Illicon Manual
December 22, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Illicon Manual...
Description
IILICON COMPUTER PROGRAM *
USER’S GUIDE
ILLICON computer program is coded in Fortran-77. The consolidation problem is solved by an explicit finite difference approximation scheme. The selection of a suitable space mesh and the size of the time increment are of vital importance to ensure numerical stability. The consolidating soil profile may consist up to 15 layers. Each layer has its own distinct properties such as e – log a set of (e,
σv
’ curve and e – log k v curve, each one defined by
’), and (e, k v) coordinates. The coordinates enable the user to represent the
σv
non-linear behavior of the soil.
1. Input File Structure
The input file describes the problem to be solved. It should be prepared with a text editing program such as Notepad. The program reads the input file (input.dat) when it is executed. The input file file contains the information necessary to solve tthe he desired problem. This information is organized in blocks. The beginning of each block is identified with a keyword. The entries in each block are introduced starting in the following line from where the keyword is written. What follows is a list of keywords and their description. They are presented in the order to be written in the input file.
CASENAME: Name or description of the project. The entry should be a string string enclosed
in quotes from 1-50 characters. Example:
CASENAME OL GA C EMBA BAN NKMEN ENT, T, Dr ai ns s pac pacii ng=1m
*
Taken from “Manual for the ILLICON Computer Program, Program, One-Dimensional Settlement Analysis With or Without Vertical Drains” by G. Mesri, Y. K. Choi and D. O. K. Lo, University of Illinois at UrbanaChampaign, May 1989.
1
NUMLAYS: Number of layers in the stratum. 15 is currently the maximum number of
layers allowed. Example:
NUML AYS ( NUMBER OF L AYERS) 10 used ed (including the columns in the smear zone). NUMCOLU: Total number of columns us 10 is currently the maximum number of columns allowed. Note:
In the case with no vertical drains, 1 column is sufficient. sufficient. In the case with vertical vertical
drains with no smear zone, 6 columns of nodes are adequate, whereas in the case with smear zone, a total of 9 columns is recommended Example:
NUMCO NUM COL L U ( NU NUM MBE BER R OF CO COL L UMNS) 9
NUMCOLS: Number of columns used in the smear zone.
Note: 3 columns of nodes within the smeared zone is generally used. The difference between the NUMCOL and NUMCOLS is the number of columns of nodes in the undisturbed zone. Example:
NUMCOL S ( NUMBER OF COL UMNS- SMEAR ZONE) 3 NUMDLAY: Number of layers being penetrated by the drain.
Note: For fully penetrating drains, NUMDLAY is equal to the number of layers (NUMLAYS). Note that the drain always terminates terminates at a layer interface. interface. Example:
NUMDL AY ( NUMBER OF DRAI N L AYERS) 10 RAD_SOI: Radius of the soil in meters
Example:
RAD_ SOI ( RADI US OF TH THE E SOI L) [ METER ETERS] S]
2
0. 525 RADDRA: Radius of the vertical drain
Example:
RAD_ DRA ( RADI US O OF F TH THE E D DR RAI N) [ METERS] 0. 031 RAD_SME: Radius r e (meters) of soil cylinder that is influenced by the drain, radius r w
(meters) of the drain, and the radius r s (meters) of the smeared soil zone around the drain. Example:
RAD_ SME ( RA RAD RAD DI US O OF F T TH HE SMEAR ZONE) [ METE ETERS] RS] 0. 1125 CONSLIM: Limit of progress of consolidation, in percent, for halting program execution.
The progress is indicated by the overall average degree of consolidation of the entire soil profile. The default is 99%. Example:
CONSLI M ( LI MI T OF C CO ONSOLI DATI ON) [ %] 101 PRNT_ ST: Time (days) at which program will start printing first output data.
