Informe Grupal Evaluacion Permanente 2 (2)
Short Description
ING CIVIL...
Description
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. CURSO: OBRAS HIDRAULICAS. DOCENTE: ING. FREDDY FRANCO ALVARADO ALUMNOS:
ATOCHE DOIG, JESUS
CASTILLA MARTINEZ, HUGO GUILLERM GUILLERMO. O.
SORIA PINEDA, DAVID ALONSO.
CICLO: Xmo CICLO “A”.
ICA - 2016
Página 0
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
ÍNDICE
I.
INTRODUCCION
II.
UBICACIÓN DE PUENTE LOS MAESTROS.
III.
CALCULO SEGÚN PROCEDIMIENTO CON HOJA DE CALCULO. CA LCULO.
IV.
VERIFICACION CON SOFTWARE RIVER.
V.
CONCLUSIONES Y RECOMENDACIONES.
VI.
ANEXOS (PLANOS Y FOTOGRAFIAS)
Página 1
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
Dedicatoria: A nuestros padres quienes nos apoyan en cada momento, y a los docentes por ser forjadores de nuestro futuro, sobre todo a Dios por darnos cada minuto de vida.
Página 2
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
Una de las formas más eficie nte de controlar el cauce de un río es la construcción construcción de muros o diques dique s revestidos longitudina longitudinales les a lo largo de la corriente, sigui endo los patrones de curvatura curvatura típicos de la corriente. Estos muros o diques pueden construirse dentro del cauce disminuyendo la sección para facilitar la navegación o separar las corrientes de la orilla o pueden construirse con medidas de protección a lo largo de las orillas actuales. La construcción de estructuras estructuras longitudinales favorece favorece la formac f ormación ión de un canal más estable y uniforme. Generalmente se diseña diseñ a para un ancho ancho permanente normal y se pueden dejar espacios entre el muro y la orilla para que sean sedimentados posteriormente. posteriormente. Desde Desde el punto de vista hidráulico las estructuras longitudinales ayudan a aumentar la velocidad y disminuir la resistencia, resistencia, al movimiento y la erosión. En ocasiones las canalizaciones pueden dar resultados negativos si el ancho diseñado di señado es muy pequeño para acomodar el caudal de las avenidas del río. En estos casos existe exi ste el problema de que no es posible posibl e reacondicionar reacondi cionar los muros para corregir corregir el error, e rror, cosa cosa que sí es posibl e en las canalizaciones con espigones donde se puede di sminuir sminuir la la longitud de los espigones después de construidos. construidos.
Página 3
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
Está ubicada en el sector de de santo s anto dom domingo, ingo, Av. Los Maestros Maestros (Provincias (Provincias de Ica) a una una altura 406 m.s.n.m. A una pequeña distancia de la ciudad de Ica, puente que en une la ciudad propia y otros provincias del norte mediante la panamericana con el sector de los Aquijes, Pueblo Pueblo Nuevo, Nuevo, Santiago, Santiago, Ocucaje y nazca con los demás demás pro provincias vincias del sur. Región
:
ICA
Provincia
:
ICA
Distr Dis trito ito
:
ICA
Sector
:
AV. LOS MAESTROS – PANAMERICANA SUR
FECHA FECH A DE TRABAJO TRABA JO DE CAMPO CAMPO Los trabajos trabajos en campo campo se realizaron el día 20 de Julio del presente año, desde las 10:00 am hasta la 1:00 pm.
Página 4
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
OBJETIVOS Los objetivos posibles de un encauzamiento son:
La protección frente a inundaciones, es decir impedir o dificultar la inundación, se da no necesariamente en ambas márgenes del rio.
La fijación de un cauce estable para el rio, es decir mantener en el futuro un modo de discurrir permanente. Desterrar la amenaza de cambios en general Estabilización.
Mejora las condiciones de desagüe, es especial el aumento de la capacidad.
La recuperación de los valores naturales de un rio, es decir que vuelva a tener unos espacios de valor natural o recreativo y seguro.
RESUMEN DE LA VISITA DE LA VISITA DEL PUENTE El punto de encuentro para realizar el trabajo de campo, fue en el mismo puente los maestros ya que existe movilidad de distintas empresas que en su ruta pasa por ahí. Una vez ubicados en el puente, reconocimos el lugar del trabajo, verificando que no haya problemas durante el proceso de toma de mediciones y verificación de la estructura, luego de realizar el recorrido. No hubo inconvenientes ni problemas para poder realizar las mediciones, excepto que los guardianes de unas plantaciones de pecanos se nos acercaron a preguntarnos porque estábamos ahí, claro se les explicó nuestra presencia y no hubo problemas Pasamos a la toma de medidas con un wincha de 50 m, en la cual se observaron varios inconvenientes tales como la sección del puente estaba cubierta de desmontes como montículos de basura y desperdicio, por lo que tendríamos que limpiar primero el lugar. Tomando las medidas de la sección del puente, como el ancho del cauce del rio, y el dique que se encuentra cerca del puente.
Página 5
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
Medimos la altura de socavación desde la altura de la superficie del rio actual, hasta su depresión ya se ha por la corriente del rio o de la velocidad de flujo. Obteniendo los datos necesarios para el proceso del cálculo pasamos a procesar los datos en el programa mencionado y expuesto por el ingeniero.
DESCRIPCIÓN GENERAL DEL PROYECTO
ENCAUZAMIENTO
El sistema de encauzamiento trata de la estabilización, defensa contra inundaciones y la restauración de los ríos. Un encauzamiento, es cualquier arreglo o intervención que toma un tramo de rio como su objetivo de actuación primordial.
