Industrial Building Ppt

May 16, 2018 | Author: rexdindigul | Category: Truss, Beam (Structure), Column, Roof, Mechanical Engineering
Share Embed Donate


Short Description

Mini Project...

Description

MINI PROJECT-II • ANALYSIS AND DESIGN OF AN INDUSTRIAL BUILDING

SUBMITTED BY D. HIMA BINDU 06DA009

GIVEN DATA • • • • • • • • • •

Length of the building = 42 m. Span of the truss = 16 m. Spacing of truss = 6 m. Pitch of roof = 1 in 5. Basic wind pressure = 2 KN/m². Snow fall = NIL. Height of eaves above GL = 8m. Horizontal force due to overhead crane = 25KN. Height of the rails above base = 5m. SBC of soil =250 KN/m².

MAJOR COMPONENTS OF AN INDUSTRIAL BUILDING • • • • • • • • • •

1.Roof trusses 2.Gantry girder 3.Side rails (or grits) with claddings 4.Gable rafter 5.Gable columns 6.Rafter bracing 7.Vertical bracing in longitudinal side 8.Gable wind girder at eave level 9.Main columns 10.Column brackets

COMPOUND FINK TRUSS

DIMENSIONS OF THE TRUSS • Span of the knee braced roof truss = 16.0 m. • Rise of roof truss = 1/5 x span = 1/5 x 16= 3.2 m. • Let θ be the slope of the roof truss, then tan θ = 3.20 8.0 θ = 21.8° • Length of the sloping side of the roof = √ (8.02 + 3.22) = 8.62 m. • Sloping side is divided into 6 PANELS of equal length = 8.62/6 = 1.44m.

DESIGN OF CHANNEL SECTION PURLIN • Spacing of Purlins = 1.44 m • Span of Purlins = 6.0 m • Load calculation: Dead load W1 As per IS 875 part I Live load W2 As per IS 875 part II Wind load W3 As per IS 875 part III

• • • •

Combination of loads 1) Dead load 2) Dead load + Live load 3) Dead load + Wind load –(critical case)

LOAD ACTING ON PURLIN

Provide ISMC 150@ 164 N/m @ distance of 1.44m as purlin section W2 W1

W3

21.8°

ANALYSIS OF ROOF TRUSS 1. Dead load

2.Live load

3.Wind load

LOAD COMBINATION •

Dead load + live load

• Dead load + wind load

Design of tension member • Max tensile force member = -270.9KN (DL + WL) • • • • • • • • •

As per IS 800-1984 section 4 clause 4.2.1.2 For 2- ISA connected to the same side of the gusset plate A1 = Effective c/s area of the connected leg = (b-nd-t/2)t A2 = gross c/s area of unconnected leg = (b-t/2)t K = 5 A1 /(5 A1+ A2) Net eff cross area = A1 + A2 k Psafe =  at x A = 0 .6 fy x A > 270.9 KN

• provide 2 - ISA 130 X 130 X 12 mm @468 N/m

Design of compression member • Max Compressive force member = 250.013KN (DL + WL) • λ = leff / r min • from IS 800 1984 table 5.1 permissible stress in axial compression σac • Psaf = σac x Area > 250.013 KN • hence safe ok • provide ISA 70 X 70 X 8 @456N/m

GABLE WIND GIRDER 107.5KN

26.88 KN

107.5KN

53.76 KN

53.76 kN

53.76 kN

26.88 kN

• Design of critical tension member: • Provide 2- ISA 70 x 70 x 10 mm @ 200 N/m • Design of a critical compression member: • Provide 2- ISA 100 x 100 x 10 mm @ 298 N/m

DESIGN OF COLUMNS SUPPORTING THE ROOF TRUSSES • Case C

-46.097 105.640 kN kN

2.800 kN

9.800 kN 42.250 kN

7.200 kN

25.200 kN

115.500 kN

124.128 kN 133.780 kN

Load 1 4.410 kN

15.430 kN

Left side knee brace 62.32

F1 2.8 KN

7.2KN

2.8 KN

7.2KN

41.91

97.5

60.75

60.75

26.0

4.14KN

30.48KN

4.14 KN 2.8 KN

30.48KN

123.12

AFD

30.48 KN

SFD

52.16

BMD

right side knee brace 111.31 KN

30.62

F2 9.8

55.3k Nm

9.8 KN

25.2 30.62. 75

25.2

15.05

15.43

30.48

32.77 KN

15.43

30.48 +9.8

97.69

9.8 AFD

30.48 KN

SFD

30.1

BMD

CASE D

-46.097 105.640 kN kN

16.750 kN

-4.190 kN 42.250 kN

43.200 kN

-10.800 kN

115.500 kN

124.128 kN 133.780 kN

Load 1 26.450 kN

-6.613 kN

left side knee brace 98.83

60.19

140

F3 16.75

16.75

43.2

43.2

24.3

24.3

7.31 26.45

33.76

26.4 5 16.75

33.78 +16.75

33.76

AFD

33.76

SFD

1.624

BMD

right side knee brace 115 KN

115

F4 4.19

10.8

148.42 kNm

4.19

115

10.8

40.39

6.613

33.78

63.81 KN

6.613

33.78 -4.19

4.19

97.71

AFD

33.78

SFD

80.78

BMD

• • • • • •

Max BM = 148.42 KN-m Max tension = 115 KN LOADS Load on each column due to DL Load on each column due toLL Toal load

• Net load • Max BM

• from IS-800 1984 table 5.1 λ = leff / rmin • Permissible stress in axial compression σac • Based on T/t D1/t d/t • From table 6.1 B of IS 800-1984 • Permissible stress in bending compression  bc • σac cal = P/A •  bc cal =M/Zxx •  ac(cal) / ac, + bc (cal ) /  bcx Cm/1- ac(cal) /.6fCC

≤1

• provide ISHB 350 @ 674 N/m as column

DESIGN OF GABLE RAFTER

8.62m

3.20m

8.62m

16.00m

8.00m

• Dead Load • Live load • Wind Load Provide 2-ISA 80x80x10 @ 14 kg/m for gable rafter.

DESIGN OF SIDE RAILS • Provide side rails of ISA 110x110x12@ 19.6 kg/m @ 1.6m spacing.

SIDE RAILS @ 1.6 m C/C

DESIGN OF GABLE COLUMN • Provide Gable column ISHB 250 @ 510N /m

GABLE COLUMN

VERTICAL SIDE BRACING

VERTICAL SIDE BRACING

Horizontal force due to gantry girder= 25 KN Reaction from the gable wind girder =107.52 KN ie,Force in member cf (Eaves strut) = 107.52 kN Force in member ai

c 3m b

f

i

e

h 8m

5m

a

d Vertical Side Bracing

g

• • • •

Design of compression member Provide 2-150 x 150 x 15 mm @336 N/m design of tension member: Provide 2-100 x 100 x 8 mm @ 268 N/m

DESIGN OF RAFTER BRACING RAFTER BRACING

VERTICAL SIDE BRACING

The rafter bracing is critical in tension and hence designed for tension and checked for compression. • Provide ISA 70 x 70 x 10 @ 102 N/m

DESIGN OF GRILLAGE FOUNDATION • • • • • • • • •

Area of footing required Check for combined stress bearing pressure on soil fb = P/A ± M/Z Design of upper tier The beam are designed for given load and moment Providing 4 beams in upper tier Provide ISLB 300 @ 481N/m Design of beam in lower tier Provide ISLB 225 @ 235 N/m as beams in lower tier

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF