Iec 61215-1-2021

February 8, 2023 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Iec 61215-1-2021...

Description

 

IEC 61215-1 Edition 2.0

2021-02

INTERNATIONAL  STANDARD NORME  INTERNATIONALE  A * c o lo u r ins ide

T er r est est r i al pho t ovo l t ai c (P (P V) V) modul es - D e esi si gn q ual i f i ca catt i on and t ype appr appr o val -   Part 1: 1: Test requ irements Modul es ph ot ov ol t ai ques ( PV PV ) pour appl i cat i ons t er r est r es - Q ual i f i ca catt i on de l a  conception et homologation -   Partie 1: Exigences d'essai

 

IEC 61215-1 Edition 2.0

2021-02

INTERNATIONAL  STANDARD NORME  INTERNATIONALE

colour  ins ide

T er r est est r i al ph ot ovo l t ai aic c (P V) V) modul es - D e esi si gn q ual i f i ca catt i on and t ype appr oval -   Part 1: 1: Test requ irements Modul es phot ovol t a aii 'que 'ques s ( P V) V) pour appl i cat i ons t er r est r es - Q ual i f iicat cat i on de l a  c o n c e p t i o n e t h o m o l o g a ti ti o n -   Partie 1: Exigences d'essai

INTERNATIONAL ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 27.160

ISBN 978-2-8322-9367 -6

Warning! Make sure that you obtained this publication from an authorized distributor.  A tt e n ti o n ! V e ui lle z vo u s a ss u re r qu e vo u s av ez o b te nu ce tt tte e p u b lic a ti o n vi a un d is tr ib u te u r ag re ree. e.

® Registered trademark of the International Electrotechnical Commission Marque deposee de la Commission Electrotechnique Internationale

 

- 2 -

IE IEC C 6 1215-1:2021 ©   IEC 2021

CONTENTS

F O R E W O R D ......... .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ..........4 .4 IN T R O D U C T IO N ........ ................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ................. ............ .... 6 1

S co p e ......... .................. .................. .................. .................. .................. ................. ................. .................. ................. ................. .................. .................. .................. .................. ................. ................. .................. ......... 7

2

N or m at ive re fe re n c e s ........ ................. .................. .................. ................. ................. .................. .................. .................. .................. .................. .................. .................. .................. ...............7 ......7

3

Te rm s, def in itio ns and ab bre via te d te rm s ........ ............ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........9 ....9

4

T es t s a m p le s ......... .................. .................. .................. .................. .................. ................. ................. .................. ................. ................. .................. .................. .................. .................. ................. ........... ... 11

5

M ar kin g an d d o cu m e n ta ti o n ......... .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ................. ........ 13 5.1

N a m e p la te ......... .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ........... 13

5.2

D o cu m e n ta tio n ................. .......................... .................. .................. .................. .................. .................. ................. ................. ................. ................. .................. .................. ................13 .......13

5.2.1

M inim um re q u ir e m e n ts ......... .................. .................. .................. ................. ................. .................. .................. .................. ................. ................. ................ ....... 13

5.2 .2

Inf or m atio n to be give n in the d oc u m en ta tio n ........ ............ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ .......13 ...13

5. 2. 3

As se m bl y in s tr u c ti o n s .................. ........................... .................. .................. .................. .................. .................. .................. .................. .................. ................ ....... 15

6

T e s ti n g ........ ................. .................. .................. .................. .................. .................. ................. ................. .................. ................. ................. .................. .................. .................. ................. ................. ...............15 ......15

7

Pa ss c r it e r ia ........ ................. .................. .................. .................. .................. .................. ................. ................. .................. ................. ................. .................. .................. .................. .................. ............. .... 17 7.1

G e n e ra l............ l..................... .................. .................. .................. ................. ................. .................. .................. .................. .................. .................. .................. .................. .................. ................17 .......17

7.2

Po we r ou tp ut and ele ctr ic c ir c u it ry ........ ............ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ....... ....... ....... ....... ....... ....... ........ ....... ... 18

7.2.1 7.2.1

Identifi Identification cation of rated values and tole ran ce s ......... .................. .................. .................. .................. .................. .................. ........... 18

7.2 .2

V er ific a tio n o f ra te d lab el va lue s —> G at e No. 1 .... ........ ........ ....... ....... ........ ........ ........ ........ ........ ........ ........ ........ ........ ........20 ....20

7.2.3

Maximum power degrada tion during type approval testing -» Gate No. 2 ......... 23

7. 2. 4

El e ct ric al c ir c u it r y .................. ........................... .................. .................. .................. .................. .................. .................. .................. .................. .................. ...............23 ......23

7.3

V is ua l d e fe c ts ......... .................. ................. ................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ...............23 ......23

7.4

E le ct ric al s a fe ty ........ ................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ........... .. 23

8

M ajo r vis ua l d e fe ct s................. s......................... ................. .................. .................. .................. .................. .................. .................. .................. ................. ................. ................. .................24 .........24

9

R e p o rt ......... .................. .................. .................. ................. ................. .................. .................. .................. ................. ................. .................. ................. ................. .................. .................. .................. ...............24 ......24

10 M o d if ic a ti o n s ........ ................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ................. ................. ........... 25 11 T es t flo w and p ro c e d u re s ......... .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ............26 ...26  A n ne x A (i n fo rm a titive ve )

C ha ng es fr from om p re vi o u s e d it io n .................. .................................... .................................... .................................... .................. 28

 A.1

G e n e ra l....... l........................... ...................................... .................................... ...................................... ...................................... ....................................... ....................................... ..................... ... 28

 A .2  A .3

P ro ce d ur es fo r b if ac ia l m o d u le s ................... ..................................... .................................... ...................................... ...................................... ...................... .... 28 U se o f re p re se n ta titive ve s a m p le s ............... ................................... ...................................... .................................... ....................................... .............................30 ........30

 A .4

A d d ititio io n o f d yn a m ic m e ch an ic a l loa d t e s t .................. .................................... .................................... ....................................... .......................... .....31 31

 A .5

A d d ititio io n o f te st fo r p o te n tia ti a l in du ce d d e g ra d a ti o n ............... ................................... ...................................... .............................. ............ 31

 A .6

S im u la to r re q u ir e m e n ts .................. .................................... ..................................... ....................................... ...................................... .................................... .................... .. 33

 A .6.1

G e n e r a l..... l....................... ...................................... ...................................... ....................................... ....................................... .................................... ................................. ...............33 33

 A .6 .2

R at io n a le fo r ch a n ge s to sp e ct ra l re q u ir e m e n ts ............... ................................... ...................................... .......................3 .....34 4

 A .6 .3

R at io n a le fo r ch a n ge s to u n ififo o rm itityy re q u ir e m e n ts ................... ..................................... ................................... ................. 35

 A .7

R ef er e n ce s to re te st g u id e lilin n e s ............... ................................... ...................................... .................................... ...................................... ........................... ....... 36

 A .8

W e ig h t on ju n c ti o n b o x e s ................. .................................... ..................................... ...................................... ...................................... ................................... ................. 36