Cauce estable
La ubicación y longitud del cauce está determinado por la zona a proteger, el cálculo del caudal del diseño y la definición de la amplitud del cauce que permita controlar la tirante de la máxima venida. Con la sección del cauce estable se puede controlar el desplazamiento del lecho para que tenga un flujo central en una caja interior con su misma energía. Los factores principales que se deben tomar en cuenta son el régimen hidrológico-hidráulico (caudales) y el análisis geotécnico (material del cauce natural).
Calculo del cauce
Exis ten varios métodos de cálculo para determinar la sección estable del lecho del rio o amplitud del cauce. Entre estas tenemos:
Metodo de lacey
Metodo de Blench – Altunin
Metodo de Simos – Hederson
Página 6
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
PROTECCION Y ENCAUZAMIENTO DE RIOS Una de las formas más eficiente de controlar el cauce de un río es la construcción de muros o diques revestidos longitudinales a lo largo de la corriente, siguiendo los patrones de curvatura típicos de la corriente. Estos muros o diques pueden construirse dentro del cauce disminuyendo la sección para facilitar la navegación o separar las corrientes de la orilla o pueden construirse con medidas de protección a lo largo de las orillas actuales. La construcción de estructuras longitudinales favorece la formación de un canal más estable y uniforme. Generalmente se diseña para un ancho permanente normal y se pueden dejar espacios entre el muro y la
orilla para que sean
sedimentados posteriormente. Desde el punto de vista hidráulico las estructuras longitudinales ayudan a aumentar la velocidad y disminuir la resistencia, al movimiento y la erosión. En ocasiones las canalizaciones pueden dar resultados negativos si el ancho diseñado es muy pequeño para acomodar el caudal de las avenidas del río. En estos cas os exis te el problema de que no es posible reacondicionar los muros para corregir el error, cosa que sí es posible en las canalizaciones con espigones donde se puede disminuir la longitud de los espigones después de construidos
OBRAS DE CONTROL DE LA EROSIÓN
Erosión:
El proceso puede ser analizado iniciando por el desprendimiento de las partículas de suelo, debido al impacto de las gotas de lluvia y al mismo tiempo ocurre el proceso de flujo superficial o escorrentía, la cual hace que las partículas removidas sean incorporadas a la corriente y transportadas talud abajo. Adicionalmente, las corrientes generan procesos de desprendimiento de partículas por acción de la fuerza del agua en movimiento. Los procesos son muy complejos y es común que varios procesos actúen conjuntamente. Las corrientes de agua son volúmenes de agua en movimiento, los cuales debido a la fuerza tractiva de la corriente pueden producir el desprendimiento, transporte y depositación de las partículas de suelo o sedimentos tanto en el fondo como en la ribera de la corriente.
Página 7
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
SOCAVACIÓN
La socavación es el resultado de la acción erosiva del flujo de agua que arranca y acarrea material de lecho y de las bancas de un cauce, convirtiéndose en una de las causas más comunes de falla en puentes. Para poder analizar el problema de la socavación en pilas de puentes, es necesario tener en cuenta las variables que influyen en el problema. Se ha demostrado que la profundidad máxima de socavación (ds) depende de los siguientes factores: 1.
Densidad del agua (r ).
2.
Velocidad de aproximación del flujo (V).
3.
Profundidad de flujo (Y).
4.
Diámetro medio de los sedimentos (D).
5.
Ancho efectivo de la pila (b).
6.
Aceleración de la gravedad (g).
7.
Viscosidad cinemática del fluido (n ).
8.
Gravedad específica del material del lecho (Gs).
9.
Desviación estándar de la gradación del material (s g).
10.
Forma de la pila (Kf).
11.
Alineamiento de la pila con la dirección del flujo.
La socavación general es un proceso físico complejo, cuyas bases teóricas aún no se encuentran bien definidas y no es posible estimar con confianza los cambios en el lecho tras el tránsito de un flujo. Los factores que influyen en la socavación general se pueden agrupar en tres grupos: factores geomorfológicos, factores de transporte y el tipo de material que conforma el lecho; todos factores únicos para cada río, lo cual dificulta la existencia de una ley general. Uno de los factores fundamentales para estimar la profundidad de socavación en cualquier tipo de cauce natural es el tipo de material del lecho que conforma el cauce y está expuesto a las fuerzas erosivas de la corriente. El tipo de material que conforma el
Página 8
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
cauce hace referencia al tamaño del mismo, e investigaciones han demostrado que en ríos aluviales, es decir, aquellos que corren sobre materiales transportados por el propio río en el pasado geológico, la granulometría del material del lecho está directamente relacionada con las características geomorfológicas de un corriente. Por lo tanto, el estudio de socavación se puede acotar a ríos de montaña (característica geomorfológica), en los cuales el tamaño medio de las partículas que conforman el lecho son superiores a 2 mm, y en general, corresponden a corrientes con buena capacidad de transporte, valles encañonados y con pendientes longitudinales superiores a 0.1%.
Erosión y Degradación de lechos aluviales
Cuando se rompe el equilibrio en un río pueden ocurrir tres tipos de fenómenos:
Erosión Local, causada por perturbaciones en el flujo tales como vórtices y remolinos.
Erosión debida a una contracción del cauce, causando mayores velocidades en el ancho contraído.
Degradación o Agradación, que ocurre solamente sobre relativamente largos tramos y periodos de tiempo, debido a cambios en los controles, aporte de sedimentos o en la forma del río.
CONDICIONES HIDROLOGICAS EN EL RIO ICA Cansas, la Yesera, Tortolitas son algunas de las quebradas de la provincia de Ica que se activarían por la
lleg ada del Fenómeno El Niño (FEN), ya que según refieren los
especialistas las
lluvias fuertes y permanentes provocarían la caída lodo y piedras
afectando a poblaciones que se encuentren en su trayectoria.
La historia escrita de inundaciones de Ica se inicia con los huaycos
y
Cansas
representa la quebrada más activa entre los grandes cauces de huaycos que caen al valle de Ica.
Página 9
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
Codehica presentó un reporte en el que se da cuenta de que el crecimiento desordenado de la población, las extensiones de cultivos para la exportación han desaparecido los desagües naturales de las quebradas, siendo reemplazados por obras de encauzamiento que no evitan inundaciones como la ocurrida en el año 1998.
¿Qué hacer?
Se sugirió la construcción y rehabilitación de diques, prohibir las invasiones por donde pase el huayco, que la población tome conciencia y se organice, que los periodistas y comunicadores sociales informen a la población; son algunas recomendaciones que se dan a conocer desde el gobierno regional de Ica y funcionarios del Instituto Nacional de Defensa Civil.
De magnitud fuerte a extraordinario será la presencia del fenómeno el niño, según los reportes del Estudio Nacional del Fenómeno el Niño -ENFEN, por lo que se recomienda estar preparados para el escenario que se pueda presentar y disminuir el impacto de El Niño en las personas de escasos recursos económicos que no accedieron programas de vivienda, y en las familias migrantes
a
que buscan trabajar en las
empresas agro exportadoras viviendo en condiciones de precariedad.
Página 10
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
ANALISIS ESTADISTICO DE MAXIMAS DESCARGAS
Nombre:
RIO ICA – PUENTE LOS MAESTROS
Informacion Basica Tiempo de Retorno (TR) =
50.00
Año de Inicio de Medicion =
1,969
Año
Caudal (QX)
(QX - QP)
(QX - QP)
Ln (QX)
( Ln (QX)-QY)
( Ln (QX)-QY)
1,969
205.00
800
-22,646
5.32
0.00
0.00
1,970
196.16
1,379
-51,213
5.28
0.00
0.00
1,971
114.21
14,181
-1,688,769
4.74
0.35
-0.21
1,972
280.00
2,182
101,900
5.63
0.09
0.03
1,973
235.22
4
7
5.46
0.02
0.00
1,974
202.42
953
-29,423
5.31
0.00
0.00
1,975
412.03
31,947
5,710,008
6.02
0.47
0.33
1,976
300.00
4,450
296,849
5.70
0.14
0.05
1,977
199.25
1,159
-39,457
5.29
0.00
0.00
1,978
87.32
21,309
-3,110,660
4.47
0.74
-0.64
1,979
110.67
15,036
-1,843,805
4.71
0.39
-0.25
1,980
195.48
1,430
-54,074
5.28
0.00
0.00
1,981
324.29
8,281
753,573
5.78
0.20
0.09
1,982
263.96
940
28,841
5.58
0.06
0.01
1,983
415.22
33,098
6,021,424
6.03
0.49
0.34
1,984
250.00
279
4,664
5.52
0.04
0.01
1,985
273.12
1,586
63,178
5.61
0.08
0.02
1,986
426.15
37,193
7,172,763
6.05
0.52
0.38
1,987
178.30
3,024
-166,284
5.18
0.02
0.00
1,988
190.27
1,851
-79,640
5.25
0.01
0.00
1,989
176.52
3,223
-182,959
5.17
0.03
0.00
1,990
375.15
20,123
2,854,470
5.93
0.35
0.21
1,991
276.37
1,855
79,919
5.62
0.08
0.02
1,992
41.26
36,877
-7,081,640
3.72
2.60
-4.19
1,993
103.96
16,727
-2,163,352
4.64
0.47
-0.33
5,832.30
259,888
6,573,675
133.307
7.165
-4.133
Suma =
PARAMETROS ESTADISTICOS Media (QX)
Desv. Estandar
QX
SX
233.292 QY 5.332
Coef. Asimetria CS
104.061 SY
Cv 0.264
CSY 0.546
Coef. Variacion 0.446 Cv Y
-1.147
0.102
Página 11
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
DISTRIBUCION LOGNORMAL DE DOS PARAMETROS Parame tros Estadisticos Campo Normal N = 25.00 QX = 233.29
y = 145.381ln(x) + 83.034 R² = 0.997
SX = 104.06
LOGNORMAL
200
CS = 0.26 Cv = 0.45 Campo Transf ormado
150
QY = 5.33 ) s / 3 m ( l a 100 d u a C
SY = 0.55 CSY = -1.15 Cv Y = 0.10 K = F´(1-1/TR)
50
K = F´ 0.98 K = 2.05 QESP = Exp (QY + K SY)
0 1
QESP = 635.50
10 Periodo de Retorno (Años)
100
Iintervalo de Confianza 462.89
872.48
F´(1-1/TR)
K=Z
QESP
Intervalo de confianza
TR (Años)
Probabilidad
2
0.5000
0.5000
0.0000
206.91
150.71
284.07
5
0.2000
0.8000
0.8416
327.71
238.70
449.91
10
0.1000
0.9000
1.2816
416.76
303.56
572.16
25
0.0400
0.9600
1.7507
538.52
392.25
739.34
50
0.0200
0.9800
2.0537
635.50
462.89
872.48
75
0.0133
0.9867
2.2164
694.55
505.90
953.55
100
0.0100
0.9900
2.3263
737.57
537.23
1,012.61
150
0.0067
0.9933
2.4747
799.86
582.60
1,098.13
200
0.0050
0.9950
2.5758
845.28
615.69
1,160.49
300
0.0033
0.9967
2.7131
911.09
663.62
1,250.84
400
0.0025
0.9975
2.8070
959.10
698.59
1,316.75
500
0.0020
0.9980
2.8782
997.10
726.28
1,368.93
1000
0.0010
0.9990
3.0902
1,119.60
815.50
1,537.10
(-)
(+)
Página 12
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