Example:
PRNT_ PRN T_ST ST ( PR PRII NT S STA TAR RT TI ME) 101
PRNT_FC: The print factor is the ratio of a printout time to the previous printout time. A
print factor of 1.2 is the default. Example:
PRNT_ PRN T_FC FC ( PR PRII NT F FA ACTOR) 1. 1 UPPERBC: Upper drainage boundary condition: enter either 0 for drained and 1 for
undrained. Example:
UPP PPERBC ERBC ( 0=DRA RAII NED ED,, 1=UNDRA RAII NED ED)) 0
3
LOWERBC: Lower drainage boundary condition: enter either 0 for drained and 1 for
undrained. Example:
L OWERBC ( 0=DRAI NED ED,, 1=UNDRAI NED ED)) 0 TDRAIN: Time (days) when drains are installed.
Example:
TI M_ DRA ( TI ME [ DAYS YS]] WHEN DRAI NS WER ERE E I NST STA ALL LLED ED) 0 I_F_DRA: Gradient correction factor for the pore water pressures in the drain/smear
zone interface. Example:
I _ F_ DRA ( GRADI EN ENT T CORR. FAC FACTO TOR, DRAI N) 1. 57 I_F_SME: Gradient correction factor for the pore water pressures in the smear zone/
undisturbed soil interface. Example:
I _ F_ SME ( GRADI EN ENT T CORR. FAC FACTO TOR R, SMEA EAR R) 1. 67
K_DRAIN: Permeability of the drain (cm/sec). Example:
K_ DRAI N ( DRAI N PER PERM MEA EAB BI LI TY) 0. 00 0010 105 5
4
LOADING SCHEDULE: The loads as a function of time that will be applied in each layer. Example:
L OADI NG SCHED EDU UL E ( NUMPTS/ L OADS( L AY=1, NUML AY) ) 11 0 100 108 139 145 157 158 159 165 170 175 1 2 17 17.. 5 2 22. 2. 5 4 43 3 4 48 8 6 60 0 6 64. 4. 9 6 64. 4. 9 7 79. 9. 7 1 119 19 1 2 17 17.. 5 2 22. 2. 5 4 43 3 4 48 8 6 60 0 6 64. 4. 9 6 64. 4. 9 7 79. 9. 7 1 119 19 1 2 17 17.. 5 2 22. 2. 5 4 43 3 4 48 8 6 60 0 6 64. 4. 9 6 64. 4. 9 7 79. 9. 7 1 119 19 1 2 17 17.. 5 2 22. 2. 5 4 43 3 4 48 8 6 60 0 6 64. 4. 9 6 64. 4. 9 7 79. 9. 7 1 119 19 1 2 17 17.. 5 2 22. 2. 5 4 43 3 4 48 8 6 60 0 6 64. 4. 9 6 64. 4. 9 7 79. 9. 7 1 119 19 1 2 17 17.. 5 2 22. 2. 5 4 43 3 4 48 8 6 60 0 6 64. 4. 9 6 64. 4. 9 7 79. 9. 7 1 119 19 1 2 17 17.. 5 2 22. 2. 5 4 43 3 4 48 8 6 60 0 6 64. 4. 9 6 64. 4. 9 7 79. 9. 7 1 119 19 1 2 17 17.. 5 2 22. 2. 5 4 43 3 4 48 8 6 60 0 6 64. 4. 9 6 64. 4. 9 7 79. 9. 7 1 119 19 1 2 17 17.. 5 2 22. 2. 5 4 43 3 4 48 8 6 60 0 6 64. 4. 9 6 64. 4. 9 7 79. 9. 7 1 119 19 1 2 17 17.. 5 2 22. 2. 5 4 43 3 4 48 8 6 60 0 6 64. 4. 9 6 64. 4. 9 7 79. 9. 7 1 119 19 Note: In the first line the number of stages that define the loading is indicated indica ted (11) For F or this example the loading was applied in 11 stages.. In the second line, the starting time for each of the stages are indicated. In this case the load was applied in stages starting from time 0 up to time 175 days. After time 175, the load is assumed to be constant. From the third line to the line (3+NULAYS) the load for each stage is indicated.