 A .9

C o rr ec titio o n to m o n o lilith th ic a lly -i n te g ra te d h o t- s p o t e n d u ra n ce t e s t ......... .................. .................. .................. ........... 36

 A .1 .10 0

N um be r o f m o d ul e s in s e q u e n c e .................. ........................... .................. .................. .................. .................. .................. .................. .................. ...............38 ......38

 A .1 1

R em ov al o f n om in al m od ul e o pe ra tin g te m p e ra tu re (N M O T ) ......... .................. .................. .................. ................ ....... 39

 A. 12

V e ry lo low w cu rr en ts d ur in g th in -f il m t e s t s .................. ........................... .................. .................. .................. .................. .................. .................. ........... .. 40

 A .1 .13 3

L im it by pa ss d io de te st in g to th re e d io d e s .................. ........................... .................. .................. .................. .................. .................. ............... ...... 40

 A. 14

R ev er t th e in su la tio n te s t to 20 05 v e r s io n .................. ........................... .................. .................. .................. .................. .................. ............... ...... 40

 A .1 .15 5

Be nd in ing g te s t........................ t................................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ............ ... 41

 

IEC 61215-1:2021 © IEC 2021  A .1 6

-3 -

S ta b ili za tio ti o n o p tio ti o n fo r bo ro n o xy ge n LI LID D (M Q T 1 9 . 3 ) ................... ..................................... ................................... ................. 41

B ib lio g ra p h y................ y......................... .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ........... 42

Figure 1 - Ge om etry tha t show s rad ius o f curvatu re o f a flexible m od ule .. .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ..10 10 Figure 2 - Full test flow for desi design gn qu alifi alification cation and type type ap proval of photovoltaic m o d u le s................ s......................... .................. ................. ................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ........... 17 Figure 3 - Examples of hypothetical partial nameplates (left column), datasheets (center column), column), and derived rat rated ed values and tolerances (right colu m n) ..................................... 20 Figure A.1 A.1 - Derived temperature coefficients (a) for ni nine ne different mc-Si products ty p e s ................. .......................... .................. .................. .................. ................. ................. .................. .................. .................. .................. .................. .................. .................. .................. .................. .................. ............... ...... 38

Ta ble 1 - Re qu ired co m po ne nt te s ts ........ ............ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ...... .. 17 Ta ble 2 - Su m m ary o f Gate No. 1 re q ui re m en ts ........ ............ ........ ........ ........ ........ ........ ........ ........ ........ ........ ....... ....... ....... ....... ....... ....... ........ ........ ........ ........17 ....17 Ta ble 3 - Su m m ary o f te st le v e ls ........ ............ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ .... 26 Table A.1 A.1 - Published un certainty val values ues as a ffunction unction of simulator u n iiff o rm rm i t y c l a s s ................ 35 Table A.2 - Summ ary of foil placement during insulation insulation test iin n three different ve rs io n s................ s......................... .................. .................. .................. .................. .................. ................. ................. .................. ................. ................. .................. .................. .................. ................. ................. ............ ... 40

 

-4 -

IE C 6 1 2 21 1 5 --1 1 ::2 202 21 1 ©   IEC 2021

INTERNATIONAL ELECTROTECHNICAL COMMISSION

TERRESTRIAL PHOTOVOLTAIC (PV) MODULES -   D E S IG IG N Q U A L I F IIC CATION AND TYPE APPROVA L Part 1: Test requirements

FOREWORD 1) The International Electrotechnical Com mission (IEC) iis s a worldwide worldwide organ ization ization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities. IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an internati international onal consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. 3) IEC Publications have the form of recom men dations for internationa l use and are accepte d by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publicati Publications ons transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication Publication and the corresponding national or regional publication shall be clearly indicated in the latter. 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. 6) All users should ensure that they have the latest edition of this publication. 7) No lliability iability shall attach to IEC or its directors, e mploye es, serva nts or agen ts including individua l experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. 8) Attention is drawn to co tthe he Normative references cited inon. this publicati publication. on. Use of the referenced publications publications is indispensable for the rrect application o f this publication. publicati 9) 9) At  At te nt io n is dr aw n to th e po ss ib ilit y th at so me of the ele m en ts o f th is IEC Pu bli ca tio n m ay be the subje ct patent rights. IEC shall not be held responsible for identifying any or all such patent ri rights. ghts.

of 

International Standard IEC 61215-1 has been prepared by IEC technical committee 82: Solar  photovoltaic energy systems. This second e dition of IEC 6121561215-1 1 cancels and replaces the first edition of IEC 61215-1, published in 2016: it constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: a)

Ad dition of a test taken from IEC TS 62782.

b) Ad dition of a test taken from IEC TS 62804-1. c)

Addition of test methods required for fflexible lexible modules. This includes the addition addition of the bending test (MQT 22).

d)

Addition of defi definitions, nitions, references and instructions instructions on how to perfor perform m the IEC 61215 design qualification qualification and type approval o on n bifaci bifacial al PV modules modules..

 

IEC 61215-1:2021 © IEC 2021

-5 -

e)

Clarification of the rrequireme equireme nts rel related ated to power output measurements.

f)

Addition of weights to junction box duri during ng 200 thermal cycl cycles. es.

g)

Requ irement tthat hat retesting be performed according to IIEC EC TS 62915.

h)

Removal of the nominal module operating test performance at NMOT, from the IEC 61215 series.

(NMOT),

and

associated

test

of

Informative Annex A explains the background and reasoning behind some of the more substantial changes that were made in the IEC 61215 series in progress progressing ing from edition 1 to edition 2. The text of this International Standard is based on the following documents: FDIS

Report on voting

8 2 /1 8 2 8 A /F D IS

8 2 / 1 8 4 8 /R V D

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table. This document has been drafted in accordance with the ISO/IEC Directives, Part 2.  A lis t o f all p ar ts in th e IE IEC C 61 21 5 se rie s, p u b lis h ed

u n d er th e g en er al tititltl e

Terrestrial  

p h o to vo l ta i c ( P V ) mo d u l e s - De si g n q u a l i ffii ca ti tio o n a n d typ e a p p r o va l, l,   can be found on the IEC

website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under " http://webstore.iec.ch " in the data related to the specific document. At this date, the document will be •

reconfirmed,



withdrawn,



replaced by a revised edition, or 



amended.

IMPO IMP O RTA NT - Th e ' co l o u r i n si d e ' l o g o o n th e co ve r p a g e o f th i s p u b l i ca ti o n i n d i ca te s th a t i t  co n ta i n s co l o u r s wh i ch a r e co n si d e r e d to b e u se fu l fo r th e co r r e ct u n d e r sta n d i n g o f i ts   co n te n ts. Use r s sh o u l d th e r e fo r e p r i n t th i s d o cu m e n t u si n g a co l o u r p r i n te r .

