Informe de Cromatografia
Short Description
Download Informe de Cromatografia...
Description
Universidad de Costa Rica Escuela de Química Laboratorio de Química Orgánica I QU-0213 I Ciclo Lectivo 2012
Cromatografía de tiza, capa fina y de columna
Esteban José Mejías Vargas B14047 Ana Laura Tipo de Reporte: II Profesor: Godofredo Solano Asistente: Jorge Chaves
Introducción
La cromatografía es una técnica de separación que se basa una fase estacionaria y una móvil (Harris, 2003). Con el fin de que los diversos componentes de una mezcla se separen a través de la fase móvil, la cromatografía logra la separación de diversos compuestos en diferentes estados de agregación, ya sea sólido-líquido, gaseoso-gaseoso entre otros. La cromatografía es de suma importancia debido a su gran uso tanto en la industria como en el campo de la salud y la biología, por lo que se busca con esta práctica enseñar algunos tipos de cromatografía (como la de capa fina y columna). En la práctica se lograron separar los pigmentos de extracto de espinaca y tomate, además de comprobar la afinidad de algunos analgésicos en diferentes disolventes para la cromatografía de capa fina, además de la cromatografía de tiza. El objetivo principal de la
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
práctica fue la separación e identificación de los principales compuestos de una mezcla mediante la cromatografía. Resultados
R f f obtenido para cada sustancia diluida en 95% acetato de etilo – 5% ácido
Cuadro I.
acético. Prueba Incógnita 1 y 2. (Grupo Ana Laura). Muestra
Distancia (cm)
R f f
Incógnita 1
3,5
1,2069
Incógnita 2
3,0
1,0344
Cafeína
3,3
1,1379
Aspirina
3,2
1,1034
Acetaminofén
2,0
0,6896
Ibuprofeno
2,1
0,7241
La distancia desde el punto de inicio inicio hasta el frente de disolvente es de 2,9cm.
Cuadro II.
R f f obtenido para cada sustancia diluida en 95% formato de etilo – 5% ácido
fórmico. Prueba Incógnita 1 y 2. (Grupo Ana Laura). Muestra
Distancia (cm)
R f f
Incógnita 1
3,2
1,0667
Incógnita 2
3,7
1,2333
Cafeína
4,0
1,3333
Aspirina
3,7
1,2333
Acetaminofén
2,2
0,7333
Ibuprofeno
-----
-----
La distancia desde el punto de inicio hasta el frente de disolvente es de 3,0cm.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Cuadro III.
R f f obtenido para cada sustancia diluida en 95% acetato de etilo – 5% ácido
acético. Prueba Incógnita 1 y 2. (Grupo Esteban). Muestra
Distancia (cm)
R f f
Incógnita 1
2,30
0,5897
Incógnita 2
3,90
1,0000
Cafeína
3,10
0,7949
Aspirina
3,30
0,8462
Acetaminofén
3,60
0,9231
Ibuprofeno
3,80
0,9744
La distancia desde el punto de inicio hasta el frente de disolvente es de 3,9cm
Cuadro II.
R f f obtenido para cada sustancia diluida en 95% formato de etilo – 5% ácido
fórmico. Prueba Incógnita 1 y 2. (Grupo Esteban) Muestra
Distancia (cm)
R f f
Incógnita 1
3,05
0,7820
Incógnita 2
3,80
0,9744
Cafeína
3,10
0,7949
Aspirina
3,80
0,9744
Acetaminofén
4,00
1,0256
Ibuprofeno
4,00
1,0256
La distancia desde el punto de inicio hasta el frente de disolvente es de 3,9cm Cálculo R f f:
,
donde d1 es la distancia de arrastre del compuesto y dd es la distancia entre la línea trazada inferior y el frente de disolvente:
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Cuadro V. Resultados de cromatografía de tiza. Grupo Ana. Disolventes
Estructura
Observaciones
No se da un arrastre notorio Agua
de la tinta
La tinta se desplaza más, sin Acetona
embargo no es tan perceptible Se da un eficiente
Etanol
desplazamiento de la tinta a través de la tiza
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Cuadro VI. Cromatografía de tiza para cuatro marcadores de colores. (Grupo de Esteban) Disolvente
dd
Color del marcador
Distancia recorrida
R f f
(±0,5cm)
(1)
Azul
0,20
0,03
Verde
3,80
0,63
Rojo
5,00
0,83
Anaranjado
0,50
0,08
Azul
5,60
0,90
Verde
5,50
0,89
Rojo
0,90
0,15
Anaranjado
5,30
0,86
Azul
5,10
0,81
Verde
5,00
0,79
Rojo
4,30
0,68
Anaranjado
5,00
0,79
(±0,5cm) Agua
Acetona
Etanol
6,00
6,20
6,30
Discusión
Se procede a realizar la prueba de cromatografía de capa fina. La cromatografía de capa fina consiste en la separación de los componentes de una mezcla a través de la migración diferencial sobra cada capa fina de absorbente, retenida sobre una superficie plana (Sharapin, 2000). Este tipo de cromatografía tiene aplicaciones similares a las de cromatografía de líquidos. Se aplica para desarrollar las condiciones para las separaciones en cromatografía de líquidos en alta resolución. La cromatografía tiene amplio uso en laboratorios clínicos e industriales (Skoog, James & Crouch, 2008) En este método de cromatografía hay dos tipos de fases, una móvil, que es el disolvente que se colca en la cámara; y otra estacionaria que es donde se agregan las muestras. La