LAY_PARAMETERS: Indicates to the program the beginning of the block that defines
the soil properties for for each layer. No additional input is necessary for this command. Example:
L AY_ AY_PARA PARAM METE ETERS RS LAY_PRO: The properties of each layer are indicated in order order starting from layer 1. The properties need by the program are: HO: HO or H0 is the initial layer thickness (meters). PO: PO or P0 is the initial initial effective vertical stress stress (kPa). ALPHA: The ratio between C and Cc, where Cc is the compression index and Cα α
is the secondary compression index.
5
ALPHAS: The ratio between C s and Cs, where Cs is the swelling index and C s is α
α
secondary swelling index (slope of e – log t curve during secondary swelling)
CS : The swelling index, Cs
KHKV: KHKV is the ratio of horizontal to vertical permeability for that layer.
NUMROW: Number of horizontal rows of nodes for that layer. For layers of about 2-3 m thick, 6-8 rows of nodes are generally adequate. However layers adjacent to drainage boundaries where high hydraulic gradients exist, require more rows of nodes than that required by the interior layers with comparable thickness. If some layers are more than 5 m thick, more than 9 rows of nodes can be used. Exceptionally thick layers should be subdivided into thinner layers.
Example:
LAY_ PRO LAY_PR O 1 14. 14. 41 1 19. 19. 32 1 24. 24. 22 1 29. 29. 13 1 34. 34. 04 1 38. 38. 94 1 43. 43. 85 1 48. 48. 75 1 53. 53. 66
( H, P0, 1 0 0.. 03 033 3 1 0 0.. 03 033 3 1 0 0.. 03 033 3 1 0 0.. 03 033 3 1 0 0.. 03 033 3 1 0 0.. 03 033 3 1 0 0.. 03 033 3 1 0 0.. 03 033 3 1 0 0.. 03 033 3
KHKV KV,, ALP LPH HA, ALP LPH HAS, CS, NUMROW) 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5
1 58. 58. 57 1 0 0.. 03 033 3 0 0 5 E_LOGKV: Descrete points describe the relation between the void ratio and the vertical
permeability. The set of values of e and kv should shou ld be indicated in order, starting from the higher void ratio. Each set of values for each layer should be preceded by and integer that defines the number of coordinates used to define the permeability behavior. Start from the first layer up to the layer NUMLAYS. Example:
E_LO E_L OGKV N NU UMPTV PTV(( LAY LAY)) / VOI DV( POI NT, LAY LAY)) VPER PERM M( POI NT, LAY LAY)) 3
6
2. 06 063 3 1. 74 7434 34 1. 74 7434 34 3 2. 46 468 8 1. 85 8576 76 1. 85 8576 76 3 2. 54 548 8 1. 84 847 7 1. 84 847 7 3 2. 62 628 8 1. 86 8669 69 1. 86 8669 69 3 2. 46 468 8 1. 75 7544 44 1. 75 7544 44 3 2. 37 3795 95 1. 69 6937 37 1. 69 6937 37 3 2. 49 4985 85 1. 72 7266 66 1. 72 7266 66 3 2. 46 462 2 1. 72 7248 48 1. 72 7248 48 3 2. 08 088 8 1. 59 5909 09 1. 59 5909 09 3 1. 88 888 8 1. 83 8307 07 1. 83 8307 07