 

-6 -

IE C 6 1 2 1 5 - 1 : 2 0 2 1 ©   IEC 2021

INTRODUCTION W hereas Part 1 of this standards seri series es describes requirem ents (both in general and specific with respect to to device technology ), the sub-parts of Part 1 define technology variations and Part 2 defines a set of test procedures necessary for design qualification and type approval. The test procedures described in Part 2 are valid for all device technologies.

 

IE C 6 1 2 1 5 - 1 : 2 0 2 1 © I E C 2 0 2 1

- 7 -

TERRESTRIAL PHOTOVOLTAIC (PV) MODULES -   D E SI S I GN GN Q U A L I FI F I CA CA T I O N A N D T Y P E A P P R O V A L -   Part 1: Test requirements

1

Sco pe

This document lays down requirements for the design modules suitable for long-term operation in open-air modules so qualified will depend on their design, their which they are operated. Test results are not construed lifetime.

qualification of terrestrial photovoltaic climates. The useful se rvic rvice e lif life e of environment and the conditions under as a quantitative prediction of module

In clima tes wh ere 98 th perce ntile op erating tem pera tures e xceed 70 °C, use rs are recommended to consider testing to higher temperature test conditions as described in IEC TS 63126. Users desiri desiring ng qualification of PV products with lesser lifetim lifetim e e xpectations are recommended to consider testing designed for PV in consumer electronics, as described in IEC TS 631 63 (unde r deve lopment). Users wishing to gain confidence that the characteristics tested in IEC 61215 appear consistently in a manufactured product may wish to utilize IEC 62941 regarding quality systems in PV manufacturing. This document is intended to apply to all terrestrial flat plate module materials such as crystalline silicon module types as well as thin-film modules. It does not apply to systems that are not long-term applications, such as flexible modules installed in awnings or tenting. This document does not apply to modules used with concentrated sunlight although it may be utilized for low concentrator modules (1 to 3 suns). For low concentration modules, all tests are performed using the irradiance, current, voltage and power levels expected at the design concentration. This document does not address the particularities of PV modules with integrated electronics. It may however be used as a basis for testing such PV modules. The objective of this test sequence is to determine the electrical characteristics of the module and to show, as far as possible within reasonable constraints of cost and time, that the module is capable of withstanding prolonged exposure outdoors. Accelerated test conditions are empirically based on those necessary to reproduce selected observed field failures and are applied equally across module types. Acceleration factors may vary with product design, and thus not all degradation mechanisms may manifest. Further general information on accelerated test m ethods including definitions of terms terms may be found in IEC 62506. Some long-term degradation mechanisms can only reasonably be detected via component testing, due to long times required to produce the failure and necessity of stress conditions that are expensive to produce over large areas. Component tests that have reached a sufficient level of maturity to set pass/fail criteria with high confidence are incorporated into the IEC 61215 series via addition to Table 1. In contrast, the tests procedures described in this series, in IEC 61215-2, are performed on modules.

2

Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

 

IE C 6 1 12 21 15 5 --1 1 :2 :2 0 02 2 1 ©   IEC 2021

- 8 -

IEC 60269-6, Low-voltage fuses   - P a r t 6 : S u p p l e me n ta r y r e q u iirr e me n ts fo r fu se - l iin n ks fo r th e  p r o te ctio ctio n o f so l a r p h o to vo l ta i c e n e r g y syste ms IEC 60891, P h o to vo l ta ic ic d e vi ce s - P r o ce d u r e s fo r te mp e r a tu rre e a n d i r r a d iia a n ce co r r e cti ctio o n s to   me a su r e d l - V c h a r a cte r isti istics cs IEC 60904-1, P h o to vo l ta i c d e vi ce s   -

P a r t 1: Me a su r e m e n t o f p h o to vo l ta i c cu r r e n t- vo lta lta g e  

characteristics

IEC TS 60904-1-2:2019, P h o to vo l ta i c d e vi ce s - P a r t 1 --2 2 : Me a su r e me n t o f cu r r e n t-vo t-vo l ta g e   cha racteristics of bifacial pho tovo ltaic (PV) devices IEC 60904-3, P h o to vo l ta ic ic d e vi ce s P a r t 3 : Me a su r e me n t p r i n ci p le le s photovoltaic (PV) solar devices with reference spectral irradiance data

fo r

te r re re str i a l 

IEC 60904-10, P h o to vo l ta ic ic d e vi ce s - P a r t 1 0 : Me th o d s o f l in in e a r d e p e n d e n ce a n d l iin n e a r i ty   me a su r e me n ts

IEC TS 60904-13, P h o to vo l ta i c d e vi ce s -

Part

1 3: 3: E l e ctr o llu u mi n e sce n ce

o f p h o to vo l tta a i c 

mo d u l e s

IEC 61140,

P r o te ctio ctio n

a g a i n st

e l e ctr ctrii c

sh o ck

-

Co mmo n

a sp e cts

fo r

iin n sta l la la ti o n

and  

e q u i p me n t

IEC 61215-2, Terrestrial photovoltaic (PV) modules  - Design q ualifi ualification cation an d type approva l -   Part 2: Test procedures IEC 61730-1,

P h o to vo l ta i c ( P V) V) mo d u l e

sa fe ty q u a l i fi fi ca ti tio on -

Part

1: Re q u i r e me n ts fo r  

construction

IEC 61730-2, P h o to vo l ta i c ( P V ) mo d u l e sa fe ty q u a l i fica fica ti o n - P a r t 2 : Re q u i r e me n ts fo r te sti stin ng IEC TS 61836, S o l a r p h o to vo l ta i c e n e r g y syste ms - Te rms, rms, d e fi n iti itio o n s a n d symb o l s IEC 61853-1, P h o to vo l ta i c ( PV PV ) mo d u l e p e r fo rrma ma n ce te sti stin n g a n d e n e r g y r a ti tin ng Ir ra ra d i a n ce a n d te m p e r a tu re re p e r fo r ma n ce me a su r e m e n ts a n d p o we r ra ra ti tin ng

P a r t 1: 

IEC TS 62782, P h o to vo l ta i c (P (P V ) mo d u l e s - Cycl i c ( d yn a ami mi c) m e ch a n i ca l lo lo a d te sti stin ng IEC 62790, Ju n cti o n b o xe s fo r p h o to vo l ta i c mo d u l e s  - S a fe ty r e q u i re re me n ts a n d te st sts s IEC TS 62804-1, P h o to vo l ta i c ( P V ) mo d u l e s -

Te st me th o d s fo r the the d e te cti o n o f p o te n ti a ll--  

induced deg radation - Part 1: Crystalli Crystalline ne silicon

IEC 62852, Co n n e cto rs rs fo r DC - a p p l ica ica ti o n i n p h o to vo l ta ic ic syste ms - S a fe ty r e q u ir ir e me n ts a n d   tests

IEC TS 62915, Pho tovoltaic (PV) modu les - Type approval, design and safety qualification qualification -   Retesting

IEC 62941,

Te r r e stri stri a l

ma n u fa ctu r i n g

p h o to vo l ta i c

(PV)

mo d u l e s

-

Q u a l i ty

syste m

fo r

PV

mo d u le le  

 

