Important Questions for VTU Exam M2
June 15, 2018 | Author: Tasleem Arif | Category: N/A
Short Description
Download Important Questions for VTU Exam M2...
Description
Engineering Mathematics 2
CMRIT
10MAT21
UNIT 1 DIFFERENTIAL EQUATION 1 Problems on Solvable for P 2
dy 1. Solve y dx
+ ( x − y )
dy
− x =
dx
0
2. Solve x ( y ′) − (2 x + 3 y ) y ′ + 6 y = 0 2
dy 3. Solve dx
2
dy 4. Solve xy dx
−7 2
−
dy dx
( x
_ 12 = 0
2
− y
2
) dy + xy = 0 dx
5. Solve p 2 − 2 p sinh x − 1 = 0 6. Solve p 2 + 2 py cot x = y 2
(5Marks -June 2012)
7. Solve xp 2 + xp − ( y 2 + y ) = 0 8. Solve p( p + y ) = x( x + y ) 9. Solve
dy dx
−
dx dy
=
x y
−
(4Marks -July 2011,Dec 2011)
y x
10. Solve p 2 + 2 p cosh x + 1 = 0
(4Marks -Jan 2014)
11. Solve p 2 + p ( x + y ) + xy = 0
(4Marks -Jan 2013)
Problems on Solvable for x or y 12. Solve y − 2 px = tan −1 (xp 2 ) 13. Obtain the general solution and singular solution of y + px = p 2 x 4 14. Find the general solution and singular solution of x 2 p 4 + 2 xp − y = 0 15. Solve y
=
p sin p + cos p
16. Obtain the general solution and singular solution of p 2 + 4 x 5 p − 12 x 4 y = 0 (5Marks -June 2012) 17. Obtain the general solution and singular solution of xp 2 − 2 yp + ax = 0 (6Marks -Jan 2013) 18. Solve p 3 − 4 xyp + 8 y 2 = 0
(5Marks -July 2011)
19. Solve y = 2 px + p 2 y
(6Marks -Dec 2011)
�
Department of Mathematics
Engineering Mathematics 2
CMRIT
10MAT21
Problems on Clairaut’s equation ( y = px + f ( p ) form) 20. Solve y = px +
a p
21. Solve p = log( px − y ) 22. Solve ( p + 1) ( y − px ) = 1 2
23. Solve xp 2 + px − py + 1 − y = 0 , Also find the singular solution. 24. Solve xp 2 − py + kp + a = 0 , Also find the singular solution. 25. Obtain the general solution and singular solution of xp 3 − yp 2 + 1 = 0 (6Marks -Dec 2011) 26. Obtain the general solution and singular solution of sin px cos y = cos px sin y + p (6Marks-Jan 2013) 27. Solve the equation ( px − y )( py + x ) = 2 p using the substitution X = x 2 , Y = y 2 (6Marks -Dec 2011) 28. Solve the equation ( px − y )( py + x ) = a 2 p using the substitution X = x 2 , Y = y 2 29. Find the general solution of x 2 ( y − px ) = p 2 y using the substitution X = x 2 , Y = y 2 . Also find the singular solution. 30. Find the general solution of y 2 ( y − px ) = x 4 p 2 using the substitution X =
1 x
, Y =
1 y
. Also find
the singular solution.
