Informe Laboratorio torricelli (1)
Short Description
Download Informe Laboratorio torricelli (1)...
Description
Informe Laboratorio: Teorema de Torricelli Labinform: Theorem of Torricelli R. Gelvez, L. Ramírez, D.C. Guerrero Tecnólogos Industriales, Estudiantes de Ing. De Producción. Facultad Tecnológica. Universidad Francisco José de Caldas: Bogotá. Colombia
Resumen El presente documento contiene la descripción de la practica realizada para verificar lo expuesto en el teorema de Torricelli para la determinación de la velocidad de salida de un fluido por medio de un orificio a una altura determinada en un recipiente, con la práctica se determina que la velocidad de salida del fluido depende directamente de la altura a la cual se encuentre se encuentre situado el orificio, pues a mayor profundidad mayor será la velocidad de salida del fluido por el orificio demostrando una relación directamente proporcional, adicionalmente se determina la relación entre el área del orificio de salida con el caudal o rapidez de salida Palabras Clave:Teorema de Torricelli, caudal y profundidad
Abstract This document contains the description of the practice realized to verify the Torricelli theorem to determine the velocity of outgoing of a fluid through a hole from a predetermined high in a recipient, in the practice we determined that the outgoing velocity of the fluid depends of how high the hole is, because as deeper it is the outgoing velocity will be bigger of the fluid through the hole showing a relation directly proportional, furthermore we determined the relation between the area of the out hole with the caudal or outgoing speed. Keywords:Theorem of Torricelli, caudal, deep, outgoing speed
1. Marco Teórico El teorema de Torricelli, fundamenta sus bases en el Teorema de Bernoulli, el cual indica que cuando disminuye la presión de un fluido en movimiento aumenta su velocidad.
líquido contenido en un recipiente, a través de un orificio, bajo la acción de la gravedad ilustrado en la Fig. 1.
Adicionalmente indica que la energía total de un sistema de fluidos con flujo uniforme permanece constante a lo largo de la trayectoria de flujo. Siendo el resultado que para el aumento de velocidad del fluido existe una compensación por parte de una disminución en la presión. [2] El Teorema de Torricelli es una aplicación del principio de Bernoulli ya que estudia el flujo de un
Fig. 1: Representación del teorema de Torricelli [1]
R. Gelveza, L. Ramírezb, D.C. Guerreroc*: Informe Laboratorio: Teorema de Torricelli
La rapidez de salida del flujo o caudal, es la relación entre el volumen desalojado para determinado tiempo, esta relación de salida depende directamente del diámetro de la boquilla pues este determinara el área de salida del fluido, esta relación está dada por la ecuación (4)
A partir del teorema de Torricelli se puede calcular el caudal de salida de un líquido por un orificio. "La velocidad de un líquido en un recipiente, por un orificio, es la que tendría un cuerpo cualquiera, cayendo libremente en el vacío desde el nivel del líquido hasta el centro de gravedad del orificio":
Q = AV (4) Donde A es el área del orificio de salida y V la velocidad de salida.
La velocidad de salida del flujo por un agujero depende de
Para determinar el tiempo en que se vacía el volumen de líquido comprendido entre dos alturas, partimos del principio que la rapidez del flujo para un pequeño espacio de tiempo dt está dado por la siguiente ecuación (ver Fig.2) [1]
la diferencia de la elevación entre la superficie libre del fluido (es decir la que está en contacto con el ambiente exterior) y la altura de agujero o boquilla, para determinar la velocidad del flujo que se obtiene en el agujero o boquilla, se utiliza la ecuación de Bernoulli entre el punto
Volumen que fluye = Q(dt) = A2V2 (dt)
(5)
de referencia en la superficie del fluido y el punto donde se A medida que el fluido sale del recipiente el volumen de este disminuye en la misma magnitud, por lo tanto la relación entre en volumen que se desaloja y el que disminuye en el recipiente está dado por:
presenta el flujo por la boquilla, de acuerdo con la ecuación (3) [1]
(1)
(6)
Donde A1 es el área del recipiente y A2 es el área del orificio de salida
Donde P = Presión en cada uno de los puntos γ= Peso específico del fluido h= Altura de referencia Debido a que
dh
h
es aproximadamente cero y la presión P1
= P2, entonces se obtiene el siguiente la siguiente ecuación dj
(2) Di
Reemplazando (h1 - h2) por h, obtenemos la siguiente ecuación denominada como el teorema de Torricelli
Fig 2: Representación volumen desalojado Con la utilización de la ecuación de Bernoulli y la ecuación anterior se obtiene V1 y V2
(3)
2
R. Gelveza, L. Ramírezb, D.C. Guerreroc*: Informe Laboratorio: Teorema de Torricelli
Adicional a la velocidad de salida del fluido por el orificio del recipiente se analiza la trayectoria que define este al salir con una determinada velocidad a cierta altura, describiendo un movimiento semiparabolico el cual se puede considerar como la composición de un avance horizontal rectilíneo uniforme y la caída libre de un cuerpo en reposo, la Fig. 3representa la trayectoria descrita por el fluido al salir por el agujero a determinada altura
(7)
(8)
Si
se obtiene el valor de Torricelli
El volumen de fluido que sale del depósito en la unidad de tiempo es
, y en el tiempo dt será
dt. Como
consecuencia disminuirá la altura h del depósito -
dh=
dt
(9)
Si la altura inicial del depósito en el instante t=0 es h. Integrando esta ecuación diferencial, se obtiene la expresión de la altura h en función del tiempo [4].