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Se toma una placa de cromatografía y se marca con un lápiz la línea base del nivel de disolventes a 1cm del extremo inferior y luego otra a 1cm del extremo superior, que va a ser la línea de frente de disolvente. En la línea de abajo se agrega una pequeña muestra de cada sustancia en el siguiente orden (indicando en la placa): 1. Incógnita 1 2. Incógnita 2 3. Cafeína 4. Aspirina 5. Acetaminofén 6. Ibuprofeno Luego se coloca la placa en una cámara de desarrollo con 15mL de 95% acetato de etilo – 5% ácido acético. Además, previo a colocar la placa se coloca un papel filtro que va a generar una atmósfera controlada con el disolvente que se adicionó. Se deja la placa dentro de la cámara hasta que el disolvente se desplace hasta el frente de disolvente. Luego se pasa por una luz ultravioleta y por la cámara de yodo. Las láminas de yodo son sensibles a los compuestos orgánicos que están en la placa y dan productos oscuros. En cuanto a la luz fluorescente, los componentes de la muestra amortiguan la fluorescencia del material de tal forma que toda la placa exhibe fluorescencia, excepto los lugares donde se encuentran los componentes de la muestra (Skoog, James & Crouch, 2008). Se debe indicar dónde está la máxima altura que llegó a alcanzar la sustancia aplicada al arrastrarse con el disolvente. Luego se averigua el R f f y se comparan los resultados obtenidos. Esto se repite usando ahora 95% formato de etilo – 5% ácido fórmico.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
(a)
(b)
Figura 2. (a) Revelado con luz ultravioleta, (b) revelado con cámara de yodo.
Según lo que se aprecia en los cuadros de resultados, la incógnita 1 es cafeína pues los valores de R f f de estos son los más similares en el disolvente que contiene acetato de etilo, sin embargo con el formato de etilo la diferencia es mayor. En cuanto a la segunda incógnita, el valor R f f al que más se acerca en ambos disolventes es al de la aspirina, donde en uno difiere por 0,069 (en el acetato acetato de etilo etilo grupo Ana), mientras que en el otro disolvente (el formato de etilo grupo Ana) no presenta ninguna diferencia pues ambos alcanzan la misma altura. Sin embargo, los valores las incógnitas 1 y 2 en el formato de etilo del grupo Esteban son más cercanos a sus identidades (aspirina e incógnita 2 son iguales, mientras que la incógnita 1 y la cafeína presentan los valores más similares). En cuanto a los valores obtenidos para el acetato de etilo del grupo Esteban, sucede lo mismo que en los del grupo Ana donde se presentan leves diferencias. Sin embargo con la incógnita 2 si se da una diferencia mucho mayor que en los otros cuadros.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
En cuanto al uso de disolventes, deben buscarse aquellos más volátiles para que se evaporen antes de ingresar las placas a la cámara de yodo y así evitar manchas que generen incertidumbre sobre donde está la marca de la muestra. Además, se debe tomar en cuenta la polaridad de este y la acidez o basicidad (Walton & Reyes, 1983). 1983 ).
(a) Figura 3. Estructuras
(b)
disolvente A. (a) Acetato de etilo, (b) ácido acético (Wolfram Alpha,
2012).
(a) Figura 4.
(b)
Estructuras disolvente B. (a) Formato de etilo, (b) ácido fórmico. (Wolfram
Alpha, 2012). Las estructuras demuestran que el formato de etilo – ácido fórmico posee puntos de ebullición menores debido al metilo menos que posee en comparación con Acetato de etilo – ácido acético, lo que además, lo vuelve más volátil y por ende mejor disolvente.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
la B es más oscura que la A). Por lo que encontramos en el fondo de la columna, el pigmento amarillo son xantofilas mientras las diversas tonalidades de verde son mezclas entre las clorofilas A y B, esto último es producto de la distribución uniforme de los poros del gel. Las xantofilas son moléculas de menor tamaño en comparación con la clorofila (ver Figuras 6 y 7), por lo que se les facilita atravesar los poros y llegar a la parte más baja de la columna, cabe destacar que como se observa en la Figura 5 las xantofilas se componen únicamente de cadenas de carbonos por lo que no poseen polaridad ya que carecen de un compuesto más electronegativo que atraiga los electrones. Debido que silanol (SiOH), presente en la superficie de gel de sílice, posee polaridad (Climent, 2004), las xantofilas como son no polares no poseen interacción con el gel lo que les permite localizarse en la zona más baja de la columna. Para el caso de las clorofilas se basan en el grupo funcional que diferencia la clorofila A de la B, la clorofila A posee un metilo en una posición donde la clorofila B posee un aldehído (Orozco, 2012). Este grupo funcional posee una gran variante ante la interacción el gel de sílice ya que el aldehído posee polaridad debido al oxígeno que posee (Bruice, 2007) además de que el hidrógeno forma puentes de hidrógeno con el oxígeno del silanol, lo que permite mayor interacción con el gel causando que este se localizara en zonas superiores a la clorofila A (ver Figura 6), a diferencia de la clorofila B, la A por el metilo no interactúa con el gel debido a que posee un grupo metilo que no interacciona con el silanol. Debido a la irregularidad irregularidad de los poros del gel no se da una distribución exacta entre los pigmentos, sino que se encuentran diferentes capas de colores, podemos observar en la Figura 1 hay xantofilas tanto en el fondo de la columna como en una zona superior de la columna.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Figura 6. Estructura de la clorofila A (Sigma-Aldrich, 2010).