IE C 6 1 2 1 5 - 1 : 2 0 2 1 © IE C 2 02 1

- 9 -

IE EC C TS 6316 63 3 : - 1Te r r e str ia ia l p h o to vo l tta a i c ( P V ) mo d u l e s fo r co n su me r p r o d u cts -

De si g n 

qualification and type approval

ISO/I EC Guide 98-3, Un ce r ta i n ty o f me a su r e m e n t u n ce r ta i n ty in in me a su r e m e n t ( G UM:1 9 9 5 )

3

P a r t 3 : G u i de de to th e e xp r e ssio ssio n o f  

Terms, defin itio ns and abbr eviated terms

For the purposes of this document, the terms and definitions in IEC TS 61836 apply, as well as the following. ISO and IEC m aintain terminological databases for use iin n stand ardization at the following addresses: •

IE IEC C Electropedia: available at http://www.elec tropedia.org/



ISO Online browsing platform: available at http://www.iso.org/obp

3.1 bins of p ower classes

power (typically maximum power) sorting criteria from the PV module manufacturer  3.2 tolerances

value range of electrical parameters on the label of the PV module as given by the manufacturer  3. 3.3 3  M QT

Module Quality Test 3.4 type approval

conformity test made on one or more items representative of the production [SOURC E: IEC 60050-581:2008, 58 1-21-08 - Type ttest) est) 3. 3.5 5 reproducibility

closeness of agreement between the results of measurements of the same value of a quantity, when the individual measurements are made under different conditions of measurement: -

princ principl iple e of meas urement urement,,

-

method of meas urement urement,,

-

obs erv erver, er,

-

meas uri uring ng instrument instrumentss ,

-

refer referenc enc e s tan tandards dards ,

-

labor laborator atoryy ,

1

Under preparation. Stage at the time of publication: ADTS.

 

-10-

IE IEC C 6 1215-1:2021 ©   IEC 2021

under conditions of use of the iinstruments, nstruments, different from those those customarily used,

after intervals of time relatively long compared with the duration [consistent with the International V ocabulary of Metrology (VIM), 3.7] Note 1 to entry: The concepts of "princi "principle ple of measurem ent” defined in VIM 2.3 and 2.4. Note 2 to to entry:

of ofa asingle measurement,

and "method of measurem ent" are

respectively

The term "reprodu cibili cibility" ty" also appli applies es to the instance where only certain of the the above conditions

are taken into account, provided that these are stated. Note 3 to to entry: It iiss recommended that laboratories determine their reprod ucibility ucibility according to the formulas formulas and principles in ISO 5725-2.

[SOURCE: IEC 60050-311:2001, 311-06-07] 3.6 flexible module

PV module that exhibits a radius o f curvature o f 500 mm or less in at least one direction according to the manufacturer’s specification and is capable of bending to conform to a flat or curved surface Note 1 to entry:

A curved module with a rigid shape iis s not cons idered a flexible mod ule.

Note 2 to entry: Radius of curvature is defined as shown in Figure 1. During testing, the app lied radius of curvature is no smaller than that specified by the m anufacturer.

Figure 1 - Geometry that shows radius of curvature of a flexible mod ule 3.7 representative sample

sample that includes all the components of the module, except some repeated parts Note 1 to entry: Clause 4.

The repre senta tive samp les shall use all all key ma terials and subassem blies, as detailed in

3.8 very large module

module that exceeds the size of standard 2,2 m * 1,5 m commercially-available simulators Note 1 to entry: entry: A very lar large ge module exceeds 2,2 m in length or width, or exceeds 1,5 m iin n both dimensions. Thus a 3 m x 0.3 m module is considered very large, as is a 2,2 m * 2,2 m module. Note 2 to entry: Very large modules are exempt from class A simulator spatial spatial irradiance uniformity requirements, as detailed in IEC 61215-2 MQT 02. Note 3 to entry: entry: During test sequences representative samples may be substituted for very lar large ge m odules, within within the limits described in Clause 4. Note 4 to entry: In future ed itions, the size threshold to be considered a very large module will likely increase to larger dimensions.

3.9 bifacial PV modules

modules that can convert irradiation received on both the front-side and rear-side into electric energy by means of the photovoltaic effect

 

IE C 6 1 2 1 5 - 1 : 2 0 2 1 © I E C 2 0 2 1

- 1 11 1 -

3.10 bifaciality coefficients ratios between the I- V   characteristics of the rear-side and the front-side of a bifacial module

each m easured under Standard T est Cond iti itions ons (STC - IEC TS 61836), nam ely tthe he shortcircu it curre nt b ifac iality co effic ien t max(NP) derived from the datasheet is different than that on the nameplate, the module shall be judged as not satisfying 5.2.2 and thus does not meet the requirements of IEC 61215-1.

 

IEC 61215-1:2021 © IEC 2021

-19-

The tolerance, /1t is the tolerance in % for Pmax stated on the nameplate and datasheet, as required by 5 5.1 .1 i) and 5.2.2a ). If the toleran ce is asymm etric abo ut ^ max(N x(NF F>)« the toleran ce referring to the low pow er limit shall be utilized as ^ . If the toleran ce is not st stated ated on the namep late or is not stated on the datashee t, then / 1 = 0 0.. If tolerance is not rreduced educed to a single value on the nameplate or data sheet (for example, if multiple tolerances or measurement uncertainty components are specified) the smallest number, not a combination of multiple numbers, shall be utilized. Formulas (3) and (4) verify, for safety reasons, that the module does not produce more voltage at open circuit, or current at short-circuit, than the maximum indicated by combining the nameplate rating and tolerance. The maximum open circuit voltage ^0C(NP) and maximum sho rt-circuit curre nt /S /SC C(NP) are those spe cified on the na me plate. If a range for ope n-circu it voltage s or sho rt-circu it currents is st stated ated on the nam eplate, ^0 ^0C C(NP) or /S /SC C(NP) is to be taken as the highest value in that range. The tolerance (/2 for open circuit voltage, or /3 for shortcircuit current) is that specified on the nameplate and in the product documentation, as required by 5.1g), 5.1 h), and 5.2.2 c). If t2  (or /3) is asym m etric a bo ut K0C(NP) (or /S /SC C(NP )), the tolerance referring to the higher end of the range shall be utilized. If t2  or /3 is not stated in the documentation and on the nameplate, that tolerance shall be identified as 0. In the case that K0C(NP), / SC(NP), or the tolera nce s in these q uan tities are d ifferen t when de rived from the datasheet than from the nameplate, the module shall be judged as not satisfying 5.2.2 and thus does not meet the requirements of IEC 61215-1. If a tolerance is not reduced to a single value on the nameplate or data sheet (for example, if multiple tolerances or measurement uncertainty components are specified) the smallest number, not a combination of multiple numbers, shall be utilized. Figure 3 shows partial nameplates, datasheets, and derived values for four hypothetical products. These examples illustrate the rules for identifying rated values and tolerances that were described in the preceding subclauses.