0 0.. 00 0000 00001 00120 2070 702 2 0 0.. 00 0000 00000 00056 5650 504 4 0 0.. 00 0000 00000 00056 5650 504 4 0 0.. 00 0000 00002 00222 2216 165 5 0 0.. 00 0000 00000 00066 6613 132 2 0 0.. 00 0000 00000 00066 6613 132 2 0. 00 0000 00002 00292 9256 56 0 0.. 00 0000 00000 00076 7601 013 3 0 0.. 00 0000 00000 00076 7601 013 3 0 0.. 00 0000 00004 00401 0180 805 5 0 0.. 00 0000 00000 00097 9723 234 4 0 0.. 00 0000 00000 00097 9723 234 4 0 0.. 00 0000 00003 00335 3537 373 3 0 0.. 00 0000 00000 00081 8135 352 2 0 0.. 00 0000 00000 00081 8135 352 2 0 0.. 00 0000 00002 00213 1342 428 8 0 0.. 00 0000 00000 00052 5200 003 3 0 0.. 00 0000 00000 00052 5200 003 3 0 0.. 00 0000 00002 00231 3151 514 4 0 0.. 00 0000 00000 00050 5095 957 7 0 0.. 00 0000 00000 00050 5095 957 7 0. 00 0000 00002 00259 5909 09 0 0.. 00 0000 00000 00059 5975 757 7 0 0.. 00 0000 00000 00059 5975 757 7 0 0.. 00 0000 00004 00419 1983 834 4 0 0.. 00 0000 00001 00130 3078 784 4 0 0.. 00 0000 00001 00130 3078 784 4 0 0.. 00 0000 00005 00546 4690 909 9 0 0.. 00 0000 00004 00471 7135 355 5 0 0.. 00 0000 00004 00471 7135 355 5
E_LOGPS: The EOP e – log
σv
’ relationship of the smeared zone is input by entering the
linear segments of the continuous curve. Void ratios and stress (kPa) columns are entered in order starting with order starting with the intiail conditions (e 0,σ’v0) If the final effective stress and void ratio exceed the input values, ILLICON will use the C c of the
7
last input EOP e log
σv
’ curve segment to extrapolate to any stress range. (Up to 30 data
points can be used). Example:
E_L OGPS N E_LO NU UMPTS PTS(( LAY LAYER ER)) / ELO ELOG GPU PU(( POI NT, LAY LAY)) ST STR RES ES(( POI NT, LAY LAY)) 3 1.. 7 94 93 9 1 1. 18 188 8 3 2. 346 1. 858 1. 36 364 4 3 2. 408 1. 847 1. 39 393 3 3 2. 476
1 14 4.. 6 44 2 1 17 7 44 446. 6. 68 1 19 9. 32 2 25 5. 12 40 402. 2. 02 2 24 4. 23 3 32 2. 29 38 388. 8. 61 2 29 9. 13
1. 8 67 3 39 9.8.25 1. 42 421 1 38 388. 61 3 2. 325 3 34 4. 04 1. 754 4 46 6. 25 1. 37 3 39 93. 08 3 2. 242 3 38 8. 95 1. 694 5 53 3. 33 1. 34 343 3 39 397. 7. 55 3 2. 344 4 43 3. 85 1. 727 6 60 0. 73 1. 382 2 39 393. 3. 08 3 38 2. 315 4 48 8. 76 1. 725 6 67 7. 01 1. 37 4 41 15. 42 3 1. 989 5 53 3. 67 1. 591 7 73 3. 02 1. 21 216 6 44 446. 6. 68 3 1. 877 5 58 8. 57 1. 831 6 61 1. 06 1. 08 084 4 75 759. 9. 36
8
E_LOGPU: The EOP (end-of-primary) e – log σv’ relationship of the undisturbed zone is
input by entering the linear segments of the continuous curve, in the same way in which the smear zone compressibility is input. (Up to 30 data points can be used). Example:
E_L OGPU NUMPTS E_LO PTS(( LAY LAYER ER)) / ELO ELOG GPU PU(( POI NT, LAY LAY)) ST STR RES ES(( POI NT, LAY LAY)) 15 2. 063 1 14 4. 42 2. 04 046 6 10 100 0 1. 9 112. 2 1. 79 1 12 25. 89 1. 69 697 7 14 141. 1. 25 1. 61 616 6 15 158. 8. 49 1. 54 545 5 17 177. 7. 83 1. 48 481 1 19 199. 9. 53 1. 42 424 4 22 223. 3. 87 1. 37 373 3 25 251. 1. 19 1. 32 327 7 28 281. 1. 84 1. 28 286 6 31 316. 6. 23 1. 24 249 9 35 354. 4. 81 1. 21 216 6 39 398. 8. 11 1. 18 188 8 44 446. 6. 68 15 2. 468 1 19 9. 32 2. 45 455 5 9 90 0 2. 24 1 10 00. 98 2. 076 1 11 13. 3 1. 94 941 1 12 127. 7. 13 1. 82 827 7 14 142. 2. 64 1. 73 731 1 16 160. 0. 05 1. 64 649 9 17 179. 9. 57 1. 57 579 9 20 201. 1. 48 1. 52 521 1 22 226. 6. 07 1. 47 473 3 25 253. 3. 65 1. 434 2 28 84. 6 1. 40 403 3 31 319. 9. 33 1. 38 358. 3 1. 36 364 4 40 402. 2. 02 15 2. 548 2 24 4. 23 2. 53 537 7 8 87 7 2. 312 9 97 7. 62 2. 14 141 1 10 109. 9. 53 2 122 122.. 89 1. 88 881 1 13 137. 7. 89 1. 77 779 9 15 154. 4. 71