Figura 7. Estructura de la clorofila B extraído de espinaca (Sigma-Aldrich, 2010).
Para el caso del tomate, este posee un pigmento característico que es el licopeno que le otorga la tonalidad rojiza característico de los tomates (Nuez, 2001). Además del licopeno el tomate posee otros carotenoides en menor cantidad que poseen una tonalidad diferente. En la Figura 10 (Anexos) observamos como en la parte superior de la columna se nota la presencia de un pigmento rojizo, el licopeno. Pero a través de la columna se
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Se realiza la práctica de cromatografía de tiza donde se marca la tiza con un punto en cada lado con marcadores permanentes. Luego se coloca sobre un disolvente específico y se espera hasta que la elusión termine. Luego se analiza que tan bueno es el disolvente según la distancia a la que se desplace la sustancia coloreada del marcador. La tiza se utiliza como medio poroso, para que realice una función similar a la del papel filtro, trabajando como fase estacionaria (Villa, 2007). El primer científico en usar la tiza como fase estacionaria para realizar las pruebas de cromatografía fue Mikhail Tswett, quien observo cómo se separaban los colores de los diferentes pigmentos al pasarlos por un tubo con polvo de tiza (Valpuesta, 2008). De hecho, si la tiza fuese muy compacta la prueba de cromatografía no se puede realizar pues los compuestos muy compactos, como los productos de cerámica compactos, son impermeables impermeab les (CEAC, 2007). El alcohol resulta ser mejor eluyente debido a que producen generalmente una disminución de la hidrofobicidad de la fase estacionaria y de la polaridad de la fase móvil, y en consecuencia, una disminución en los factores de retención de los compuestos (Morell & Candela, 1998). Y por esta misma razón el agua no funciona, pues promueve la retención de la tinta.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Figura 10.
Cromatografía de tiza con acetona como disolvente.
Conclusiones:
La aplicación de la cromatografía de capa fina es un buen método para averiguar una incógnita siempre que se tenga un modelo para comparar los resultados.
Es importante la utilización de un buen disolvente como fase móvil, en este caso fue el 95% formato de etilo – 5% ácido fórmico, que generaron mejores resultados.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Referencias:
1. Bruice, P. (2007). Química Orgánica (5ta. Edición). México: Pearson Educación. 2. CEAC, (2007). Materiales de Construcción. Ediciones CEAC, Barcelona, España. Pp.125. 3. Climent, J. (2005). Valencia: Univerisidad Politécnica de Valencia.
C uantitativo (6ta edición). edición ). Barcelona: Editorial 4. Harris, D. (2003). Ánalisis (2003). Ánalisis Químico Cuantitativo Reverté. 5. Herrera, C.; Bolaños, N.; Lutz, G. (2003) Química de Alimentos: Manual de Laboratorio. Editoria Universidad de Costa Rica, 1ª edición, San José, Costa Rica, Pp4. 6. Mallol, J. (2008). Manual de Radiofarmacia. Ediciones Díaz de Santos, España, Pp71. 7. Morell, I.; Candela, L. (1998). Plaguicidas: aspectos ambientales, analíticos y
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
13. Sigma-Aldrich. (2011). Sigma-Aldrich. Sigma-Aldrich. Recuperado el 24 de mayo de 2012, de Sigma-Aldrich: http://www.sigmaaldrich.com/us-export.html 14. Skoog, D.; James, F.; Crouch, S. (2008) Principios de Análisis Instrumental. Editorial Cengage Learning S.A., 6º edición, México, Pp848-849. 15. Valpuesta, J. (2008). A la búsqueda del secreto de la vida. Una breve historia de la biología molecular. Editorial Hélice, España, Pp62. 16. Villa, M. (2007). Manual de prácticas de química general. 2º edición, Universidad de Medellín, Colombia, Pp98. 17. Walton, H.; Reyes, J. (1983). Análisis Químico e Instrumental Moderno. Editorial Reverté, edición en español, España, Pp332-333. 18. Watson, J. (2005). Panamericana, D.L. 19. Wolfram Alpha. (2012). Wolfram Alpha. Alpha. Recuperado el 14 de junio de 2012, de Wolfram Alpha: http://www.wolframalpha.com
View more...
Comments