Informe de Laboratorio de Fisica n2
Short Description
Descripción: trabajo de imvestigacion de fisica...
Description
UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERÍA CIVIL Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL “AÑO DE LA INTEGRACIÓN NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD”
Informe de laboratorio n° 2
CURSO: Laboratorio de física
DOCENTE: Lic. Jorge Condori mamani
PUNO – PERÚ
2012
INFORME DE LABORATORIO DE FISICA N° 2 MOVIMIENTO PARABOLICO DE UN PROYECTIL
I. OBJETIVOS
Comprobar las ecuaciones correspondientes al movimiento de un proyectil. Determinar la relación entre ángulo de disparo y alcance máximo. Determinar la velocidad de lanzamiento.
II. FUNDAMENTO TEORICO: Como la única fuerza que actúa sobre el proyectil es su propio peso, la segunda ley de Newton en forma de componentes rectangulares, indica que la componente horizontal de la aceleración es nula, y la vertical está dirigida hacia abajo y es igual a la de la caída libre, entonces: ∑
∑
;
Se concluye que el movimiento puede definirse como una combinación de movimiento horizontal a velocidad constante y movimiento vertical uniformemente acelerado. 2.1. Movimiento de un proyectil: En este caso se lanza un objeto con cierto ángulo de elevación respecto a un plano horizontal de su referencia. La velocidad es el punto de origen donde se inicia su recorrido está representado por un vector (velocidad inicial). Cuando un proyectil se dispara desde el piso cuya velocidad inicial forma un ángulo Ѳ con el eje X positivo.
g y=
SENѲ Vo Vx Vy H R x= COSѲ
V
Las ecuaciones que describen son: Posición: (
Ѳ )
;
(
Ѳ )
Velocidad: Ѳ
Ѳ
Tiempo total de vuelo: Ѳ
Altura máxima Ѳ
Alcance horizontal máximo: ( Ѳ )
Ecuación de la trayectoria: Ѳ
III.
INSTRUMENTOS DE LABORATORIO
Una computadora Programa Data Studio instalado Interface Science Worshop Sistema lanzador de proyectiles (ME-6831) Accesorio para tiempo de vuelo(ME-6810) Adaptador para fotopuerta(ME-6821) Esferas de acero y plástico Papel carbón, papel bond Soporte con pinzas, cinta métrica 2m
Ѳ
IV.
PROCEDIMIENTO Y ACTIVIDADES a) Verificar la conexión e instalación de la interfase. b) Ingresar al programa Data Studio y seleccionar crear experimento. c) Seleccionar el accesorio para tiempo de vuelo y fotopuerta, de la lista de sensores y efectuar la conexión usando los cables para trasmisión de datos, de acuerdo a lo indicado por Data Studio. d) Efectúe la configuración del temporizador, para la fotopuerta y el accesorio para el tiempo de vuelo, tal como se aprecia en la figura
e) Adicione un medidor digital a los datos recogidos por el temporizador, en el se registrara el tiempo de vuelo. f) Coloque la fotopuerta en el adaptador y luego en la boca del lanzador de proyectiles g) Efectúe el montaje de dispositivos y accesorios tal como se muestra en la figura.
Primera actividad (determinación de la velocidad inicial) 1. Verifique la elevación angular del tubo lanzador. 2. Inserte con ayuda del tubo atacador la esfera de plástico, en la primera o segunda posición de compresión del resorte según sea el caso. 3. Verificar la puntería, esta debe coincidir con la dirección del accesorio para tiempo de vuelo. 4. P u l s a r e l b o t ó n i n i c i o . 5. Tirar suavemente del cable que activa el disparador. 6. Verificar el punto de alcance máximo correspondiente; de ser necesario ajuste la distancia de ubicación del accesorio para tiempo de vuelo. 7. Anote el valor de ubicación del accesorio para tiempo de vuelo. 8. Varíe la posición angular aumentados cinco grados cada vez.
9. Repita los procedimientos desde (a) hasta (g), para las medidas angulares mostradas en las tablas (1)y(2) usando la esfera de plástico.
Se registraron los siguientes datos:
Angulo de tiro (Rad) 0.087 (5) 0.175 (10) 0.262 (15) 0.349 (20) 0.436 (25) 0.524 (30) 0.611 (35) 0.698 (40) 0.785 (45) 0.873 (50)
V.
Alcance máximo promedio(m) 0.38 0.66 0.98 1.15 1.29 1.51 1.62 1.79 1.80 1.79
Tiempo de vuelo promedio(s) 0.0993 0.1662 0.2284 0.2984 0.3446 0.4071 0.4601 0.5408 0.5939 0.6508
Velocidad Inicial (m/s) 8.62 9.43 8.47 8.62 10.00 8.62 8.62 11.11 13.16 10.20
CUESTIONARIO 1.
Señalar y clasificar las Fuentes de error en este experimento Estadísticamente, podemos decir que los errores de ejecución de los disparos están compuestos de la siguiente manera: -Un 40% errores de puntería. -Otro 40% errores al pulsar el disparador, fundamentalmente por la inmovilidad de la muñeca. -El 20% restante se debe a todo lo demás: postura incorrecta, empuñe defectuoso o mala respiración.
2.
