Find the antiderivative/primitive/integrals antiderivative/primitive/int egrals of the following by simple manipulation/simplifying and converting them into loving integrand i ntegrands. s. Q.1
!
x
x
2 . e dx dx e 5 !n x # e 4 ! n x
Q.5
!
Q.9
! 4 cos 2 · cos x · sin
Q.11
Q.14
dx dx
e 3 !n x # e 2 !n x
x
! !
Q.2
dx ! 1 " cos 2x dx
Q.6
!
21 2
Q.24
x 2x " 1
dx dx
Q.15
sin x " cos x
Q.26 Q.28 Q.29
Q.31
1 " sin 2x
! x 2 " 1 dx
!
sec 2x # 1 sec 2x " 1
2
!
Q.21
sin 6 x " cos 6 x 2
sin x . co cos x
dx dx
Q.10
!
Q.12
!
3
3
sin 2 x cos2 x
dx
dx
x#2
!
Q.25
2
$1 " x % 2
(1 " x)
!x
Q.13
dx dx
Q.17
cos 2x # cos 2& cos x # cos &
x " x "1 4
! x2
Q.8
cos xº dx
!
Q.22
dx
1 " 2x
dx
(2 + 2 sin 2x) dx
cos x " sin x
!
Q.19
sin x " cos x
cos x # sin x
!
Q.16
cos 2 x sin 2 x
2x # 1
! 1 " cot 2 x dx
Q.4
cos 2 x
!
)dx(a > 0)Q.7
1 " tan 2 x
2
$
1 " x2
!
e
2x
e
%
dx
#1 x
dx
dx
2
$
2 1 " x2
$
%
dx dx
!
Q.23
%$
x " 1 x2 #
x
x x " x"
%
1 # sin 2x dx
dx
x
. 2 ( 9 ' x + x+ 1 cos 4x " 1 2 ( 7 ' s i n s i n " # " dx Q.27 ! dx * * - 3 dx 0 ! / ) 8 4 , ) 8 4 , 2 cot x # tan x A functio function n g define defined d for all all positiv positivee real real number numbers, s, satisf satisfies ies g'(x g'(x2) = x3 for all x>0 and g (1) = 1. Compute g (4).
!
. + 1 dx 2 ( x s i n s i n ( x ) s i n & # & " # & * - 3 dx 0 ) , 2 / 2
!
. cot 2 2x # 1 1 dx c o s 8 x c o t 4 x # 0 3 dx 2 cot 2 x / 2
Q.33
!
Q.35
!
Q.38
+ e
dx (cosx + sinx > 0)
x #1
!
(e
dx ! 1 " tan 2 x dx
x ln a
x dx
6
Q.20
a ln x
1 # tan 2 x
Q.3
(3 sin x cos2 x # sin3 x) dx
!
Q.18
1 " cos 2 x
!
2 x 3 " 3x 2 " 4 x " 5 2x " 1
9 # 16 x
2
dx 1 " sin x
sin 2 x # sin 2k
Q.36
Q.39
! sin x # sin k " cos x # cos k dx
Q.44
!x
ln (ex )dx
!
Q.34
Q.41
x
!
Q.32
dx dx
dx
!
Q.30
!
!
dx 25 " 4 x
cos x " 1 # 2 sin 2x 2
cos 4 x # sin 4 x 1 " cos 4x
$x
2
1" x
2
1 " 2 cos 5 x
dx
x2 " 3
! x (x 6
2
" 1)
Q.40
dx Q.43
!
dx
dx (cos2x>0)
" sin 2 x% sec2 x
Q.37
cos 8 x # cos 7 x
Q.42
sin 2x " sin 5x # sin 3x
2
dx
#1 ( 1 " cos x
tan *
) sin x
2 " 3x 2
!
$
x2 1 " x2
!
%
- dx
dx
sinx sin x cos x cos 2x cos 4x dx
ANSWER SHEET Q.1
Q.5
2x . e x 1 " !n 2 x
1
#
Q.10
sin 2x + C
Q.14
1 .x # !n (2x " 1) 1 0 3 + C 2 2 2 /
Q.17
ex + e#x + C
Q.23 Q.25 Q.28 Q.31 Q.33 Q.36 Q.39
5
#
5
3
x
"
ax !n a
Q.11
#
cos3x 3
180
'
Q.15
tan x # x + C
Q.18
x+C
+ x # 2 tan x + C Q.21
2
2
# x + C
Q.26
67
Q.29
5 cos8x
# x
8 3
3
1 10
"
2
x
2
tan
sin 3x
#1
#
+ C
"
3x 2
2x 5
"
7 4
+ C
sin 2 x
" C
Q.34 Q.37 Q.40
Q.41
3 2 (sin x – cos x) + (sin k + cos k)x + C
Q.42
C –
2 x
+
2 1 3 x4
3 1
–
5 x5
Q.13
ln x + 2 tan #1 x
Q.16
2x + 3 ln (x # 2) +C
Q.19
2 (sin x + x cos &) +C
sec x # cosec x + C
1 2
x
#
(x # sin x) + C
Q.30
# 2 cos x + C
Q.35
2
'x
8
+ C
+ C
tan x # tan#1 x + c
#
cos4x
Q.27
x
2
Q.24
#1 1 0 " tan x 3 +C 2 /3 2 tan x # cot x # 3x + C
Q.22
2
+C
1 . x3
+ C
# 2 cos
Q.32
ln(2x+1)
sin xº + C
(sin x + cos x) sgn (cos x - sin x) + C x
tan x # x + C
Q.4
sin 2x + C
# (cot x + tan x) + C
Q.7
+ c
+ C Q.12
#1
3
2
1 1 1 .1 1 # 0 cos 9 x " cos 10 x " cos 11x " cos 12 x 3 + C 10 11 12 /9 2
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.