 

-

Product Z300W Maximum power { P ^ )

300 W ±3%

20-

IEC 61215-1:2021 ©   IEC 2021

Product 2 series Electrical Data at STC Peak power watts ±3 % - /' (1M(W)

Maximum Maximu m power voltage (F^ )

37 V

Maximum power voltage - »'^ (V)

300 37

305 37.2

310 37.5

Maximum power current (7„J

8.1 A

Maxim um po power curre nt ((7 7^,) (A)

8.1

82

8.27

Open circuit circuit voltage1(K J

45.9 V

Short circuit current* (/K)

8.9 A

Ma axxi mu mu m DC ssyy sstt em em vvo ol ta ta ge ge

1 0 00 00 V

Open circuit voltage" -

45.9

45,9

45.9

Short circuit current* - Ix  (  (A A)

(V )

8.9

8.92

8.98

Module efficiency -

14

14.2

14.4

(%)

^ (N (NP) P) = 3 300 00 W: /, = 3 % »'K (NP) = 45,9 V; i,  = 5 % /k (N (NP) P) = 8.9A ./, = 5%

tS % /-0 % ttole oleran rance ce on / and »' »'

1+5 % / - 0 % tolerance

Product X series Electrical Data at STC

Product X300W Manm um power ( / >niM) Maxim um um po pow e err vvo olt ag ag e ( F ^) ^)

29 6 t o 300 W 37 V

Maxim um um po pow e err cu cu rrrre n ntt (7 (7 ^^))

8.1 A

Open cciir cuit voltage* (l (l '„'„ ) Short circuit current* ( /K)

4 5 .9 V 8. 9 A

Ma axx « «n nu um mD DC C sy sys te tem v ol ol ta tag e

1 0 00 00 V

Peak Peak pow power er wat watts* ts* - ^ ( W ) Ma axxi mu mu m po we we r vo lt ag ag e - J’^ f V ) Maximum power current (7„J (A) Open circuit voltage* - Vm (  (V V) Short orcwt current* current* - lv  (  (A A) Module efficiency - rjm(%)

296 to 301 to 306 to 300 305 310 37 37.2 37.5 8,1 45.9 8, 9

8.2 45. 9 8.92

8.27

14

14.2

14,4

305

310

45,9 8,98

^ (N (NP) P) = 2 296 96 W; /, = 0 % Vm (NP) = 45.9 V; r2= 4 %   A* (NP) = 8.9 A; /, = 4 % If /, is not specified, it is taken to be 0.

* 14 % production tolerance

1±4 % productio n tolerance

Product Y series Electrical Data at STC

Product Y300W Maximum Maximum power power ( f ^ )

300 W ±3 % / -0

Maximum pow er voltage ( Maximum p po ow er current ( / ^ Op e en n cciircui t vo lt ag ag e * b (1 (1'^) Short circuit c urrent **■ (/m)

3C0

37 V 8.1 A 45 5.. 9 V

Maximum power power curr current ent (/ ^) (A) Open circuit voltage * b• Vx  (V)

8.1 45.9

8.2 45.9

8,27 45,9

Sh o orrt c ircu it ccu u rrrre n ntt * “ - / „ ( A A))

8, 9 14

8.92 14.2

8,98 14,4

89 A

Ma axxi mu mu m DC sy sy sstt em em vvo o lt ag ag e

Peak power watts - P ^ ( W ) Power output toleranc e (%) Maximum power voltage - J ' ^^ff V V))

1 0 00 00 V

* ±2 % measurement uncertainty

Module efficiency - n„  (%)

■0 0// + +3 3 - 0/ 0/ + 3 - 0 //+ +3 37 37.2 37.5

(NP) = 300 W; /, = 0 % VK  (NP) = 45.9 V; r2= 2%

 Ac (NP) = 0.9 A: / j = 2 % t3 is not reduced to a single

value. Thus, the smaller value is chosen chosen The same situation exists for t3 t3..

* ±2 % measurement uncertainty

• ±10 % tolerance tolerance on /„ and Vx

*•HO % tolerance on Ix  and

Product T300W

Product T series Electri cal Data at STC

Maximum power ( P ^ )   Power  selection  selection (±5 W) Max Max imum m um p po o we we r v olt olta a ge ge ( T^)

300 W

Maximum power current (/^J Open circuit voltage ( 1^ 1^ ) Shor t circuit cu current (7 (7k )

8.1 A 4 5 .9 V 8. 9 A

Open circu it voltage* - r K ((V V)

Ma Maxi ximum mum DC sy syst stem em volt voltag age e ±3 % tolerance on Ix ,

1000 V

Module efficiency - ijn (%)

37 V

Peak power watts* (W) Maximum pow er voltage - r ^ ((V V)

300 37

310 37.5

Maximum power current (1 ^  (  (A A)

8,1

8.27

45. 9

45. 9

8, 9

8.98

14

14.4

Short a r c u it curre nt* -

(A)

Farts to meet requirements of IEC 61215-1 5.2.2. low er edge of power bin is 295 W on nameplate, but is 300 W on datasheet

* ±3 % tolerance on P ^ , I K K,, ^ IEC

F i g u r e 3 - E x a m p l e s o f h y p o t h e t i c a l p a r t i a l n a m e p l a t e s ( le l e f t c o l u m n ) , d a t as as h e e t s ( c e n t e r   column), and derived rated values and tolerances (right column) 7 .2 .2 .2

V e r i f i ca t i o n o f r a te d l a b e l va l u e s —> G a te No . 1

 All  A ll m od ul e s sh a ll be st a b ililiz iz e d fo llo w in g m et h od MQ T 19.1 fr om IE C 61 21 5- 2 :2 0 21 (f or technology specific requiremen ts, see sub-pa rts of IEC 61215 -1). After stabilization the mo dules shall be m easured in acco rdan ce with M QT 6. 6.1 1 (/ >max( max(Lab Lab )) and shall meet the foll following owing criteri criteria: a: /' /'max max verification : Each individual module shall meet the following criterion:

Pmax(La h)   X ( l +  

> PmaA N P )   x ( l - j ^ )

( 1)

 

IE C 6 1 2 1 5 - 1 : 2 0 2 1 © IE C 2 02 1

-2 1 -

where (Lab)

is the measured maximum power at STC of each module in the stabilized state;

(NP)

is the minimum rated nameplate power of each module without tolerances;

P  m a x

/'max

'"1

is the measurement uncertainty in % of laboratory for Pmax (expanded combined uncertainty (k=2), ISO/IEC Guide 98-3); the factor 1,65/2 is used to convert the confidence intervals from from tw o-sided to one -sided at 95 % level of confidence; m shall include a component from spectral mismatch, based either on measured spectral response or the worst-case possibility for a given technology type; m -j shall be less than stated in the tech nolo gy sp ecific parts of this standards series;

^

is the m anufa cturer’s rate rated d lower tolerance in % for

Pmax.