¿Se cumple el principio de independencia de movimiento, para las esferas lanzadas? PRINCIPIO DE INDEPENDENCIA DE LOS MOVIMIENTOS: Fue anunciado por Galileo Galilei, y establece que: “los movimientos componentes en un movimiento compuesto, se desarrollan independientemente uno de otro, es decir. el desarrollo de un, movimiento no se ve alterado por la aparición de otro en forma simultánea." *El movimiento compuesto también se presenta en el lanzamiento de proyectiles. La trayectoria descrita por un proyectil es una curva específica llamada parábola. El tiro parabólico se puede estudiar como resultado de la composición de dos movimientos:
..............Vy ................↑.....☻→..... ..........↑...☻→..........☻→...↑ ....↑...☻→.................↓......☻→ ↑.☻→.................................↓… ☻→___________________↓_☻→Vx .↑....................................… ..I-------------------e---------------… a) Un movimiento vertical, rectilíneo uniformemente acelerado. b) Un movimiento horizontal, rectilíneo uniforme. - Estos dos movimientos tienen en común EL TIEMPO. - El tiempo que tarda el móvil en recorrer la trayectoria parabólica mostrada, es el mismo tiempo que tardaría en recorrer horizontalmente la distancia "e". 3. Comparar los resultados del alcance máximo horizontal obtenidos en la tabla (1) con los datos de y Ѳ encontrados utilizando la ecuación (7). Angulo de tiro (Rad)
Velocidad Inicial (m/s)
0.087 (5) 0.175 (10) 0.262 (15) 0.349 (20) 0.436 (25) 0.524 (30) 0.611 (35) 0.698 (40) 0.785 (45) 0.873 (50)
8.62 9.43 8.47 8.62 10.00 8.62 8.62 11.11 13.16 10.20
( Ѳ ) 1.3166 3.1035 3.6602 4.8737 7.8168 6.5663 7.1248 12.404 17,672 10,455
4. Demostrar que un ángulo de 45° da el máximo alcance horizontal. De la ecuación
( Ѳ )
realizamos una derivada con respecto al
ángulo θ, lo igualamos a cero para obtener el valor de θ, en el cual R se obtiene el máximo valor posible. ( Ѳ ) (
)
5. Compare los resultados obtenidos en la tabla (1) de la velocidad inicial experimental con la velocidad inicial calculado teóricamente y determine el error correspondiente.
Angulo de tiro (Rad) 0.087 (5) 0.175 (10) 0.262 (15) 0.349 (20) 0.436 (25) 0.524 (30) 0.611 (35) 0.698 (40) 0.785 (45) 0.873 (50)
Velocidad Inicial (m/s) 8.62 9.43 8.47 8.62 10.00 8.62 8.62 11.11 13.16 10.20
6. Encontrar el ángulo de disparo para el cual, el alcance horizontal es igual a la máxima altura del proyectil. ( Ѳ )
Realizamos la comparación de las ecuaciones Ѳ
y
, de donde obtendremos el ángulo. ( Ѳ )
Ѳ
( Ѳ ) Ѳ
Ѳ Ѳ Ѳ Ѳ
7. ¿Cuál es la máxima altura obtenida del proyectil?, y con qué ángulo empleado se obtuvo? Altura máxima:
Ѳ
El ángulo es de 90°, con ello se obtiene la ALTURA MÁXIMA, esto es cuando se trata de un "tiro vertical".
8. ¿Cuáles son las fuerzas que actúan sobre el proyectil después de haber sido lanzado?, muestre su respuesta en un diagrama.
Fuerza por el cual el cuerpo se mueve Fuerza de resistencia del aire Fuerza de interaccion gravitatoria 9. ¿Cómo se determina la velocidad inicial de una bala si solo se dispone de una cinta métrica? Para hallar la velocidad utilizamos la siguiente fórmula:
Donde: e=espacio v=velocidad t=tiempo 10. ¿Qué es una “curva balística”?, explicar detalladamente. La trayectoria balística es la trayectoria de vuelo que sigue un proyectil sometido únicamente a su propia inercia y a las fuerzas inherentes al medio en el que se desplaza, principalmente la fuerza gravitatoria. La ciencia que estudia los fenómenos balísticos en general se denomina balística. La balística exterior estudia la trayectoria balística bajo diversas condiciones. Cuando sobre el proyectil tan solo actúa la gravedad, la trayectoria balística es una parábola. Sin embargo, la presencia de otras fuerzas, tales como la resistencia aerodinámica (atmósfera), la fuerza de sustentación, la fuerza de Coriolis (efecto de la rotación terrestre), etc. hace que la trayectoria real sea algo diferente de una parábola.
11. ¿A que se denomina “visual de puntería”?, hacer un esquema explicativo de cómo apuntar con un arma de fuego para batir el blanco.
La puntería es un complejo visual-motriz que exige no solo la correcta alineación de la mira, sino también la colocación y “parada” del arma en la ubicación correcta por medio de los músculos del brazo y la mano.
12. ¿A que se denomina “parábola de seguridad”? La parábola de seguridad delimita dos zonas, la batida en la cual cualquier objetivo puede ser alcanzado con dos ángulos de tiro, de la no batida (Δ
View more...
Comments