�
Department of Mathematics
Engineering Mathematics 2
CMRIT
10MAT21
UNIT 2 DIFFERENTIAL EQUATION 2 Problems to find Complementary function y c 2
1. Solve
d y dx
2
+3
dy
2
2. Solve
d y dx
2
3. Solve
dx
2
dy
−7
2
d y
−6
+ 2y =
dx
0
+ 12 y =
dx dy
0
+ 9y = 0
dx
4. Solve ( D 2 − 3 D + 2)y = 0 5. Solve
6. Solve
7. Solve
d 3 y dx
3
d 3 y dx
3
d 3 y dx
3
− 13
−6
−3
dy
+ 12 y =
dx
d 2 y dx
d 2 y dx
+ 11
2
2
−3
0
dy
− 6y =
dx
dy dx
−
0
y=0
(4Marks -Jan 2014)
8. Solve ( D 4 + 4 D 3 − 5 D 2 − 36 D − 36 )y = 0
(4Marks -Dec 2011)
9. Solve ( D 3 + D 2 + 4 D + 4 )y = 0
(4Marks -Jun 2010)
10. Solve
d 3 y dx 3
− 8y =
0
11. Solve ( D 4 − 2 D 3 + 2 D 2 − 2 D + 1)y = 0 12. Solve ( D 4 − 8 D 2 + 16 )y = 0 13. Solve ( D 2 + 1) ( D − 1) y = 0 2
2
Problems to find Particular Integral (PI or y p) of the type φ ( x ) = e a x 14. Solve y ′′ − 6 y ′ + 9 y = 5e −2 x 15. Solve y ′′ + 3 y ′ + 2 y = cosh x 16. Solve y ′′ − 8 y ′ + 16 y = 3e 4 x 17. Solve x ′′′(t ) − 8 x(t ) = (1 − e t )
2
3
18. Solve
d y dx
3
2
+3
d y dx
2
+3
dy dx
+ y =
5e 2 x + 6e − x + 7
�
Department of Mathematics
Engineering Mathematics 2
CMRIT
10MAT21
Problems to find Particular Integral (PI or y p) of the type φ ( x ) = sin ax or cos ax 19. Solve y ′′ − 4 y ′ + 13 y = cos 2 x 20. Solve y ′′ − 3 y ′ + 2 y = 2 sin x cos x
(6Marks -JAN 2014)
21. Solve y ′′′ − 3 y ′′ + 9 y ′ − 27 y = cos 3 x 22. Solve
d 2 y dx
+3
2
dy dx
+
2 2 y = 4 cos x
23. Solve ( D 2 + 4 ) y = sin 2 x 24. Solve y ′′ + 9 y = cos 2 x cos x 25. Solve ( D 2 − 4 D + 3) y = sin 3 x cos 2 x 26. Solve ( D 3 − 1) y = 3 cos 2 x
(6Marks -DEC 2010)
27. Solve ( D 3 + 4 D ) y = sin 2 x
(4Marks - JAN 2010)
Problems to find Particular Integral (PI or y p) of the type φ ( x ) = ax n
+ bx
n −1
+−−−
28. Solve y ′′ + 3 y ′ + 2 y = 12 x 2 29. Solve ( D 3 + 8) y = x 4 + 2 x + 1 30. Solve ( D 2 − 5 D + 1) y = 1 + x 2
(4Marks – JULY 2009)
31. Solve ( D 2 + 3 D + 2 ) y = 1 + 3 x + x 2 32. Solve
33. Solve
d 3 y dx
3
+
d 3 y dx
3
2
d 2 y dx
2
+
− 8 y = x
dy dx
(x
2
=
x3
)
+1
Problems to find Particular Integral (PI or y p) on all types 34. Solve
d 2 y dx
2
−4
dy dx
+ 4 y =
e 2 x + cos x + 4
(6Marks – JAN 2013)
35. Solve ( D 3 − D ) y = 2e x + 4 cos x
(5Marks – JULY 2011)
36. Solve ( D − 2 ) y = 8(e 2 x + sin 2 x ) 2
(4Marks – DEC 2011,JUNE 2012)
x 37. Solve ( D 3 + D 2 + 4 D + 4 ) y = 3e − − 4 x − 6
38. Solve ( D 3 + 2 D 2 + D ) y = e − x + sin 2 x
(6Marks – DEC 2011)
Problems to find Particular Integral (PI or y p) of the type e ax φ ( x ) �
Department of Mathematics
Engineering Mathematics 2
CMRIT
10MAT21
39. Solve ( D 2 − 2 D + 5) y = e 2 x sin x
(6Marks – JULY 2009)
40. Solve ( D 2 − 4 D + 3) y = 2 xe 3 x 41. Solve y ′′ + 2 y ′ + 5 y = e − x sin 2 x 42. Solve y ′′ + 4 y ′ + 3 y = e −3 x x 2 43. Solve ( D 2 + 2 ) y = x 2 e 3 x + cos 2 x
(5Marks – JULY 2011)
x 44. Solve ( D 2 − 2 D − 3) y = e cos x