9
1. 69 692 2 1. 61 619 9 1. 55 557 7 1. 506 1. 46 465 5 1. 43 433 3 1. 40 409 9
17 173. 3. 59 19 194. 4. 77 21 218. 8. 53 2 24 45. 2 27 275. 5. 12 30 308. 8. 69 34 346. 6. 35
1. 39 393 3 15 2. 628 2. 61 618 8 2. 383 2. 20 206 6 2. 05 058 8 1. 93 933 3 1. 82 827 7 1. 73 735 5 1. 65 658 8 1. 59 593 3 1. 539 1. 49 496 6 1. 46 462 2 1. 43 437 7 1. 42 421 1 15 2. 468 2. 46 2. 245 2. 08 081 1 1. 946 1. 83 832 2 1. 73 736 6 1. 65 654 4 1. 58 585 5 1. 52 526 6 1. 47 478 8 1. 43 439 9 1. 40 409 9 1. 38 386 6 1. 37 15 2. 38 2. 37 372 2 2. 171 2. 01 017 7 1. 89 1. 78 783 3
38 388. 8. 61
2 29 9. 13 8 87 7 9 97 7. 62 10 109. 9. 53 12 122. 2. 89 13 137. 7. 89 15 154. 4. 71 17 173. 3. 59 19 194. 4. 77 21 218. 8. 53 2 24 45. 2 27 275. 5. 12 30 308. 8. 69 34 346. 6. 35 38 388. 8. 61 3 34 4. 04 88 9 98 8. 74 11 110. 0. 79 1 12 24. 3 13 139. 9. 47 15 156. 6. 49 17 175. 5. 58 19 197. 7. 01 22 221. 1. 05 24 248. 8. 02 27 278. 8. 28 31 312. 2. 24 35 350. 0. 33 3 39 93. 08 38. 95 8 89 9 9 99 9. 86 11 112. 2. 04 1 12 25. 72 14 141. 1. 06
10
1. 69 692 2 15 158. 8. 27 1. 61 615 5 17 177. 7. 58 1. 55 1 19 99. 25 1. 49 495 5 22 223. 3. 56 1. 45 2 25 50. 84 1. 41 412 2 28 281. 1. 44 1. 38 382 2 31 315. 5. 78 1. 35 359 9 35 354. 4. 32 1. 34 343 3 39 397. 7. 55 15 2. 499 4 43 3. 85 2. 49 492 2 8 88 8 2. 274 9 98 8. 74 2. 10 107 7 11 110. 0. 79 1. 97 124. 3 1. 85 854 4 13 139. 9. 47 1. 75 756 6 15 156. 6. 49 1. 67 672 2 17 175. 5. 58 1. 60 601 1 19 197. 7. 01 1. 54 542 2 22 221. 1. 05 1. 49 492 2 24 248. 8. 02 1. 45 452 2 27 278. 8. 28 1. 42 421 1 31 312. 2. 24 1. 39 398 8 35 350. 0. 33 1. 38 382 2 39 393. 3. 08 15 2. 462 4 48 8. 76 2. 45 456 6 9 93 3 2. 24 243 3 10 104. 4. 35 2. 07 079 9 11 117. 7. 08 1. 94 944 4 13 131. 1. 37 1. 831 1 14 47. 4 1. 73 735 5 16 165. 5. 38 1. 65 653 3 18 185. 5. 56 1. 584 2 20 08. 2 1. 52 527 7 23 233. 3. 61 1. 47 479 9 26 262. 2. 11 1. 44 2 29 94. 09 1. 40 409 9 32 329. 9. 98 1. 38 386 6 37 370. 0. 24 1. 37 4 41 15. 42 15 2. 088 5 53 3. 67 2. 08 083 3 10 100 0 1. 934 1 11 12. 2 1. 82 822 2 12 125. 5. 89 1. 72 727 7 14 141. 1. 25
11
1. 64 645 5 15 158. 8. 49 1. 57 572 2 17 177. 7. 83 1. 50 508 8 19 199. 9. 53 1. 45 2 22 23. 87 1. 39 399 9 25 251. 1. 19 1. 35 353 3 28 281. 1. 84 1. 31 313 3 31 316. 6. 23 1. 27 276 6 35 354. 4. 81 1. 24 244 4 39 398. 8. 11 1. 21 216 6 44 446. 6. 68 15 1. 888 5 58 8. 57 1. 87 879 9 17 170 0 1. 75 752 2 19 190. 0. 74 1. 65 657 7 21 214. 4. 02 1. 57 576 6 24 240. 0. 13 1. 50 505 5 26 269. 9. 43 1. 44 441 1 30 302. 2. 31 1. 38 382 2 33 339. 9. 19 1. 32 329 9 38 380. 0. 58 1. 28 4 42 27. 02 1. 23 234 4 47 479. 9. 13 1. 19 192 2 53 537. 7. 59 1. 15 153 3 60 603. 3. 18 1. 11 117 7 67 676. 6. 78 1. 08 084 4 75 759. 9. 36 ENDDATA: The program stop reading the input file. No numerical input is necessary with this command. Example:
ENDDATA
Addition information: When smear zone is not included in the analysis, the input format is identical to what has been described, with the following changes in the input data: Radius of the smear zone: not needed Compressibility of the smear zone: not needed
