengalami perubahan bentuk jika suhu dan keasaman berubah. Di luar suhu atau pH yang sesuai, enzim tidak dapat bekerja secara optimal atau strukturnya akan mengalami kerusakan. Hal ini akan menyebabkan enzim kehilangan fungsinya sama sekali. Kerja enzim juga dipengaruhi oleh molekul lain. Inhibitor adalah molekul yang menurunkan aktivitas enzim, sedangkan aktivator adalah yang meningkatkan aktivitas enzim. Banyak obat dan racun adalah inihibitor enzim.
Laju reaksi enzim dapat diturunkan menggunakan berbagai jenis inhibitor enzim. Inhibisi kompetitif
Pada inihibisi kompetitif, inhibitor dan substrat berkompetisi untuk berikatan dengan enzim. Seringkali inhibitor kompetitif memiliki struktur yang sangat mirip dengan substrat asli enzim. Sebagai contoh, metotreksat adalah inihibitor kompetitif untuk enzim dihidrofolat reduktase. Kemiripan antara struktur asam folat dengan obat ini ditunjukkan oleh gambar di samping bawah. Perhatikan bahwa pengikatan inhibitor tidaklah perlu terjadi pada tapak pengikatan substrat apabila pengikatan inihibitor mengubah konformasi enzim, sehingga menghalangi pengikatan substrat. Pada inhibisi kompetitif, kelajuan maksimal reaksi tidak berubah, namun memerlukan konsentrasi substrat yang lebih tinggi untuk mencapai kelajuan maksimal tersebut, sehingga meningkatkan Km. Inhibisi tak kompetitif
Pada inhibisi tak kompetitif, inhibitor tidak dapat berikatan dengan enzim bebas, namun hanya dapat dengan komples ES. Kompleks EIS yang terbentuk kemudian menjadi tidak aktif. Jenis inhibisi ini sangat jarang, namun dapat terjadi pada enzim-enzim multimerik. Inhibisi non-kompetitif
Inhibitor non-kompetitif dapat mengikat enzim pada saat yang sama substrat berikatan dengan enzim. Baik kompleks EI dan EIS tidak aktif. Karena inhibitor tidak dapat dilawan dengan peningkatan konsentrasi substrat, Vmax reaksi berubah. Namun, karena substrat masih dapat mengikat enzim, Km tetaplah sama. Inhibisi campuran
Inhibisis jenis ini mirip dengan inhibisi non-kompetitif, kecuali kompleks EIS memiliki aktivitas enzimatik residual. Pada banyak organisme, inhibitor dapat merupakan bagian dari mekanisme umpan balik. Jika enzim memproduksi terlalu banyak produk, produk tersebut dapat berperan sebagai inhibitor bagi enzim tersebut. Hal ini akan menyebabkan produksi produk melambat atau berhenti. Bentuk umpan balik ini adalah umpan balik negatif. Enzim memiliki bentuk regulasi seperti ini sering kali multimerik dan mempunyai tapak ikat alosterik. Kurva substrat/kelajuan enzim ini tidak berbentuk hiperbola melainkan berbentuk S.
Koenzim asam folat (kiri) dan obat anti kanker metotreksat (kanan) memiliki struktur yang sangat mirip. Oleh sebab itu, metotreksat adalah inhibitor kompetitif bagi enzim yang menggunukan folat.
Inhibitor ireversibel bereaksi dengan enzim dan membentuk aduk dengan protein. Inaktivasi ini bersifat ireversible. Inhibitor seperti ini contohnya efloritina, obat yang digunakan untuk mengobati penyakit yang disebabkan oleh protozoa 4 rican trypanosomiasis.[57] Penisilin dan Aspirin juga bekerja dengan cara yang sama. Senyawa obat ini terikat pada tapak aktif, dan enzim kemudian mengubah inhibitor menjadi bentuk aktif yang bereaksi secara ireversibel dengan satu atau lebih residu asam amino. Kegunaan inhibitor
Oleh karena inhibitor menghambat fungsi enzim, inhibitor sering digunakan sebagai obat. Contohnya adalah inhibitor yang digunakan sebagai obat aspirin. Aspirin menginhibisi enzim COX-1 dan COX-2 yang memproduksi pembawa pesan peradangan prostaglandin, sehingga ia dapat menekan peradangan dan rasa sakit. Namun, banyak pula inhibitor enzim lainnya yang beracun. Sebagai contohnya, sianida yang merupakan inhibitor enzim ireversibel, akan bergabung dengan tembaga dan besi pada tapak aktif enzim sitokrom c oksidase dan memblok pernafasan sel.[58]
` in enzymology, suppression of the activity of an enzyme, participating in a sequence of reactions by which a substance is synthesized, by a product of that sequence. When the product accumulates in a cell beyond an optimal amount, its production is decreased by inhibition of an enzyme involved in its synthesis. After the product has been utilized or broken down and its concentration thus decreased, the inhibition is relaxed, and the formation of the product resumes. Such enzymes, whose ability to catalyze a reaction depends upon molecules other than their substrates (the ones upon which they act to form a product), are said to be under allosteric control. Feedback inhibition is a mechanism by which the concentration of certain cell constituents is limited.
View more...
Comments