(6Marks – JAN 2010)
Problems to find Particular Integral (PI or y p) of the type x sin ax or x cos ax 45. Solve y ′′ + 16 y = x sin 3 x
(6Marks – JUNE 2010)
46. Solve ( D 2 − 1) y = x cos x 47. Solve y ′′ − y = x 2 cox3 x 48. Solve y ′′ − 2 y ′ + y = x cos x
(6Marks– DEC 2011)
x 49. Solve y ′′ − 2 y ′ + y = x e cos x
(4Marks – JAN 2013)
Problems on Simultaneous Differential Equations 50. Solve 51. Solve 52. Solve
dx dt dx dt dx dt
+ y =
+
t e ,
dy dt
− x =
dy
2 y = − sin t ,
− 2 y =
dt dy
cos 2t ,
dt
e−
t
− 2 x =
cos t
+ 2 x =
sin 2t given x = 1, y = 0 at t = 0 (6Marks – JUNE2012, JAN 2014)
53. Solve 54. Solve 55. Solve
dx dt dx dt dx dt
=
2 x − 3 y ,
+ 2 x − 2 y =
− 7 x + y =
dy dt t ,
0 ,
= y − 2 x
dy dt dy dt
+ 2 x +
(6Marks – JAN 2013) y=0
− 2 x − 5 y =
0
(6Marks – JULY 2011) (6Marks – DEC 2011)
�
Department of Mathematics
Engineering Mathematics 2
CMRIT
10MAT21
UNIT 3 DIFFERENTIAL EQUATION 3 Solve the following differential equation using Variation of parameters. 2
1. Solve
d y dx
2. Solve
2
d 2 y dx
2
+ y =
cos ecx
+ y =
tan x
(4Marks – JULY 2013, 2009)
2 3. Solve D + 4 y = cos ecx 2
4. Solve
d y dx
2
+ y =
sec x tan x
5. Solve y ′′ − 2 y ′ + y =
e x
(4Marks – JAN 2013)
x
6. Solve y ′′ − 3 y ′ + 2 y =
1
(6Marks – JUNE 2010)
1 + e − x
7. Solve y ′′ − 2 y ′ + 2 y = e x tan x
(6Marks – JAN 2010)
8. Solve y ′′ − 2 y ′ + y = e x log x 2
9. Solve
d y dx
2
−6
dy dx
+ 9 y =
e
3x
x
(4Marks – JULY 2011, Dec 2011)
2
10. Solve y ′′ + 4 y = tan 2 x
(5Marks – JUNE 2012, DEC 2011)
11. Solve y ′′ + a 2 y = sec ax
(5Marks – JAN 2014, DEC 2010)
Solve the following Cauchy’s Linear Differential equations 2 dy 2 d y 12. Solve x − 3 x + 4 y = 2 dx
(1 + x )2
(4Marks – JULY 2010)
dx
3
13. Solve x
d y dx
3
2
+
d y dx
2
=
1 x
2 dy 2 d y x 14. Solve x + 4 x + 2 y = e 2 dx
(5Marks – JAN 2014)
dx
2
15. Solve x
d y dx
2
−
2 y x
= x +
1 x
2 �
Department of Mathematics
Engineering Mathematics 2
CMRIT
2 dy 2 d y + 4 x − y = 16. Solve 4 x 2 dx
10MAT21
4x 2
dx
2 dy 2 d y 17. Solve x − x + y = 2 dx
log x
(4Marks – JUNE 2010)
dx
2
18. Solve x y ′′ + x y ′ + y = 2 cos
2
(log x )
3 2 dy 3 d y 2 d y 19. Solve x + 3 x − 2 x + 2y = 3 2 dx
dx
(5Marks – JULY 2011)
0
dx
2
20. Solve x y ′′ − x y ′ + 2 y = x sin (log x ) 2 dy 2 d y 21. Solve x − 4 x + 6 y = 2 dx
(6Marks – JAN 2013,JULY 2014)
cos(2 log x )
(4Marks – JAN 2010)
dx
2 dy 2 d y 2 22. Solve x + x + 9 y = 3 x + sin (3 log x ) 2 dx
(6Marks – DEC 2011)
dx
Solve the following Legendre,s linear Differential equation 2 dy 2 d y 23. Solve (1 + x ) + (1 + x ) + y = sin 2[log(1 + x)] 2 dx
(6Marks – DEC 2011)
dx
2
24. Solve (1 + x ) y ′′ + (1 + x ) y ′ + y = 2 sin [log(1 + x)] 2
25. Solve (2 x + 1) y ′′ − 6(2 x + 1) y ′ + 16 y = 8(2 x + 1)
(6Marks – JUNE 2012,JULY 2009)
2
2
26. Solve ( x + 2) y ′′ − ( x + 2 ) y ′ + y = 3 x + 4 2