Fig 3. Representación de la trayectoria de salida del fluido 2. Marco experimental A un recipiente cilíndrico se le realizan tres perforaciones a diferentes alturas, con un mismo diámetro (Fig. 4), el recipiente es llenado de cierto liquido con los orificios sellados, posteriormente se permite la salida del fluido por cada uno de los orificios independientemente para realizar las mediciones
(10)
-
=
(11) D
Cuando h=0, despejamos el tiempo t que tarda el depósito en vaciarse por completo.
h1 h2 h3
(12)
Si
, se puede despreciar la unidad dando como Fig. 4: Ilustración recipiente utilizado en la practica
resultado la siguiente ecuación
Se realizan las mediciones de las profundidades de cada orificio, diámetros del recipiente y los orificios, tiempos de vaciado del volumen contenido entre las profundidades y máximo alcance del chorro de salida del fluido por cada uno de los orificios
(13)
3
R. Gelveza, L. Ramírezb, D.C. Guerreroc*: Informe Laboratorio: Teorema de Torricelli
Se calculan las velocidades de salida del fluido con la utilización de la ecuación (3)
Profundidad (m)
Se realiza el cálculo del caudal o rapidez de salida con la utilización de la ecuación (4) Se realiza el cálculo teórico de los tiempos de vaciado del volumen contenido a determinada profundidad con la utilización de la ecuación (13) y se compara con el valor experimental obtenido
t (S)
h1
0,041
149.44
h2 h3
0,091 0,141
237.53 295.53
4. Análisis de resultados El cálculo de la velocidad de salida del fluido por cada uno de los orificios aumenta a medida que la profundidad aumenta, lo cual se muestra en la siguiente grafica 1
3. Resultados Los resultados de las mediciones realizadas en el laboratorio se consignan en la Tabla No. 1. Tabla No. 1: Resultado de mediciones realizadas h
Profundidad (m)
Diámetro orificio (m)
Alcance (m)
Tiempo de desalojo
1
0.041
0.004
0.132
585 s
2
0.091
0.004
0.143
980 s
3
0.141
0.004
0.148
1055 s
Grafica 1: relación profundidad – velocidad Al igual que la velocidad, el tiempo de desalojo del volumen para cierto rango de profundidades es directamente proporcional a la profundidad del orificio como se evidencia en la gráfica 2.
La TablaNo. 2 muestra los resultados del cálculo de la velocidad de salida en cada uno de los orificios, de acuerdo con la ecuación (3) Tabla No. 2: Resultados cálculo de velocidad y caudal de salida del fluido Profundidad H (m)
Velocidad (m/s)
Q (m3/s)
h1 h2
0,041 0,091
0,8964 1,3355
0,0088 0,0132
h3
0,141
1,6624
0,0164
La tabla No. 3 muestra los resultados de los cálculos de los tiempos de desalojo del volumen de fluido a determinada altura, se debe tener en cuenta que el diámetro del recipiente es de 0.167 m.
Grafica 2: Relación profundidad – tiempo 5. Conclusiones
Tabla 3 profundidad vs tiempo
4
R. Gelveza, L. Ramírezb, D.C. Guerreroc*: Informe Laboratorio: Teorema de Torricelli
Se evidencia que la velocidad de salida aumenta linealmente a medida que aumenta la profundidad donde se encuentra el orificio. El caudal determinado depende del diámetro del oficio por el cual sale el fluido, pues a mayor área de salida aumentara el caudal o rapidez de salida. Además la altura también influye en el caudal, entre más altura mayor es el caudal. Se evidencia que el alcance del fluido al salir por el orificio del recipiente depende de la profundidad de este, pues a mayor profundidad se aprecia un mayor alcance descrito por un movimiento semiparabólico
6. Referencias [1] R. L. Mott et al. Mecánica de fluidos aplicada. Pearson, cuarta edición(1996). [2] R.A. Serway et al. Física para ciencias e ingenierías Thomson, 2005. [3]
Movimiento
parabólico.
Tomado
de:
http://html.rincondelvago.com/movimiento- parabolico.html [4] Física para Estudiantes de Ciencias e IngenieríaHalliday, Resnik y Krane, 4ta. Ed. Vol. II . – Cía. Editorial Continental, S.A. México- 1985
5
View more...
Comments