DISTRIBUCION DE GUMBEL O EXTREMA TIPO I Parame tros Estadisticos Campo Normal N = 25.00 QX = 233.29 y = 84.163ln(x) + 170.09 R² = 0.9991
SX = 104.06
METODO DE GUMBEL
100
CS = 0.26 Cv = 0.45 Campo Transf ormado QY = 5.33 SY = 0.55
) s / 3 m ( l a d u a C
CSY = -1.15 Cv Y = 0.10 K1 = TR/(TR -1) K1 = 1.0204 Ln(Ln(K1)) = -3.90 KT = 2.59 QESP = QX + KT SX
90 1
QESP = 503.05
10 Periodo de Retorno (Años)
100
Iintervalo de Confianza
Ln Ln TR/(TR 1)
KT
QESP
Intervalo de c onfianza
TR (Años)
Probabilidad
2
0.5000
-0.3665
-0.16
216.20
184.78
247.62
5
0.2000
-1.4999
0.72
308.16
255.24
361.07
10
0.1000
-2.2504
1.30
369.05
297.58
440.52
25
0.0400
-3.1985
2.04
445.98
349.61
542.34
50
0.0200
-3.9019
2.59
503.05
387.74
618.36
75
0.0133
-4.3108
2.91
536.22
409.79
662.65
100
0.0100
-4.6001
3.14
559.70
425.37
694.02
150
0.0067
-5.0073
3.45
592.73
447.25
738.21
200
0.0050
-5.2958
3.68
616.14
462.73
769.55
300
0.0033
-5.7021
4.00
649.11
484.51
813.70
400
0.0025
-5.9902
4.22
672.48
499.94
845.02
500
0.0020
-6.2136
4.39
690.61
511.90
869.32
1000
0.0010
-6.9073
4.94
746.89
548.99
944.79
(-)
(+)
Página 13
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
DISTRIBUCION LOG - PEARSON III O GAMA DE TRES PARAMETROS Parame tros Estadisticos Campo Normal N = 25.00 CS = 0.26 Cv = 0.45 Campo Transformado QY = 5.33
y = 93.347Ln(x) + 84.273 R2 = 0.9965
SY = 0.55
LOG-PEARSON III
100
CSY = -1.15
90
K = F´(1-1/TR)
80
K = F´ 0.9800 Z = 2.05
70
Z -1= 3.22
) s60 / 3 m ( l a50 d u a C
Z -6Z= -3.66 CS/6 = -0.19
40
KT = 1.419 30
QESP = Exp(QY + KT SY) QESP = 449.23
20
Iintervalo de Confianza
10
348.25
579.50
0 1
Factor de Frecuencia
10 100 Pariodo de Retorno (Años)
1000
KT = Z + (Z -1) (CS/ 6) + (1/3) (Z - 6Z) (CS/ 6) - (Z -1) (CS/ 6) + Z (CS/ 6) + (1/3) (CS/ 6)
Intervalo de confianza TR (Años)
Probabilidad
Z
KT
QESP
2
0.5000
0.0000
0.1842
228.81
190.88
274.29
5
0.2000
0.8416
0.8421
327.80
265.92
404.07
10
0.1000
1.2816
1.0967
376.73
300.08
472.95
25
0.0400
1.7507
1.3098
423.25
331.28
540.75
50
0.0200
2.0537
1.4189
449.23
348.25
579.50
75
0.0133
2.2164
1.4690
461.71
356.30
598.30
100
0.0100
2.3263
1.4998
469.54
361.32
610.18
150
0.0067
2.4747
1.5376
479.33
367.55
625.09
200
0.0050
2.5758
1.5609
485.48
371.46
634.50
300
0.0033
2.7131
1.5897
493.16
376.31
646.30
400
0.0025
2.8070
1.6075
497.99
379.35
653.74
500
0.0020
2.8782
1.6200
501.42
381.50
659.02
1000
0.0010
3.0902
1.6528
510.47
387.17
673.03
(-)
(+)
Página 14
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA. RESULTADOS CAUDAL DE DISE O
METODO
R
OBRAS HIDRAULICAS.
Q(m 3 /s)
LOG NORMAL
0.997
635.50
GUMBEL
0.999
503.05
LOG PEARSON
0.897
449.23
MEJOR AJUSTE
0.999
503.00
SELECCIONAR
>>>>>>>>>>>
Q(m /s) =
510.00
(*) .- R = Coeficiente de Correlacion
ESTIMACION DE CAUDALES MAXIMOS POR METODOS EMPIRICOS Nombre: SELECCI N DE UN TIEMPO PARA PERIODO DE RETORNO (T) EN FUNCION AL TIPO DE ESTRUCTURA Tipo de estr uctura
Periodo de Retorno T(años)
ELV*
Alcantarillado para carreteras * Volumenes de traf ico bajos
5
10
* Volumenes de traf ico intermedios
10
25
* Volumenes de trafico Altos
50
100
* Sistema secundario
10
50
* Sistema primario
50
100
* Surcos
5
10
* Culverts
5
50
* Alcantarilas en ciudades pequeñas
1
25
* Alcantarillas en ciudades grandes
25
50
* Volumenes bajos
5
10
* Volumenes intermedios
10
25
* Volumenes altos
50
100
* En fincas
2
50
* Alrededor de las ciudades
50
100
* Presas pequeñas
50
100
* Presas intermedias
+ de 100
Puente s de carreteras
Dre naje agricola
Dre naje u rbano
Aeropuertos
Diques
Pre sas con pr obabilidad de pe rdidas de vidas (baja amenaza)
* Presas grandes
50 100%
Pre sas con probabilidad de perdidas de vidas (amenaza significativa) * Presas pequeñas * Presas Intermedias
+ de 100
50% 50 - 100 %
Página 15
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
* Presas grandes
100%
Pre sas con pr obabilidad de pe rdidas de vidas (Alta amenaza) Presas pequeñas
50 - 100 %
Presas intermedias
100%
Presas grandes
100% SELECCIONAR T
>>>>>>>>>>
50
ELV: Valor limite estimado, es la maxima manitud posible de un e vento hidrologico en u n lugar d ado utilizando la mejor informacion disponible.