2 27. Solve (3 x + 2 ) y ′′ + 3(3 x + 2 ) y ′ − 36 y = 8 x + 4 x + 1 2
28. Solve (3 x − 2 ) y ′′ − 3(3 x − 2) y ′ = 9(3 x − 2) sin [log(3 x − 2)] 2 dy 2 d y 29. Solve (2 x + 3) − (2 x + 3) − 12 y = 2 dx
6x
dx
Problems on Series Solution 30. Obtain the Series Solution of the equation
dy dx
− 2 x
y = 0 (6Marks – DEC JAN 2014)
31. Obtain the Power Series Solution of the equation y ′′ + y = 0 32. Solve
d 2 y dx 2
+ x
y = 0 by obtaining the solution in the form of series.
�
Department of Mathematics
Engineering Mathematics 2 33. Solve
d 2 y dx 2
− y =
CMRIT
10MAT21
0 by obtaining the power series solution.
34. Solve (1 + x 2 ) y ′′ + x y ′ − y = 0 in series solution
(6Marks –JUNE-JULY 2013)
Problems on Fobenious Method or Generalized Power Series 2
35. Solve by Frobenius method 4 x
d y dx
2
+2
dy dx
2
36. Solve by Frobenius method 2 x
d y dx
2
+3
+
dy dx
y=0
−
y=0
(6Marks DEC 2011,JUNE 2012)
(6Marks JULY 2011) 2
37. Obtain the Frobenius type series solution of the equation x
d y dx
2
+ y =
0 (6Marks JAN 2013)
�
Department of Mathematics
Engineering Mathematics 2
CMRIT
10MAT21
UNIT 7 LAPLACE TRANSFORM Find the Laplace Transform of the following functions 1. Find L sin 2 t 2. Find L sin 3 2t
(6M JAN 2014)
3. Find L cos 2 t 4. Find L cosh 2 t 5. Find L e −2t sinh 4t 6. Find L 2 t + cos 3t
(4M JULY 2009)
7. Find L[sin 5t cos 2t ] 8. Find L[sin t sin 2t sin 3t ]
(4M JAN 2013)
9. Find L[cos t cos 2t cos 3t ] 3
10. Find L (3t + 4 ) + 5 t 11. Find L e at + 2t n − 3 sin 3t + 4 cosh 2t
(4M JUNE 2010)
12. Find L[cos(2t + 3)] Problems on Property L e at f (t ) 13. Find L e −2 t (2 cos 5t − sin 5t ) 14. Find L t 3 cosh t 15. Find L e −3t sin 5t sin 3t
(4M DEC 2011)
16. Find L e 3t sin 5t sin 3t
(4M DEC 2010)
17. Find L t 3 e 2t 18. Find L t 2 e 2 t 19. Find L e −t cos 2 3t
(4M JAN 2010)
20. Find L[cosh 2t cos 2t ] Problems on Property L t n f (t ) 21. Find L[t cos at ] �
Department of Mathematics
Engineering Mathematics 2
CMRIT
10MAT21
22. Find L t 2 sin at 23. Find L t (sin 3 t − cos 3 t )
(5M JULY 2011)
24. Find L[t sin 3t cos t ] 25. Find L t sin 2 t ∞
26. Find the value of
∫ t e 3
−t
sin t dt using Laplace transforms
(5M DEC 2011, JUNE 2012)
0 ∞
27. Find the value of
∫ te
− 2t
sin 4t dt using Laplace transforms
0
f (t ) Problems onProperty L t
1 − e at 28. Find L t cos at − cos bt t
29. Find L
sinh t t
30. Find L
sin 2 t 31. Find L t e −t sin t 32. Find L and hence find t ∞
33. Find the value of
∫
e
34. Find the value of
∫
−e
∫ 0
t
dt
(5M JUJY 2013, JULY 2009)
dt using Laplace transforms
cos 6t − cos 4t
0
e − t sin t
− bt
t
0 ∞
− at
∞
t
dt using Laplace transforms
t Problems on Property L ∫ f (t ) dt 0 t
0
∫
35. Find L sinh at sin at dt
t 36. Find L ∫ t cos at dt 0 ��
Department of Mathematics
Engineering Mathematics 2
CMRIT
10MAT21
t sin at 37. Find L ∫ dt t 0 Problems on Periodic function.