The program can also be used for a case where vertical drains are not installed. This special case is then reduced to a one-dimensional consolidation problem with vertical
12
flow only. The input format remains the same as what have been described with the following changes in the input data: Number of drained layers: 0 Number of columns: 1 Radius of the soil: not needed Radius of the smear zone: not needed Permeability of the drain not needed Time when the drains where installed: not needed Compressibility of the smear zone: not needed
2. Running the Program
In DOS environment (or command prompt) go to the folder which includes ILLICON.exe and the input file (input.dat) and type, and execute the program. The program will show options for running a new analysis, continue an old analysis or to process the data from the output files. 1. New analysis: To start a new analysis the user will have to indicate the time at which the simulation should be stopped and the TIC.
The TIC is a non
dimensional value that control the time time step of the numerical integration. Smaller values of TIC will give more accurate results, but they also significantly increase the time for computation. Two values of TIC should should be assigned to the program program.. A minimum value, and a maximum value. The program will select the most appropriate value in that range. Experience using the program taught us that adecuate values are usually 1 and 100. The user should keep track of the the *.err file and select the values of TIC accordingly to reduce the error. 2. Continue analysis. In this case case the program will upload the values stored in the file datafile.dat and will continue from the time at which the last analysis was stopped. 3. Analyzed output data. In this case the program print user friendly outputs. The program will read and filter the output data files (e.g. *.mtx) , and will show only the information that the user requires.
13
3. Output Files
Vertical profiles of excess pore water pressure (local and average in the radial direction in the case of vertical drains), effective vertical stress (local as well as the average in radial direction in the case of vertical drains) and settlement are computed by ILLICON, as a function of time. All this information will be saved in different output files. *: Name of the file for the analyzed case *.mtx : File containing pore water pressure, total and effective stresses for each node in the matrix. *.def: File that contains the settlement settlement for each node *.set: File that containts the surface settlements *.err. File that contains the error that occurred during the calculation process *.csn: File that contains the average degree of consolidation as a function of time *.dat: File that summarizes the input data in a user friendly fashion. datafile.dat: This file will be created to store the value of the variables at the end of the calculations. This enables the program to continue the analysis from the point at which it was stopped.
14
View more...
Comments