COEFICIENTE DE ESCORRENTIA "C" Caracteris ticas de la Superficie
Periode de retorno en años 2
5
10
25
50
100
Asf altico
0.73
0.77
0.81
0.86
0.9
0.95
Concreto lecho
0.75
0.8
0.83
0.86
0.92
0.97
Plano (0 - 2) %
0.32
0.34
0.37
0.4
0.44
0.47
Promedio (2 - 7) %
0.37
0.4
0.43
0.46
0.49
0.53
Superior al 7 %
0.4
0.43
0.45
0.49
0.52
0.55
Plano (0 - 2) %
0.25
0.28
0.3
0.34
0.37
0.41
Promedio (2 - 7) %
0.33
0.36
0.38
0.42
0.45
0.49
Superior al 7 %
0.37
0.4
0.42
0.46
0.49
0.53
Plano (0 - 2) %
0.21
0.23
0.25
0.29
0.32
0.36
Promedio (2 - 7) %
0.29
0.32
0.35
0.39
0.42
0.46
Superior al 7 %
0.34
0.37
0.4
0.44
0.47
0.51
Areas desarrolladas
Zonas Verdes (jardines, parques, etc) Condicion pobre (cubierta de pasto 75 % del area)
SELECCIONAR "C" >>>>>>>>>>>
0.490
Página 16
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA. OBRAS HIDRAULICAS. CALCULO DEL TIEMPO DE CONCENTRACION (Tc) Tiempo requerido para que el agua fluya desde el punto mas distante de la cuenca, hsta la boca de descarga INGRESAR INFORMACION DE LA CUENCA L = 220.00
Longitud de cauce principal (Km)
SJ = 0.0100
Pendiente de la cuenca (Manning)
H = 2,200.00
Diferencia de Cotas (m)
A = 7,711.00
Area (Km )
Formu la de R. Temez
Tc = 0.3 ( L / S J
.
.
)
Tc = Tie mpo de concentracion(horas) L = 220.00
Longitud de cauce principal (Km)
SJ = 0.0100
Pendiente media del tramo (m/100 m)
Tc = 26.3899
hor as
Form ula de la Soil Conservation Service of California
Tc = (0.871( L /H))
.
Tc = Tie mpo de concentracion(horas) H = 2,200.00
Dif erencia de Cotas (m)
L = 220.00
Longitud de cauce principal (Km)
Tc = 24.8641
hor as
Formu la de Kirpich
Tc = 0.06628 (L . )(Sk-
.
)
L = 220.00
Longitud del cauce (Km)
H = 2,200.00
Dif erencia de cotas extremas (m)
Sk = 0.0100
Pendiente media cauce principal (manning)
Tc = 24.8341
hor as
EVALUACION RESULTADOS Me todo
Tc (Horas)
Formula de R. Temez
26.3899
Soil Conservation service of Califormia
24.8641
Formula de Kirpich
24.8341
Promedio
25.3627
SELECCIONAR e INGRESAR Tc >>>>>>>>>>
26.0000
CALCULO DE LA INTENSIDAD (I)
Página 17
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
La selecc ión de la intensidad de la precipitacion esta en funcion a un periodo de retorno y un tiempo de conc entracion Formula de Mac Math
I = 2.6934 T .
Tc .
T = 50.00
T. de retorno (años)
Tc = 26.00
T. de concentracion (horas)
I = 117.97
Inte nsidad (mm/hora)
(*) Para su aplicasion en la formula Tc a s ido convertido a minutos
CAUDAL DE DISEÑO METODO DE MAC MATH
Q = 0.001 C I A . S . C = 0.49
Coeficiente de Escorrentia
A = 771,100.00
Area de la cuenca (Ha)
S = 10.0000
Pendiente (m/1000)
I = 117.97
Intensidad (mm/hora) Caudal Max. Dise ño (m 3 /s)
QMAX = 394.89
COEFCIENTE DE PERMEABILIDAD
C
Calles pavimentadas
0.70-0.75
Suelos ligeramente permeables -Areas residenciales
0.65-0.70
Calles ordinarias de ciudad - Sub Urbanas
0.45-0.65
Suelos ligeramente permeables
0.25-0.45
Terrenos de cultivo y laderas montañosas
0.15-0.25
SELECCIONAR e INGRESAR C >>>>>>>>>
0.6200
METODO DE BURKLY - ZIEGER
Q = 0.02778 C I S . A . C = 0.62
Coeficiente de Permeabilidad
A = 771,100.00
Area de la cuenca (Ha)
S = 0.0100
Pendiente (m/1000)
I = 11.80
Intensidad (cm/hora)
QMAX = 1,671.92
Caudal Max. Diseño (m3 /s)
Página 18
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
CALCULOS BASICOS DE INGENIERIA CIVIL APLICADOS A DEFENSAS RIBEREÑAS
INFORMACION BASICA PAG. ANTERIOR Q(m /s) = 510.00
Hoja Nº 01
Q(m /s) = 1,671.92
Hoja Nº 02
S = 0.0100
Pendiente (Manning)
INGRESAR EL CAUDAL Y PENDIENTE Q(m /s) = 510.00
Caudal
S* = 0.0100
Pendiente Tramo (Manning)
CAUDAL INSTANTANEO - Me todo d e Fuller USAR SOLO CON LA MEDIA DE LOS CAUDALES DIARIOS DE CADA AÑO
QINST = QMAX (1 + 2.66 /A . )
1
QINST = QMAX (1 +0.8 Lg T)
2
SELECCIONAR FORMULA >>>> (1) ó (2) Q(m 3 /s) = 510.00 A = 7711
QINST = 602.54 Q(m 3 /s) = 602.54
1.00
Caudal Area de la Cuenca en Km2 Caudal Instantaneo Caudal de Diseño
Página 19
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
SECCION ESTABLE O AMPLITUD DE CAUCE ( B )
RECOMENDACIÓN PRACTICA Q (M /S)
ANCHO ESTABLE ( B2 )
3000
200
2400
190
1500
120
1000
100
500
70
602.54
B2 = 100.00
( * ) Aplicable caudales mayores 100 m /s METODO DE PETITS
B = 4.44 Q . QM3/S = 510.00
Caudal de Diseño (m3/s)
B = Ancho Estable del Cauce (m) B = 108.99
m.