38. Prove that L[ f (t ) ] =
T
1 1− e
− sT
∫e
− st
f (t ) dt
(6M JUNE 2010)
0
39. If f (t ) = t 2 , 0 < t < 2 and f (t + 2) = f (t ) find L[ f (t ) ]
E 40. If f (t ) = − E
0 < t < a a
2
<
2
t < a
, where f (t + a ) = f (t ) then show that L[ f (t ) ] =
E S
as 4
tanh
(6M DEC 2010,JUNE 2011)
t 41. If f (t ) = 2 a − t
0 ≤ t < a a ≤ t < 2a
, where f (t + 2a ) = f (t ) then show that L[ f (t ) ] =
1 2
S
as 2
tanh
(6M DEC 2011)
t 42. Find the value of f (t ) = π − t
0 ≤ t < π
π ≤ t < 2π
, where f (t + 2π ) = f (t ) (6M JUNE 2012)
E sin ω t 0 ≤ t ≤ π ω find L[ f (t ) ] 43. A periodic function of period 2π is defined by f (t ) = ω π 2 π t t π − ≤ ≤ ω ω (6M JAN 2013) 44. Find the Laplace transform of the square wave function of period 2a defined by
k
0 < t < a
− k
a < t < 2a
f (t ) =
(6M JULY 2009) Problems on Unit step function. 45. Find L (e t −1 + sin (t − 1)) u (t − 1)
(6M DEC 2010)
46. Find L[sin t u(t − 1)] 47. Find L (3t 2 + 4t + 5) u (t − 3) 48. Find L (t 3 + t 2 + t + 1) u (t + 1) 49. Find L (1 − e 2t ) u (t + 1) 50. Find L e − t u (t − 2) ��
Department of Mathematics
Engineering Mathematics 2
CMRIT
10MAT21
Express the following functions in terms of Heaviside or Unit Step Function and hence find their Laplace Transforms.
t 51. f (t ) = 5
0 < t < 4 t > 4
sin 2t 52. f (t ) = 0
0 < t < π t > π
sin t 53. f (t ) = cos t
0 < t < π
2 t > π 2
2t 54. f (t ) = 1
0 < t < π
t 2 55. f (t ) = 4
0 < t ≤ 3
(6M JUNE 2010)
(6M JAN 2013)
t > π
(6M DEC 2011)
t > 3
1 0 < t ≤ 1 56. f (t ) = t 1 < t ≤ 2 t 2 t > 2
cos t 57. f (t ) = 1 sin t
(6M DEC 2011)
0 < t ≤ π π < t ≤ 2π t > 2π
cos t 0 < t ≤ π 58. f (t ) = cos 2t π < t ≤ 2π cos 3t t > 2π sin t 0 < t ≤ π 59. f (t ) = sin 2t π < t ≤ 2π sin 3t t > 2π t 0 < t ≤ 2 60. f (t ) = 4t 2 < t ≤ 4 8 t > 4 t − 1 61. f (t ) = − t − 3 0
(6M JAN 2014, JAN 2010, JULY 2011)
1 < t ≤ 2 2 < t ≤ 3
(6M JULY 2013)
otherwise
��
Department of Mathematics
Engineering Mathematics 2
CMRIT
10MAT21
UNIT 8 INVERSE LAPLACE TRANSFORM ---- Will upload shortly
��
Department of Mathematics
View more...
Comments