F o r ,Pmax(Lab) ,Pmax(Lab)   the following criterion shall apply:

Pn a x { l a b )   x ( l

+ ^

> Pm a x (N (N P )  

(2 )

where Pmax(Lab )

is the arithmetic average of the measured maximum S STC TC power of the modules in stabilized condition.

For multiple bins of power classes this formula has to be applied to each power class under investigation. NOTE Formula (2) iis s not intended intended for power verifi verification cation of a batch iin n mass production as systematic dif differences ferences between different labs and reference devices are unavoidable. In such cases, formula (1), which includes the relevant uncertainties, better d escribes the application application to average values.

VO VOC C ve rifi rification: cation:

Each individual module shall meet the following criterion:

Ifc O a b ) x ( l +

< IU N P) x (

where vo c   (Lab)

is the measured maximum ^o c of each module in the stabilized stabilized sstate; tate;

»OC (NP)

is the maxim um rated nam eplate v o c   of each module without tolerances;

m2 

t2 

is the measurement uncertainty in % of laboratory for V O C ’  (expanded uncertainty (k=2), ISO/IEC Guide 98-3); the factor 1,65/2 is used to convert the confidence intervals from two-sided to one-sided at 95 % level of confidence; is the ma nufacture r’s rated upper tolerance in % for ^oc-

If Voc  cannot be measured due to module-integrated electronics (such as MOSFETs), the module is exempt from the Voc  verification requirement. This exemption shall be noted in the test report. Voc  shall not be determined by any means other than direct measurement, such as extrapolation. /sc verification:

 

-22-

IE C 6 1 2 1 5 - 1 : 2 0 2 1 ©   IEC 2021

Each individual module shall meet the following criterion:

/sc(La b ) x

(4)

where ^sc (Lab) / SC

(NP)

is the measured maximum I s c   of each module in the stabilized state; is the maximum rated nameplate I s c   of each module without tolerances: is the measurement uncertainty in % of laboratory for I s c \  (expanded uncertainty (k=2), ISO/IEC Guide 98-3); the factor 1,65/2 is used to convert the confidence intervals ffrom rom tw o-sided to one-sided at 95 % level of confidence: is the manufacturer’s rated upper tolerance in % for I s c .

If /sc cannot be m easured due to m odule-integrated e lectronics (such as MO SFETs), the module is exempt from the /sc verification requirement. This exemption shall be noted in the test report. /sc shall not be determined by any means other than direct measurement, such as extrapolation. /\nax verification of lowest power class: Each individual module that is used for the qualification of low end power classes shall meet, in addition to the previous stated criteria for P max, Vo c   and /sc, the following criterion relating to an upper power limit:

(5)

where Pmax4 (Np) is the maximum rated rated nam eplate power of each lowest power class module, without tolerances; is the manufacturer’s rated upper tolerance in % for Pmax4(NP). i A  is selected subject to the same rules as for /1 (see Figure 3), except that if the tolerance is asymmetric about /,maX4 (NP)> the tolerance referring to the high power limit shall be utilized. The last criterion ensures that the modules of the lowest power class stay within the upper tolerance of that class. The last criterion is only applicable for the qualification of the lowest power class. It ensures that a module manufacturer can make modules in the lowest power class that are free from major flaws, and thus the lowest power class is not used as a repository for damaged modules after qualification is obtained using severely underrated modules. For bifacial modules, Pmax,  /sc, and Voc  shall each be measured at the two irradiances specified in 5.1. The Gate No. 1 criteria for Pmax Pmax,, /sc, and Voc  shall be applied at both irradiances.  A sy st e m a tic ti c va ri ria a tio n to e it h e r hi g he r or lo w e r ou tp u t p ow er o r b if a c ia lility ty co e ff ic ie n t w ill be stated in the final report.

 

IEC 61215-1:2021 © IEC 2021 7 . 2. 2. 3

-

23-

M a x i m u m p o w e r d e g r a d a t i o n d u r i n g t y p e a p p r o v a l t e s t i n g —> —> G a t e N o . 2

 At th e en d o f ea ch te st se qu en ce or fo r se qu e nc e B a ft e r b yp a ss d io d e te st , th e m ax im um power output drop of each module Pmax  (Lab_GateNo. 2) shall be less than 5 %, referenced to the module’s initial measured output power Pmax (Lab_GateNo. 1). Each test sample shall meet the following criterion:

Pmax( L a b _ G a t e N o . 2 ) > 0 ,,9 9 5 X Pmax ( L a b .G .G a t e N o . 1 ) • ( l - ^ )

(6)

The reproducibility /• in % shall be determined for Pmax and shall be used in the formula. The reproducibility shall be less than or equal to that stated in the technology specific parts of this standards series. The reproducibility /• is verified by comparing the control module(s) from sequence A after initial stabilization (beginning of the test) and after final stabilization (end of tests from sequence B to E). The second test shall be performed after completing all tests. The following applies: a) All modules from sequ ence s B (after MQT 18.1), C, D and E are measu red toge ther with one control module from Sequence A. b)

If a) cannot be use used d due to test fl flow ow (different completion time of sequence or ccustomer ustomer requests restrictions) the following applies: For each sequence B (after MQT 18.1), C, D and E one control module from sequence A shall be defined. The control module is stabilized and measured together with the modules from the applicable sequence B (after MQT 18.1), C, D or E. For each determined value r   the requirement for r   shall be fulfilled.

The reproducibility parameter r is not equal to the total measurement uncertainty of MQT 06.1. It is advisable that the same solar simulator is used for Pmax (Lab_Gate No. 1) and Pmax (Lab_Gate No. 2). If the measured /- exceeds the technology specific limit for the control module the laboratory needs to check with its own internal reference module(s) whether the test equipment is faulty, or the module under test is responsible for the poor reproducibility, or it is not in a stable state after applied procedure MQT 19.1. If all checks confirm the measurement equipment is performing correctly, this indicates that the control module has drifted by more than the technology sp ecific li limit. mit. In this case, proceed by usin using g the techn ology sp ecific li limit mit for r. For bifacial modules, Gate No. 2 shall each be assessed only at the larger irradiance (BNPI) spe cified in 5.1 g). 7 . 2. 2. 4

Electrical circu itry

Samples are not permitted to exhibit an open-circuit during the tests. 7 ..3 3

Visual defects

There is no visual evidence of a major visual defect, as defined in Clause 8. 7.4

a)

Electrical safety

The insulati insulation on test (MQT 03) requirem ents are met at the beginning and the en end d of eac each h sequence.

b) The wet leakage current ttest est (MQT 15) requirements are met at the beginning and the the end end of each sequence. c)

Specific requirements of the iindividual ndividual ttests ests are met.