METODO DE SIMONS Y HENDERSON
B = K1 Q CONDICIONES DE FONDO DE RIO
K1
Fondo y orillas de arena
5.70
Fondo arena y orillas de material cohesivo
4.20
Fondo y orillas de material cohesivo
3.60
Fondo y orillas de grava
2.90
Fondo arena y orillas material no cohesivo
2.80
SELECCIONAR >>> >>>>> >>>>>>>>
QM3/S = 602.54
=
>>>>>
K1
5.70
Caudal de Dise ño (m3/s)
B = Ancho Estable del Cauce (m) B = 139.92
m.
METODO DE BLENCH - ALTUNIN
Fb = Fbo(1+0.012C)
Fbo = 60.1 Dm
C= ppm (Concentracion Suelo en suspension)
B = 1.81(Q Fb/Fs) QM3/S = Caudal de Diseño (m3/s)
Página 20
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
Fb = Factor de fondo de cauce del Rio (Tabla) Fs = Factor de Orilla de cauce de Rio (Tabla) Factor de Fondo Dm< 0.5 cm
Fb
Material Fino (Dm < 0.5 cm)
0.80
Material Grueso (Dm > 0.5 cm)
1.20
SELECCIONAR
>>>>>> Fb =
>>>>>>>>>>
0.80
Factor de Orilla
Fs
Material poco cohesivo (como arena)
0.10
Material medianemente cohesivo
0.20
Materiales muy cohesivo (como arcilla)
0.30 >>>>>> Fs
SELECCIONAR
>>>>>>>>>>>>>>>>
=
B = 125.67
0.10
m.
METODO DE M ANNING
B = (Q /S ) (n K
)
Q = 510.00
Caudal de Diseño (m3/s)
S = 0.01000
PendienteTramo Obra
n = Coeficiente de rugosidad K = Coeficiente Material del Cauce (Tabla) m = Coeficiente de Tipo de Rio ( Tabla) Valore s rugosidad de Manning (n)
n
Cauce con fondo solido sin irregularidades
0.025
Cauces de rio con acarreo irregular
0.030 - 0.029
Cauces de Rios con Vegetac ion
0.033 - 0.029
Cauces naturales con derrubio e irregularidades
0.033
Cauces de Rio con fuerte transporte de acarreo
0.035
Torrentes con piedras de tamaño de una cabeza
0.040 - 0.036
Torrentes con derrubio grueso y acarreo movil
0.045 - 0.050
SELECCIONAR
>>>>>>>>>>>>>>>>
>>>>>
n=
Descripcion
0.033 K
Material de cauce muy resistente
3a4
Material facilmente erosionable
16 a 20
Material aluvial
8 a 12
Valor practico
10
SELECCIONAR
>>>>>>>>>>>>>>>>
>>>>>>
K=
10.00
Página 21
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
Descripcion
m
Para rios de montaña
0.5
Para cauces arenosos
0.7
Para cauces aluviales
1.0
SELECCIONAR
>>>>>>>>>>>>>>>>
>>>>>
=
B = 75.07
m
0.70
m.
SELECCI N DEL ANCHO ESTABLE
B
Recomendación Practica
100.00
1
Metodo de Pettis
108.99
1
Metodo de Simons y Henderson
139.92
1
Metodo de Blench
125.67
1
Metodo de Blench - Altunin
75.07
PROMEDIO REDONDEADO SELECCIONAR
>>>>>>>>>
110.00 =
>>>>>
B
4
110.00
Justificar:
TIRANTE DE DISE O ( t ) METODO DE MANNING - STRICKLER (B > 30 M)
t = (Q/(Ks b S . )) Q = 602.54
Caudal de diseño (m /s)
Ks = Coeficiente de Rugosidad (Tabla) Valor es para Ks para Cauces Natur ales
Ks
Cauce con fondo solido sin irregularidades
40
Cauces de rio con acarreo irregular
33 - 35
Cauces de Rios con Vegetac ion
30 - 35
Cauces naturales con derrubio e irregularidades
30
Cauces de Rio con fuerte transporte de acarreo
28
Torrentes con piedras de tamaño de una cabeza
25 - 28
Torrentes con derrubio grueso y acarreo movil
19 - 22
SELECCIONAR
>>>>>>>>>>>>>>>>
=
>>>>>
Ks
30.00
Página 22
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA. B = 110.00
OBRAS HIDRAULICAS.
Ancho estable (m)
b = 110.00 S = 0.01000
Pendiente del tramo (m/m)
t = Tirante hidraulico de diseño (m) t = 1.435
m CALCULO DE LA VELOCIDAD y AJUSTES
INGRESAR TALUD >>>>>>>>> Z=
>>>>>
>>>>>>>>>>
1.00
METODO DE MANNING - STRICKLER
Vm = Ks R
S
Z = 1.00
Talud
Ks = 30.000
Coeficiente de rugosidad (Inversa de Manning)
t = 1.455
Tirante Hidraulico Maximo
b = 107.090
Plantilla (m)
P = 111.205
Perimetro Mojado (m)
A = 157.944
Area (m )
R = 1.420
Radio hidraulico
S = 0.01000
Pendiente (Manning)
Vm = Ve locidad ( m /s ) Vm = 3.791
m/s
REGIM EN DEL CAUDAL DEL RIO Numero de Frode
F = V/(g*A/T) V = 3.791
Velocidad (m/s)
g = 9.810
Aceleracio de la gravedad
A = 157.944
Area hidraulica (m2)
D = 1.436
Ancho del Cauce (m)
F = 1.010
FLUJO SUPERCRITICO Peligro-(1.5 x Bl) VERIFICACION
DIFERENCIA =
Q = 602.538
m3/s
Q1 = 598.698
m3/s
3.840
m3/s
0.64%
CALCULO DE LA PROFUNDIDAD DE SOCAVACION (Hs)
Tabla Nº 05
Coeficiente de Contraccion, µ = 1 - 0.387 V/B Sele ccionado
Vm =
3.79
B=
110.00
µ=
Página 23
0.99
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
METODO DE LL. LIST VAN LEVEDIEV
a = Q/(t B µ) ts = ((a t )/(0.68 D . ß)) ts = ((a t )/(0.60 w
.
ß))
Q = 602.54
x x+
Caudal (m3/s)
t = 1.46
Tirante hidraulico (m)
B = 110.00
Ancho del Cauce (m)
µ = 0.99
Coeficiente Contraccion (Tabla)
a = 3.03 D = Diametro Medio de las particulas (mm) w = Peso Especifico suelo (Tn/m3) x = Valor obtenido de la Tabla 1/(x+1) = Valor obtenido de la Tabla ß = Coeficiente por Tiempo de Retorno
SELECCI N DE x EN SUELOS COHESIVOS (Tn/m 3) o SUELOS NO COHESIVOS (mm) Suelos Cohesivos (1)
Suelos No Cohesivos (2)
2
Peso especifico Tn/m3
x
1/(x +1)
D (mm)
x
1/(x +1)
0.80
0.52
0.66
0.05
0.43
0.70
0.83
0.51
0.66
0.15
0.42
0.70
0.86
0.50
0.67
0.50
0.41
0.71
0.88
0.49
0.67
1.00
0.40
0.71
0.90
0.48
0.68
1.50
0.39
0.72
0.93
0.47
0.68
2.50
0.38
0.72
0.96
0.46
0.68
4.00
0.37
0.73
0.98
0.45
0.69
6.00
0.36
0.74
1.00
0.44
0.69
8.00
0.35
0.74
1.04
0.43
0.70
10.00
0.34
0.75
1.08
0.42
0.70
15.00
0.33
0.75
1.12
0.41
0.71
20.00
0.32
0.76
1.16
0.40
0.71
25.00
0.31
0.76
1.20
0.39
0.72
40.00
0.30
0.77
1.24
0.38
0.72
60.00
0.29
0.78
1.28
0.37
0.73
90.00
0.28
0.78
1.34
0.36
0.74
140.00
0.27
0.79
1.40
0.35
0.74
190.00
0.26
0.79
1.46
0.34
0.75
250.00
0.25
0.80
1.52
0.33
0.75
310.00
0.24
0.81
Página 24
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
SELECCIONE
OBRAS HIDRAULICAS.
1.58
0.32
0.76
370.00
0.23
0.81
1.64
0.31
0.76
450.00
0.22
0.82
1.71
0.30
0.77
570.00
0.21
0.83
1.80
0.29
0.78
750.00
0.20
0.83
1.89
0.28
0.78
1,000.00
0.19
0.84
2.00
0.27
0.79 1/(x +1) =
0.709
>>>>>>>>>
>>>> D (Tn /m3) ó D(mm) = x=
0.500 0.410
Dm = Diametrro repres entativo de la muestra, es comun tomar el diametro que corresponde al 50 % del acumulado (D50 ); Einstein toma el D65 y Meyer-Peter utiliza el Metodo Diametro efec tivo.
porcentaje
Valores del Coeficiente ß
ß = 0.6416+0.03342 Ln (T) 15>>>>>>>>>>>>>>
>>>>>
ß=
0.97
ts = Tirante de socavacion ts = 5.19
m
Metodo de Altunin
tMAX = e dr
Página 25
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA. B = 110.00
OBRAS HIDRAULICAS.
Anc ho del cauce del Rio
R = Radio de cur va del Cauce del Rio INGRESE >>>>
>>>>> R/B = 2.73
R=
300
Valor de Ingreso a tabla
Valores Coeficiente "e" R/B =
2.73
R/B
e
Infinito
1.27
6.00
1.48
5.00
1.84
4.00
2.20
3.00
2.57
2.00
3.00
El Proposito de esta prueba es determinar un radio de curvatura maximo en el tramo de la obra, sin incrementar la profundidad de socavacion calculada anteriormente
e = 2.45 dr = t = 1.46
Tirante de diseño
tMAX = 3.52
m
HS = tMAX -t HS = Prof undidad de socavacion en curva HS = 2.08
m
PROFUNDIDAD DE CIM ENTACION DE LA U A Hs1 = 2.08
m
Hs2 = 3.75
m
Promedio = 2.92
m
SELECCIONE >>>>>>>>> Justificar:
>>>> >>>>>>>>>>>> HUÑA =
3.00
Esta profundidad de uña puede soportar hasta un radio de curva de 1300 m; radios de curva menores
deberan realizarse con prof undidades de uña mayores. CALCULO DE LA ALTURA DEL DIQUE (Hd)
CALCULO DE BORDO LIBRE DE LA DEFENSA (Bl1)
He = V /2g Velocidad del Caudal de Diseño
Vm = (m/s)
g = Ac eleracion de la Gravedad He = 0.73
Energia Cinetica (m)
Bl = ¢ He Caudal maximo m /s
¢
3000.00
4000.00
2
2000.00
3000.00
1.7
1000.00
2000.00
1.4
500.00
1000.00
1.2
Página 26
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA. 100.00
500.00
OBRAS HIDRAULICAS.