 

-24-

8

IE C 6 1 2 1 5 - 1 : 2 0 2 1 ©   IEC 2021

Major visu al defects

The purpose of the visual inspection is to detect any visual defects that may cause a risk of reliability loss, including power output. In some instances more detailed inspection may be required to finally decide if major visual defects e xist or not. For the purpose of design qualification and type approval the following observations are considered to be major visual defects: a)

Broken, cr cracked, acked, or torn external surf surfaces. aces.

b) Bent or misaligned external surfaces, including superstrates, substrates, frames and  ju n c ti o n bo xe s to th e e xt e n t th a t th e o pe ra tio ti o n o f th e PV m od ul e w ou ld be im p ai re d . c)

Bubbles or delam inations forming a continuous path between electric circuit and the the edge of the module.

d)

If the mech anical iintegrity ntegrity depends on lamination or other means of adhesion, adhesion, the sum sum of the area of all all bubbles shall not exceed 1 % of tthe he total module area.

e)

Evidence of any molten or burned encapsulant, backsheet, frontsheet, diode or act active ive PV component.

f)

Loss of mechanical integrity to tthe he extent tthat hat the iinstallati nstallation on and operation of the module

g)

would be impaired. Cracked/broken cells whic which h can remove m ore tha than n 10 % of the cell’s photovoltaic act active ive area from the electrical circu it of the PV m odule.

h) Voids in, or vi visible sible corrosion of any of the layers of the active (live) (live) circuitry of the module extending over more than 10 % of any cell. i)  j)

Broken interconnections, joints or terminals. A ny s h o rt -c ir ircc u itite e d liv e p ar ts o r ex po se d liv e e le ct ri rica ca l pa rts .

k)

Module m arkings (l (label) abel) are no llonger onger attached or the information is unreadable.

9

Report

Following type approval, a report of the qualification tests, with measured perform ance characteristics and details of any failures and re-tests, shall be prepared by the test agency. The shall contain the detail specification for the module. Each test report shall include at leastreport the following information: a)

a title;

b)

name and address of the test llaboratory aboratory and location where the test testss were carri carried ed out;

c)

unique iden tification of the report and of each page;

d)

name and addr address ess of client, where appropriate;

e)

des cription and iden tification of the iitem tem tested, including indica tion if iitt has evaluated for bifaciality and/or w hether it is is has been evaluated asa asa flexible module;

f)

characterization and condition of the test item; item;

g)

date of receipt of test it item em and date(s) of test test,, where appropriate;

h)

identification of test methods used used;;

i)

reference to sampling procedure, where re relevant; levant;

 j)

bee been n

an y d e vi a titio o n s fr om , a d d ititio io n s to , o r e xc lu si o n s from fr om , th e te st m et ho d an d an y o th e r information relevant to specific tests, such as environmental conditions, or the irradiation dose in kWh/m2 at which stability is reached;

 

IEC 61215-1:2021 © IEC 2021 k)

25-

mea surements, examina tions an and d derived resul results ts supported by tables, graphs, sketches and photographs as appropriate including: -

I)

-

tempe rature coefficients of sho rt-circuit current, open-circuit voltage an and d peak power, power at STC and low irradiance,

-

bifaciality coefficients at STC a and nd llow ow ir irradiance radiance (for bifaci bifacial al modules),

-

the maxi maximum mum shaded ccell ell tempe rature observed duri during ng tthe he hot-spot endurance test,

-

spectrum of the llamp amp used for the UV preconditioning ttest, est,

-

mounting method(s) util utilized ized iin n the static mecha nical load test, test,

-

the positive/negative test lloads oads and tthe he safety factor ym used in the static staticmechanical mechanical load test,

-

hail ball diame ter a and nd velocity us used ed iin n the the hail test,

-

maximum power lloss oss observed after all of the tests,

-

for flexible modules, the di diam am eter of the cyl cylinder inder over which the module was be bent nt during performance of MQT 22, and

-

conditions of potential induced degrada tion (PI (PID) D) ttest est ((MQT MQT 21) includi including ng applied rrated ated system voltage, polarities, and mounting configuration;

-

choice of test method where procedures allow more than one oneoption option (e.g. (e.g.Method Method B in MQT 18.2; final stabilization method in MQT 19.2, etc.)

-

if open -circuit voltage, short-circuit current, or associated ttem em perature coefficients cannot be measured due to module-integrated electronics, these quantities shall be reported as "not measurable due to module-integrated electronics." Any resulting exem ptions from Gate 1 requiremen ts on /sc or Voc  shall also be noted.

A or 

any failures observed an and d any rretests etests performed;

m) a representation of the markings of the module type including manufacturer's power tolerances; n)

the ttest est lab na name me and date, for each compo nent qualification required in Table 1;

o)

a sum ma ry of results from all pass criteria defined in Clause 7 in abso lute and relative change. If tenden cies to either higher or lower values are observed this has tto o be incl included uded in the report. The used stabilization procedure (irradiance, temperature, time) needs to be stated in detail;

p)

a st statem atem ent of tthe he estimated u ncertainty of tthe he test results (where relevant); state the reproducibility r   from the control module that is used for Gate No. 2.

q)

a signature and tit title, le, or equivalent identifi identification cation of the person(s) accepting accepting res pons ibility ibility for the content of the report, and the date of issue;

r)

where relevant, a statement to tthe he effect that the results rrelate elate only to tthe he items tested; tested;

s)

a st statem atem ent that the report shall not b be e reproduced e xcept in ffull, ull, without the writt written en approval of the laboratory.

10 Modifications Changes in material selection, components and manufacturing process can impact the qualification qualificati on of tthe he m odifi odified ed product. Retesting shall be performed according to IEC TS 62915. The recommended test sequences have been selected to identify adverse changes to the modified product. During retesting, tests that are performed on representative samples do not need to be repeated if the only change to a product is one of size, and the change in product size still allows use of the same representative sample size already tested.

 

-26-

IE IEC C 6 1215-1:2021 ©   IEC 2021

The number of samples to be included in the retesting program and the pass/fail criteria are to be taken from the relevant clauses/subclauses of this document.

11 Test flow and procedur es For design qualification and type approval the following test flow and procedures apply. Table 3 summarizes the different tests. The full test flow is given in Figure 2. A description of the tests and test procedures is given given in IEC 61215 -2:2021. T echno logy-relevant differences are described in the respective technology specific part of this standards series. T a b le le 3 - S u m m a r y o f t e s t l e v e ell s T es t

S u b c l a u s e i n  IEC 61215-   2:2021

Title

T es t c o n d i t i o n s

M Q T 01

4.1

V i s u a l i n s p e c t io n

S e e l i s t o f m a j o r v i s u a l d e f e c t s in C la u s e 8

M Q T 02

4.2

Maximum power determination

See IEC 60904-1 for monofacial modules and IEC TS 60904-1-2 for bifacial modules

MQT 03

4. 3

I n s u la t i o n te s t

T e s t le v e ls v a r y b e t w e e n 50 50 0 V mi min im u m an an d 1,35 x (2000 + 4 x Fsys) maximum depending on system voltage, module class, and presence of cemented joints. See MQT 03 procedure for further detail.