1.1 ¢=
1.20
Bl1 = 0.88 Recomendaciones Practicas: m3/s
Bl
> 200
0.60
200 a 500
0.80
0.90
500 a 2000
1.00
0.89
Bl2 = 0.90 Bordo libre Menor
Bl1 = 0.88
Bordo libre Mayor
Bl2 = 0.90
Selección
Bl = 0.88 CALCULO DE ALTURA DEL DIQUE HD = t + Bl t = 1.46
Tirante de diseño (m)
Bl = 0.88
Bordo libre
Hd = 2.33
m.
CRITERIO ADICIONAL PARA AJUSTE FINAL INGRESAR CAUDAL DE PRUEBA
Q100 = 500.00
S = 0.01
Bl1 = 0.89
z = 1.00
t = 1.46
Hd = Y = 2.34
A = 256.11
b = 107.09
P = 113.71
n = 0.033 Q = 602.54 Riesgo = 26% DESCRIPCION
R = 1.72 QM.Max = 1,333.47 50.00
T. Retorno
Calculado
Ajus tado
Altur a dique
Hd (m ) =
2.40
2.40
Tirante
t (m ) =
1.46
1.46
Bordo Libr e
Bl (m ) =
0.89
0.94
Altur a uña
Hu (m ) =
3.00
3.00
Altur a total
Ht (m ) =
5.40
5.40
DEFENSA RIBERE A CON PROTECCION DE ENROCADO Ing. Emilse Benavides Casanova Nombre: INFORMACION BASICA
Calculado s
Nuevos
Página 27
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
Caudal (m 3/s)
Q=
602.54
600.00
Pendiente Manning (1/1000)
S=
0.0100
0.0100
Ve locidad (m/s)
V=
3.79
4.00
Tirante hidraulico (m)
t=
1.46
1.50
Tirante de Socavacion (m)
HS =
4.35
4.50
Altur a de Bordo Libre (m)
Bl =
0.94
1.00
Altur a del dique (m)
Hd =
2.40
2.50
Altur a de uña (m)
Hu =
3.00
3.00
Altur a total (m)
Ht =
5.40
5.50
1.60
Tn/m3
INGRESA PESO ESPECIFICO DE ROCAS ( kr )=
FORMULA DE MAYNORD - DIAMETRO MEDIO
D50 = t C1 F t = 1.46
Tirante hidraulico (m)
C1 = Valor se leccionar de tabla Fondo Plano
0.25
Talud 1V: 3H
0.28
Talud 1V: 2H
0.32
>>>>> C1 SELECCIONAR
>>>>>>>>>>>>>>>>
=
0.25
C2 V / (g F = y)0.5 C2 = Coe ficiente por ubicasion de Roca Tramos en curva
1.50
Tramos rectos
1.25
En extremo de espigon
2.00 V = 3.79
Velocidad del agua (m/s)
g = 9.81
Aceleracion de la Gravedad
tS = 4.35
Tirante de Socavac ion (m)
F = 0.73
D50 = Diametro medio de las roc as (m) D50 = 2.490
m
C2 = 1.25
D50 = 4.300
m
C2 = 1.50
D50 = 10.200
m
C2 = 2.00
Diametro en tramos rectos Diametro Minimo(m) =
2.49 m
Diametro Maximo (m) =
4.98 m
Diame tro en las Curvas Diametro Minimo(m) =
4.30 m
Diametro Maximo (m) =
8.60 m
Diametro en Extremo del Espigon
Página 28
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA. Diametro Minimo(m) =
OBRAS HIDRAULICAS.
10.20 m FORMULA DE ISBASH
d50 = 0.58823 V / (w g) V = 3.79
Velocidad del agua (m/s)
kr = 1.60
Peso especifico de las rocas
ka = 1.00
Peso especifico del agua
g = 9.81
Aceleracion Gravedad
w = 0.60
(kr -ka)/ka
D50 = Diametro medio de la Roca D50 = 1.44 DIAMETROS DE ROCA CALCULADOS (m) Formu la de Maynord
4.98
Form ula de Isbash
1.44
>>>> D50 SELECCIONAR
>>>>>>>>>>>>>>>>
=
5.00
*- Por re comendación de Simons y Senturk: la relacion entr e el tamaño del D50 y el m aximo tamaño de r oca debe ser aproximadamente de 2
Página 29
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
DIMENSIONAMIENTO DEL DIQUE O DEFENSA
INFORMACION ANTERIOR Q = 602.54
Caudal de deseño (m3/s)
V = 3.79
Velocidad del agua (m/s)
H1 = 4.00
Altura del Dique (m)
H2 = 1.46
Tirante de Agua (m)
H3 = 3.00
Prof undidad de la Uña (m)
H4 = 0.94
Bordo Libre (m)
HT = 7.00
Altura Total del Dique (m)
Z1 = 1.00
Talud humedo del dique
Z2 = 1.00
Talud seco del dique
A1
4.00
Ancho de Corona del Dique (m)
Es = 0.15
Espesor del Revestimiento (m)
w a = 1.00
Peso es pecifico del agua (Tn/m3)
w R = 1.60
Peso es pecifico promedio del material del dique (Tn/m3)
=
f´ = 45.00
Angulo de Friccion Interna del Material del Dique (Ver Tablas)
Página 30
EVALUACION PERMANENTE: CALCULO DE ENCAUZAMIENTO, SOCAVACION Y PROTECCION DE TALUDES. UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA.
OBRAS HIDRAULICAS.
DIMENSIONAR Ancho de la Base del Dique (m)
A2 =
A1 + Z1H1 + Z2H1
A2 =
12.00
Ancho de la Base del Dique (m) Ancho Inferior de la uña (m)
A3 =
1.5 H1
A3 =
4.50
Ancho Inferior de la uña (m) Ancho Superior de la Uña (m)
1.00
View more...
Comments