MQT 04

4.4

M e a s u re m e n t of

See IEC 60891

temperature coefficients

See IEC 60904-10 for guidance

P e r fo r m a n c e a t S T C

C e l l t e m p e r a t u r e o f 2 5 °C a t S T C

MQ T 06.1

4.6

Irradianc e: 1 000 W/m 2 (and BNPI, for bifacial m odules) with IEC 60904-3 reference solar spectral irradiance distribution Requirements see Clause 7

MQT 07

4.7

P e r f o r m a n c e a t lo w irradiance

Cell temperature: 25 °C Irradiance: 200 W/m 2 with IEC 60904-3 reference solar spectral irradiance distribution distribution

M Q T 08

4.8

O u t d o o r e x p o s u r e te s t

6 0 k W h /m 2 t o t a l s o la r i r r a d i a t i o n

M Q T 09

4.9

H o t - s p o t e n d u r a n c e te s t

E x p o s u r e t o i r r a d i a n c e in w o orr s t - c a s e h o t - s p o t c o n d it io n a s per the technology specific part and IEC 61215-2. For mon ofacial mod ules, irradiance is 1 000 W/m2. For bifacial modules the irradiance is BSI.

M Q T 10

4.1 0

U V p rre eco on n d iitt iio o n iin ng

15 k W h /m /m 2 t ot ot al al UV UV ir ir rra a d iia a ttii o on n i n t he he w wa ave ell e en n g tth h rra an ng ge from 280 nm to 400 nm, with 3 % to 10 % UV irradiance in the wavelength range from 280 nm to 320 nm, at a module temperature of 60 °C. For bifacial modules, exposure is repeated on the rear side.

MQT 11

4.11

T he he rrm m a l c yyc c lilin g te te s t

5 0 ( Se Se q u ue en nc c e C) C) or or 2 20 0 0 ( Se Se q ue ue n nc c e D) D) cy cy cl cl e es s fr fr o om m - 4 0 °C to +85 °C with current as per technology specific part up to +80 °C, with 5 N weight hanging from the junction box.

M Q T 12

4 .1 2

H u m id it y f r e e z e te s t

10 c y c le s f r o m + 8 5 ° C , 8 5 % R H t o - 4 0 °°C C with circuitry con tinuity monitoring monitoring

M Q T 13

4.1 3

D a m p h e a t te s t

1 0 0 0 h a t + 8 5 °C , 8 5 % RH

M Q T 14

4 .1 4

R o b u s tn e s s o f termination

Test of junction box retention and cord anchorage.

M Q T 15

4.1 5

W e t le a k a g e c u r r e n t test

Test voltage increase at a rate not exceeding 500 V/s to 500 V or the maximum system v oltage for the m odule, odule, whichever is greater. Maintain the voltage at this level for 2 min. Solution temperature is (22 ± 2) °C.

M Q T 16

4 .1 6

S t a t i c m e c h a n i c a l lo a d

Three cycles of uniform load specified by the

test

man ufactu rer, app h toPa front and back surfaces in turn. Minimum test lied load:for2 1400

M Q T 17

4.1 7

H a il te s t

I c e b a ll im p a c t d i r e c t e d a t 11 l o c a t i o n s . R e q u ir e d m in im u m ice ball diameter of 25 mm and speed of 23,0 m/s.

M Q T 18

4.1 8

B y p a s s d io d e t h e r m a l test

MQT 18.1: Bypass diode thermal test:

 

IEC 61215-1:2021 © IEC 2021 T es t

S u b c l a u s e i n  IEC 61215-   2:2021

-

27-

Title

Tes t c o n d i ti o n s

1 h at

Isc   and

75 °C

1 h at 1,25 times

I3C and

75 °C

MQT 18.2: Bypass diode functionality test  At 25 °C pe rf or m vo lta ge an d cu rr en t m ea su re m en ts For bifacial modules, /sc in the conditions above is that measured at elevated irradiance BSI. M Q T 19

4.1 9

S t a b il iz a t io n

T h r e e c o n s e c u t iv e o u t p u t p o w e r m e a s u r e m e n t s P i, P?  and P3  using MQT 02. STC output power is determined using procedure MQT 06.1.

M Q T 20

4.2 0

C y c l ic ( D y n a m ic ) Mechanical load test

IEC TS 62782

Potential induced degradation test

IEC TS 62804-1

B ending ending test - for flexible modules only flexible

25 cycles rolled up (without damage) around a cylinder with a diameter specified by the module manufacturer over which the flexible modules can be bent

M Q T 21

M Q T 22

4 .2 1

4 .2 2

1 000 cycles at 1 000 Pa

+85 °C, 85 % RH at maximum system voltage for 96 h

 

IE IEC C 6 1215-1:2021 ©   IEC 2021

-28-

 A n n e x A

(informative) Changes from previous edition  A.1

Gen er al

This anne x is iincluded ncluded with ed ition 2 of the IEC 61215 se ries to better exp lain the project team’s reasoning in developing some of the changes made since edition 1. This annex is informative, describing the development history and rationale. This annex does not modify or complete any of the test procedures found in the IEC 61215 series. The following changes are discussed in this annex: •

Procedures for bifacial modules



Use of represen tative samples



Addition of dynam ic mech anical load load test



Addition of test for potential induced degradation



Simu lator requirements

• •

References to retest guidelines W eight on junction boxes



Correction to mo nolithicallynolithically-integrated integrated hot-spot endurance test



Num ber of modules in sequence



Removal of nominal module operating tempe rature (NMO T)



Very low currents during thin-fil thin-film m test tests s



Limit bypass diode testing to three diodes



Revert the iinsulation nsulation test to 2005 version



Bending test



Stabilization option for boron oxygen LID (MQT 19.3) 19.3)

To create edition edition 2, a num ber of minor correcti corrections ons and clarif clarifications ications to tthe he editi edition on 1 wording were also made. These minor changes are not discussed in this annex.

 A .2

Pr o c ed u r es f o r b if ac ia l m o d u le les s

The IEC 61215 new editi edition on includes text rrelated elated to bifaci bifacial al modules, modules,w w h e rre e a s e d i ttii o on n 1 d iid d not. The new edition includes several instructions related to bifacial modules: •

Procedures for measuring IEC TS 60904-1-2.

bifacial

modu les

are

included

viareferences via references



Wh ere test levels levels need need to be adjusted for bifacial modules due currents during operation, these increased values are specified.



Additional reporting requireme nts (e.g. (e.g. bifacialit bifaciality y coefficients) are aredescribed. described.



Tests tthat hat may be omitted because ref referenced erenced standards have not yet account for bifaciality are noted.

to

to

potentially potentially higher 

been mod ified ified to

 

IEC 61215-1:2021 © IEC 2021

-

29-

Qualification of bifacial modules requires measurement of several quantities beyond those required for m onofa cial mo dules. The sh ort-c ircuit curren t bifacia lity coefficie nt çç> >)sc, )sc, the opencircuit voltage bifaciality coefficient (Pyoc  and the maximum power bifaciality coefficient
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF